

Abstract—The recovery algorithms in the network lead to

reduce deliver data time between source and destination by

interoperate between layer 2 and layer 3. We created three

topologies and each topology has a different number of links

and nodes. The algorithm mechanism is to make the source

node re-route the packets when failure occurs in a new path

through an adjacent node. Hence, the source node will send the

packet to one of the adjacent nodes, which has chosen randomly.

This node will use a different path, which does not affected by

the failure of the destination node. In addition, is not necessary

that this secondary path be the shortest to make recovery time

faster. (When the source node re-routes the packet directly to

the adjacent node the routing protocol in the source node will

update the routing table and re-compute the secondary shortest

path.

Index Terms—Internet protocol, Ping agent, open shortest

path first (OSPF).

I. INTRODUCTION

Many papers have recently published about recovery in the

network. Each one mentioned different techniques and

different algorithms to improve the recovery time and fast

convergence without any modifications to the network such

as hardware, protocols. The routers are responsible for

receiving and forwarding the data through an interconnected

a set of networks. In addition, the router with lower layers

must avoid that portion of network that has failed or

congested. Many protocols help the router to take decisions

to select the best route, which is the shortest one to transmit

the data. Recently, many algorithms have published to make

the computation of the shortest path faster by reducing the

waiting time for calculating the new shortest path. The

waiting time is to confirm that a failure has occurred. This is

because the instability of links will make the algorithm work

frequently, which is degrading the network. The current

algorithms are waiting 5 sec to be sure the failure has

occurred [1]. This waiting time raises two issues: firstly, the

recovery time will not be desirable and secondly the buffer

size may not have enough space to retain the packet until the

new shortest path has computed. In our algorithm, the QoS

forms one of many factors, we must consider it to make the

network more efficient with high service for all users. Many

papers have published about QoS. They indicate how the new

architectures have developed to support many applications

such as video, VOIP [2]. The QoS demand constrains must be

achieved to find a path can be tolerant any traffic without

degrade the network. In the network layer (layer3), the

Manuscript received December 23, 2015; revised May 3, 2016.

Radwan S. Abujasar is with the ITC program, Arab Open University,
Kuwait, Alardiya (e-mail: r.abujassar@aou.edu.kw).

mechanism of routing protocols is to build the routing table,

compute the best path between source and destination, and

additionally it can detect failure through “Hello Packets” in

OSPF protocol. However, the routing protocol use one of

network characterizes to compute a primary path such as

metric (cost), hop-count, delay or bandwidth. In addition, the

recovery techniques nominate a candidate paths based on the

cost metric.

II. RELATED WORKS

Efficient routing protocol algorithms have built for

achieving the robustness and fast convergence within a short

time, in case failure. In [3], the author indicates about the cost

of links in the network and traffic engineering. As we

mention above, the links cost consider one of the important

parameters to determine the best path through the routing

protocol algorithm. The OSPF protocol based on the dijkstra

algorithm to compute the shortest path; the minimum path

cost will determine by compare it with other candidate path.

The packet will re-route from the backup path through the

routing protocol, the problem here when the backup path pass

other traffic then the load will become high and the

congestion lead to drop the packet. Therefore, the traffic

engineer is coming to solve this problem by allocate the

traffic through the equal cost path with less utilization.

The OSPF optimize multiple path protocol OSPF (OMP)

emphasis to solve the load on the path [4], and achieve

optimal distribution load balance in the network in case

failure. However, there are two drawbacks of OMP

mechanism. First, it needs more memory size to store vectors.

Second: the information will generate without any

deterministic and unpredictable. However, if we assume

there is more than one path has the similar cost with primary

shortest one, then we can shift and divide the traffic from all

ECMP to decrees the utilization on the primary path, and the

load balancing will be achieved. In addition, the ECMP will

avoid the loop in the network [5].

Open Shortest Path is an extremely important protocol that

is used in the network. The OSPF protocol uses a Dijkstra

algorithm, which computes the shortest path between source

and destination in a short period time. It is described in detail

later.

The OSPF protocol performs a number of internal tasks:

firstly, processing the LSAs. Secondly, performing SPF and

updating the forwarding information and flooding the LSAs.

OSPF [6] is a links state routing protocol and it has a

correlation with the delay, which is associated with the

number of routers and links.

There are many factors leading to delay in the network as

follow:

Resilience of the Internet Protocol by Improving the

Recovery Mechanism via PING Agent

Radwan S. Abujassar

Journal of Advances in Computer Networks, Vol. 4, No. 2, June 2016

148doi: 10.18178/jacn.2016.4.2.221

1) LSA flooding

2) Copying LSU

3) The delay involved in computing the shortest path by

using Dijkstra’s algorithm.

By the network operator, each link will assign a weight and

the shortest path is computed by using these weights as

lengths of links [7]. The highlight points are, if the router has

multiple outgoing links then one of them will be a primary

path, which is the shortest path to the destination, and the

other outgoing links may configured as a backup links that

can be used in case failure. In this case, the router will use a

hash function with some information in the header to assign

packets for which outgoing links will transit to the destination.

Hash functions well-defined a procedure or function that is

used to speed table lookup to find item in a database. In

addition, Hash functions are used in hash tables to locate

quickly a data record [8], [9].

In our mechanism, we measure the load balancing has

measured by:

Load Link Metric = (traffic size)/(link capacity × Time

period); Link Cost (utilization) =link cost × w × utilization

There are two kinds of the dijkstra algorithm; first: dijkstra

algorithm to compute the best path by removing the links

with bandwidth less than the threshold. Second, on demand

dijkstra algorithm, which is generate the shortest path tree to

the pre-computation mode, and depend on the bandwidth

request the node will be added in the tree [10], [11].

The IP recovery emphasize on two cases: first, the time to

detect the failure. Second the time to compute the shortest

path. Hence, we will discuss about some techniques that

contribute to improve the recovery time by achieving a

desirable result. Failure Insensitive technique is one of the

efficient techniques in the IP recovery. When the failure

occurs, FIR mechanism will inform the source node about

failure through encapsulate the packet (encapsulate in

encapsulate) with a special header and return back the packet

to the source, the source node will notice about the failure

through the new header, then will send packet to another path,

which is disjoint with the primary path. FIR mechanism will

avoid loop in the network, but the recovery time will be not

desirable. The drawback in this technique, when the packet

will encapsulate two times that will lead to consume the

bandwidth, delay and congestion in the network [12]. On the

other hand, IPFRR is an applicable technique, it includes the

LFA, U-turn and not-via address [13]. The draw back in

IPFRR technique is the loop free not guaranteed. In addition,

not-via address need to encapsulate/de-capsulate, which

effects on network performance as we indicate above.

III. OUR TECHNIQUE

A. Network Simulation (NS2)

NS2 is an open source event-driven simulator designed for

research in computer communication networks. It is an

object-oriented simulator written in C++ with an OTcL

interpreter as the front end. In addition, it contains modules

for numerous network components, such as, routing,

transport layer and application. NS2 contributes towards

investigating network performance. In addition, NS2 has

easy to use scripting language to configure networks and

observe the results it generates. NS2 has become the most

widely used, and it is open source network simulator. NS2 is

free software and we can download it from the internet.

B. Experiment Methodology

There is a huge amount of data transmission through

networks, and these data can send from source to destination

through more than one route. In, addition, there are many

routing protocols can be used in the network such as, RIP,

EIRGP and OSPF. In this experiment we will use OSPF

protocol for many reasons as discussed above. Hence, OSPF

use the routing algorithm (Dijkstra’s algorithm) to compute

the shortest path between source and destination depending

on the metric. The metric can be measured on different ways

such as the number of hops, delay, bandwidth or cost.

TABEL I: PARAMETER VALUES

Names Parameter values

Packet size 1000 byte

Packet interval 0.01 ms

Simulation time 10s

Number of nodes 8

Link Capacity 1Mb

Type of Queue RED

Routing protocol Link State

Link Down & UP Randomly/Uniform

Rate 500 Byte

No. of Links 13

In this experiment, we configured the Link State protocol

on all nodes, which is currently available in NS2 simulator. In

addition, this topology contains thirteen links and seven

nodes. The propagation delay for each link is configured 2ms,

and the capacity for all links between (1 and 2) MB, see Table

I. In addition, all CBR traffics use UDP protocol in layer4 to

transmission the traffic from source to the destination. In

addition, there are three CBR traffics (Traffic-1, Traffic-2,

and Traffic-3); each one has a different flow number (0, 1, 2)

respectively. We have created twelve variables as a

[Random/Uniform] exponential to make failure occurs

randomly, and make traffic start and stop randomly during

the run simulation time. Rather than, when failure occurs on

primary paths, the LS send LSAs after detect failure to update

the routing table and compute the new shortest path route,

during that there are many problems may occurs such as

congestion, loop and loss packets. This experiment aims to

show how the packets will drop and the generation delay

become high through many factors we will discuss them

through the result. The congestion model used in this

experiment tries to emulate the behaviour of Random Early

Drop (RED) [13], which is usable for congestion avoidance

in packet-switched networks. However, when the average

queue size exceed a particular limitation the packet will drop

probability (P) at a router interfaces. Hence, the main idea of

RED queue keeps the average queue size under this limitation.

In addition, when the RED queue increases linearly from a

value 0 to max_p at the average buffer occupancy queue

length, if the queue length exceeds 1, in this case all the

incoming packets are dropped. RED queue is more useful

when we use TCP protocol for two reasons as follow: First,

when the average size for RED queue become over 75% it

should send notification to decrease the window size, then

that will avoid congestion and loss packets in the network.

Second, the TCP detects the congestion after the packet

dropped.

Journal of Advances in Computer Networks, Vol. 4, No. 2, June 2016

149

This topology will assist in showing how the OSPF

protocol works when the failure occurs.

C. Ping Agent

It is clear that the OSPF protocol can detect failure through

“Hello packets”. In [13], Hello packets will take long time to

detect failure. Therefore, if we want to change the time for

Hello packets that will lead to different problems such as

increase load on the link, consume bandwidth and

propagation delay. Hello packets send every 10 sec, the

failure will confirm after four hello packets send without any

acknowledgment that means after 40sec. Hence, there are

two basics work for the hello packets. First: detect failure.

Second, establish and maintain neighbour relationships The

author made some experiments to send hello packets in less

than 10 sec, and then check in which time consider the best to

send hello packets for detecting the failure faster. The hello

packets size will increase depend on the neighbour numbers.

On the other hand, header packet for ping agent includes two

fields:

1-Ret

2-Time interval

The char 'ret' is going to be set to '0' if the packet is on its

way from the sender to the node which is being pinged, while

it is going to be set to '1' on its way back. The double 'send

time' is a time stamp that is set on the packet when it has sent.

In this example, we will prove the ping agent will not make

any load that degrading from the network performance on

each link on the path between source and destination.

Example: Assume there are two nodes {A, B} the source

will be A and B the destination, the link capacity 1Mb and the

packet size =1000kb. We will configure the LS protocol work

on this topology and the rate =500 kb.

We will compute the utilization of link with hello packet

and ping packet and we can see the different between them.

Link utilization % = (data bits × 100) / (bandwidth ×

interval)

Hello packets size = 384bit because we have just one

neighbour; Ping packet=16 bit

We compute first the hello packet with assume the interval

time 10sec.

Link utilization% =(384×100)/(1Mb×10000ms)=0.036621

×10-4%

For ping agent:

Link utilization% =(16×100)/(1Mb×10000ms)=0.0015258

×10-4 %

As we can see the ping, agent size is negligible even if we

make the time interval less than 10sec. In case, the link

utilization =100% that will avoid the ping agent and hello

packets to send during that until the utilization go less than

100%. In this case, the hello packet and ping packet will wait

in the queue. If we decrease, the time interval for both the

utilization of link will be as follow:

The total link utilization with hello packet is

% = [((1000×8)+384)×100]/1Mb×5000ms=0.0015973

The total link utilization with ping agent is

% = [((1000×8)+16)×100]/1Mb×5000ms=0.0015272

IV. RESULT

In this experiment, we ran 10.0s simulations ten times, and

configured the LS protocol to work on this topology. The

CBR traffics for all sources nodes started to send from 0.5s to

9.0s. During that time we caused many failures in different

links. Firstly, we caused three links to become inoperative.

The failures occurred at different times because we have

created six variables [Random/Uniform]. The first three

variables have min_v equal to 0.5s and the max_v equal to

5.0s. The link went down between these times. The

remaining variables have min_v equal to 6.0s and max_v

equal to 9.0s. These values indicate the time for the links go

up.That means that the failures it will not remain for a long

time, and through these results, we can measure their affect.

We have created a small topology, and we use UDP agent

with Exponential traffic between the source and destination.

The capacity of link 1Mb and the run simulation time is 10

sec. Through the trace file, we compute the utilization of link

with awk program, and then we have produced the result as

above. The load is decrease, when the time for sending the

hello packet and ping agent increased. However, the load is

high when we are sending hello and ping packets at 0.5sec

and the load is stable for the ping agent on different times. In

the Fig. 1 below, we will see the hello and ping packet. We

make small experiment to prove when the ping agent send

frequently with less than 10 sec the load will be less than

hello packets. The idea here, we will use the ping agent

packet to send frequently between source and destination,

and we will keep the hello packet sending as typically. Hence,

failure can be detected faster than hello packets. Therefore,

when we speak about recovery time within 50 ms, then the

failure should be detected in less than that time.

Fig. 1. UDP traffic with Hello & Ping packets.

A. Number of Failures

When the number of links down the protocol will take

more time to re-compute and re-route the packets through

another path. We can invest layer2 here to detect failure faster.

In Layer2 the router can determined the destination through

MAC address, so when the failure occur the MAC address

will remove from the IP header. By Logical Layer control,

the higher layer can interact with lower layers. In addition,

the loss signal and light will indicate link or node down, then

logical link layer (LLC) will inform layer 3 about the failure.

Fig. 2 illustrates the design of a scenario using a small

topology. This topology acts a simple example to show how

the time recovery will increase when failure span to different

link. Each node has at least two egresses that can re-route

packets through either one of them when failure occurs.

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7

Tr
af

fi
c

lo
ad

 b
it

/s
ec

Time for sending
Hello & ping packets/per second

Ping
Packet

Journal of Advances in Computer Networks, Vol. 4, No. 2, June 2016

150

Fig. 2. The time increased when more than one links down.

V. CONCLUSION AND FUTURE WORK

As we know the OSPF protocol compute the shortest path

depend on the cost, which is available currently in NS2

simulator. Our technique is to make the dijkstra algorithm

compute the best path through two parameters. First:

compute the best path depend on the available bandwidth.

Second: compute the best path depend on the delay of links.

The aim of this technique, when the failure occurs we will

assume the second best path is passing traffic; therefore to

avoid loss of packets we will make the alternative path

(backup path) has a large capacity to make the network more

reliable with avoid congestion. On the other hand, we can

compute the second shortest path depend on the delay of links

in case there is no other path passing through that link. When

we said the network must offer convergence in 50ms it means

that failure must be detected in less than 50ms, and recovery

mechanisms brought up the backup route within 50ms. Then,

the service must be restored from end-to-end during this time.

My investigation focuses upon how the recovery mechanism

includes routing protocol, can recover failure with in less

than 50ms. Hence, this process demands additional features

to the Dijkstra’s algorithm that can compute shortest path

faster. In layer3 include the routing protocol, such as (OSPF)

with Dijkstra algorithm. In layer2 include the Ethernet, which

is concern on Ethernet bandwidth and capacity.

REFERENCES

[1] A. Shaikh and A. Greenberg, OSPF Monitoring: Architecture, Design
and Deployment Experience, San Francisco, California, March 29-31,

2004, p. 5.

[2] A. Shaikh and A. Greenberg, “Experience in black-box OSPF
measurement,” in Proc. ACM SIGCOMM Internet Measurement

Workshop (IMW), Nov. 2001, pp. 113–125.

[3] A. Shaikh and A. Greenberg, “Optimizing OSPF/IS–IS weights in a
changing world,” IEEE, vol. 20, p. 4, 2002.

[4] Banerjee and D. Sidhu, “Path computation for traffic engineering in

MPLS networks,” in Proc. IEEE ICN, 2001, pp. 302-308.
[5] W. Paper, “Ethernet operations, administration, and maintenance,”

Service Management, 2007, pp. 1-15.

[6] H. Ohta, “Standardization status on carrier class Ethernet OAM,”
IEICE Transactions on Communications, vol. E89-B, no. 3, pp.

644–650, March 2006.

[7] T. Aoyama, “A new generation network: Beyond the internet and
NGN,” IEEE Communications Magazine, vol. 47, issue 5, pp. 82-87,

2009.

[8] J. D’Amboise, “40 Gigabit Ethernet and 100 Gigabit Ethernet: The
development of a flexible architecture,” IEEE Communications

Magazine, vol. 47, issue 3, pp. 10-13, Mar. 2009.

[9] H. Ohta, “Standardization status of carrier-class Ethernet,” NTT
Technical Review, vol. 6, no. 2, 2008.

[10] W. Grover, Mesh Based Survivability Networks, Prentice Hall.

[11] W. D. Grover, S. M. Iee, D. Stamatelakis, and M. Iee, “Cycle-oriented
distributed Reconfiguration,” Cycle, pp. 537 -543, 1998.

[12] Network Simulator NS2. [Online]. Available:

http://www.isi.edu/nsnam/ns
[13] S. Floyd and V. Jacobson, “Random early detection gateways for

congestion avoidance,” IEEE/ACM Transactions on Networking, vol.

1, no. 4, pp. 397–413, August 1993.

Radwan Abujassar is currently assistant professor at

the Computer Faculty Department of Arab Open
University, Kuwait Branch. Previously, he was an

assistant professor at the Faculty of Engineering at the

Bursa Orhangazi University in Turkey. Dr. Radwan

received his B.Sc. degree from Applied Science

University, Amman, Jordan in 2004, and M.Sc. degree

from New York Institute of Technology in 2007, both
in computer science. His Ph.D. degree in computing

and electronic in the field of IP recovery in IGP and MANET networks was
received from University of Essex, UK in 2012. His research interests

include network and controls, routing protocols, cloud computing and

network security.

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004

1 2 3 4

T
im

e
to

 r
e-

ro
u

t
th

e
p

ac
k

et
/s

ec

Failure in the network

No. of Faulire

Journal of Advances in Computer Networks, Vol. 4, No. 2, June 2016

151

