
  

  
Abstract—This paper proposes a proportionate sign subband 

adaptive filtering (PSSAF) and an improved PSSAF (IPSSAF) 

algorithm for network echo cancellers that deal with impulsive 

interferences and sparse echo paths. Based on a sign subband 

adaptive filtering (SSAF) algorithm that is robust against 

impulsive interferences, the proposed algorithm minimizes 

L1-norm of the subband a posteriori error vector subject to a 

weighted constraint on the filter coefficients. A positive definite 

weighting matrix is used for the constraint. In this paper, we 

adopt a diagonal proportionate matrix for the constraint to 

achieve fast initial convergence rate when the impulse response 

is sparse. The components of it is roughly proportional to the 

absolute value of current estimate of the filter, so the resulting 

algorithm is called PSSAF algorithm. To achieve fast initial 

convergence rate even for rather non-sparse impulse responses, 

an improved proportionate matrix is also used for the constraint, 

and the resulting algorithm is named as IPSSAF algorithm. 

Experimental results show that the proposed algorithms are 

more robust against highly correlated input signals, impulsive 

interferences, and double-talk than the original normalized 

subband adaptive filtering algorithm and the class of 

proportionate subband adaptive filtering algorithms. 

 
Index Terms—Adaptive filters, proportionate, sign algorithm, 

subband adaptive filtering algorithm, weighted constraint, 

weighting matrix. 

 

I. INTRODUCTION 

A network echo cancellers (NEC) is an adaptive filter that 

is one of the best solutions to control acoustic echos of the 

voice communication networks. An adaptive filter estimates 

the echo path of the network and generates a replica of the 

room impulse response, and then the output of the filter is 

subtracted from the near-end signal to obtain clean signals. 

The scheme of the NEC is the same as a classical system 

identification, but there are several challenging problems for 

modern voice transmission over telephone networks. The first 

one is about the characteristics of the echo path. The length of 

the echo path for NEC is extremely long due to long delays 

caused by large scale network. Thus, the adaptive filter 

usually requires large number of taps, and 512 or 1024 taps 
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are chosen as standard for the NEC. With long impulse 

response, however, most of the coefficients are close to zero; 

it means the typical network impulse response is sparse. 

Second, the excitation signals used for NEC are speech 

signals which are highly correlated and non-Gaussian process, 

so many adaptive filtering algorithms suffer from reduced 

convergence rate. In addition, the background noise can also 

be highly non-stationary or strong interferences. The third 

aspect to be considered in NEC is double-talk scenario which 

means that far-end and near-end speech are active 

simultaneously. In this case, a near-end speech acts like a 

large disturbance of the filter, so it may causes extremely slow 

convergence or divergence. 

When developing adaptive filtering algorithms used for 

NEC, these challenging problems should be considered. An 

ideal algorithm not only should have fast convergence rate 

and good tracking performance but also achieves small 

steady-state estimation error even for long-length echo path. 

These problems should be maintained in the case of 

non-stationary excitation signal. Furthermore, the algorithm 

should be robust against variation of the microphone signal 

(background noise variations and double-talk situation). The 

conventional normalized least mean squares (NLMS) 

algorithm is the most widely used adaptive filtering algorithm 

due to its simplicity and robustness [1], [2]. However, for 

NEC, the NLMS algorithm suffers from reduced convergence 

rate due to long length of the filter. It is possible to consider 

the recursive least squares (RLS) algorithm and the affine 

projection algorithm (APA) [3] for obtaining fast 

convergence rate, but they are not appropriate for NEC 

application in practice because of their heavy computational 

complexity. Thus, there are requirements for adaptive 

filtering algorithms with fast convergence rate and low 

computational complexity to replace the NLMS algorithm. 

The network echo path impulse response is known as 

sparse in nature. That is, only a small portion of the 

coefficients is active and other coefficients are zero or 

unnoticeably small values (inactive). Many adaptive filtering 

algorithm take advantage of sparseness the echo path and 

propose some methods to improve the convergence rate and 

robustness or lower computational complexity. The 

proportionate NLMS (PNLMS) [4] has been developed to 

achieve fast initial convergence rate. It updates coefficients of 

the weight vector by assigning different step sizes to different 

coefficients based on their magnitude of current estimates. 

For a large coefficient, a large value of step size is assigned in 

the update process, so this method allows to obtain fast initial 

convergence rate for sparse impulse responses relatively 

independent of their length for sparse impulse responses. 

However, the PNLMS algorithm slows down after its fast 
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initial convergence, and it has slower convergence rate than 

NLMS when the network impulse response is not sparse 

enough. This problem has been addressed in several papers, 

and modifications to PNLMS algorithm is studied to improve 

the performance. The improved PNLMS (IPNLMS) [5] is 

proposed to avoid degradation of the performance for the 

non-sparse impulse response. It gives more optimal step sizes 

for given sparseness by using a control factor, so maintains its 

fast convergence rate even in the case of non-sparse impulse 

responses. To keep the fast convergence rate during the whold 

adaptation process, the µ-law PNLMS (MPNLMS) is 

proposed in [6]. Also, the improved IPNLMS (IIPNLMS) [7] 

is proposed where the step sizes assigned for different 

coefficients are determined by two different relationships 

depending on whether the coefficient is considered as active 

or inactive. These concept of proportionate-type algorithms 

are extended to a normalized subband adaptive filtering 

(NSAF) algorithm [8] in [9]. The NSAF algorithm 

decomposes the input signals into multiple subbands in order 

to whiten the input signals in each subband, so the algorithm is 

suitable to achieve faster convergence rate than the NLMS 

algorithm. The computational complexity of the NSAF 

algorithm is not heavy comparing to the RLS or APA, and 

thus, the proportionate-type subband adaptive filtering 

algorithms are proper to use in NEC applications. 

In addition to fast convergence rate and low complexity, a 

robustness can be an considerable issue for adaptive filtering 

algorithms. In particular, double-talk is a big challenging 

problem for NEC. To deal with double-talk situation, a 

double-talk detector (DTD) can be used typically. However, it 

is not desirable to rely only on DTD because the NEC has 

tight requirements for detecting double-talk. Thus, several 

adaptive filtering algorithms are developed focusing on the 

robustness to double-talk [10]-[14]. One of the method is 

using L1-norm minimization of error because L1-norm 

algorithms are especially robust against impulsive noise such 

as speech. The basic algorithm using L1-norm is the 

normalized sign algorithm (NSA). The NSA provides 

robustness against impulsive noise, but the convergence rate 

of it becomes slower than the NLMS algorithm. Recently, a 

sign subband adaptive filtering (SSAF) algorithm is suggested 

in [15] which extends a concept of L1-norm error 

minimization to the NSAF. The SSAF algorithm has good 

robustness comparing to NSAF algorithm, and achieves 

rather faster convergence rate than the NSA. 

In this paper, we adopt the proportionate approach with the 

SSAF to obtain faster convergence for sparse network 

impulse responses. Based on the weighted constraint to the 

weight error vector, we obtained a weight update equation for 

the proposed algorithm mathematical derivation. Two types 

of proportionate matrix based on the PNLMS [4] and 

IPNLMS [5] are used as a weighting matrix, and the resulting 

algorithms are called proportionate sign subband adaptive 

filtering (PSSAF) algorithm and improved PSSAF (IPSSAF) 

algorithm, respectively. The PSSAF and IPSSAF algorithm 

show fast convergence rate for sparse impulse response, and 

they also show the robustness against highly correlated input 

signal, interferences, and double-talk. Especially, the IPSSAF 

algorithm also achieves fast convergence rate even for the 

non-sparse impulse response. The computational complexity 

of the proposed algorithms are slightly higher than the SSAF 

algorithm, but lower than the NSAF and the family or 

proportionate-type NSAF algorithms. 

 

 
Fig. 1. Structure of a network echo canceller (NEC). 

 

II. BACKGROUNDS 

A. Network Echo Cancellers 

Consider a NEC scheme shown in Fig. 1. In Fig. 1, ( )u n  

denotes the far-end signal, and ( ) = ( ) ( )n z n v nη +  is a 

near-end signal where ( )z n  and ( )v n  are the near-end speech 

and background noise signal, respectively. The true echo path 

is denoted as 
ow with length M, and the estimation of it can be 

obtained by minimizing the difference between the desired 

output ( )d n  and the estimated filter output ( )y n  such that 

( ) = ( ) ( )e n d n y n− . The desired output that contains the echo, 

the near-end signal can be represented as 

( ) = ( ) ( )
T

o
d n n nη+u w , and the filter output, the replica of the 

echo, can be expressed as ( ) = ( ) ( )
T

y n n nu w , respectively, 

where ( ) = [ ( ), ( 1), , ( 1)]
T

n u n u n u n M− − +u ⋯  is the far-end 

signal vector and 
0 1 1

( ) = [ ( ), ( ), , ( )]
T

M
n w n w n w n−w ⋯  is the 

estimation of the impulse response at time index n. 

B. Sign Subband Adaptive Filtering Algorithm 

Fig. 2 shows the conventional subband adaptive filtering 

structure. The signals ( )u n and ( )d n  are decomposed into 

( )
i

u n  and ( )
i

d n  by analysis filters ( )
i

H z  = 0,1, , 1i N −⋯ . 

The subband input signals ( )
i

u n  are filtered by the adaptive 

filter ( )W z  and the filter outputs ( ), = 0,1, , 1
i

y n i N −⋯  are 

obtained. By decimating ( )
i

d n  and ( )
i

y n , 
,

( )
i D

d k  and 

,
( )

i D
y k  are generated, and it is easy to note that 

,
( ) = ( ) ( )

T

i D i
y k k ku w , where ( )kw  is the tap weight vector of 

( )W z and ( ) = [ ( ), ( 1), , ( 1)]
T

i i i i
k u kN u kN u kN M− − +u ⋯ . 

We use n and k to index the original and decimated signal, 

respectively. 

Define the subband output error vector ( )
D

ke  and subband 

a posteriori error vector ( )
p

ke  as  

( ) = ( ) ( ) ( )
T

D D
k k k k−e d U w                        (1) 

( ) = ( ) ( ) ( 1)
T

p D
k k k k− +e d U w                      (2) 

where 
0, 1, 1,

( ) = [ ( ), ( ), , ( )]
T

D D D N D
k d k d k d k−d ⋯ and 

0 1 1
( ) = [ ( ), ( ), , ( )]

N
k k k k−U u u u⋯ . 
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Fig. 2. Structure of NSAF algorithm. 

 

The sign subband adaptive filtering (SSAF) algorithm [15] 

can be obtained by minimizing the L1-norm of the a posteriori 

error vector with a constraint on the filter coefficients,  

Minimizing 

 

1
|| ( ) ( ) ( 1) ||

T

D
k k k− +d U w   

 

Subject to  

 
2 2

2|| ( 1) ( ) ||k k µ+ − ≤w w                      (3) 

 

where µ is a positive step size that does not change 

dramatically. Using Lagrange multipliers to solve this 

constrained optimization problem and replacing ( )
p

ke  to 

( )
D

ke , the weight update equation of the SSAF can be 

obtained as follows:  

 

( ) ( ( ))
( 1) = ( )

( ( )) ( ) ( ) ( ( ))

D

T T

D D

k sgn k
k k

sgn k k k sgn k
µ+ +

U e
w w

e U U e

(4) 

 

Using the diagonal assumption, that is, ( ) ( )
T

k kU U  

0 0 1 1 1 1
= [ ( ) ( ), ( ) ( ), , ( ) ]

T T T

N N
diag k k k k k− −u u u u u u⋯ , we can 

write (4) as  

 

1

=0

( ) ( ( ))
( 1) = ( )

( ) ( )

D

N
T

i i

i

k sgn k
k k

k k

µ
δ

−
+ +

+∑

U e
w w

u u

          (5) 

 

where δ  is a regularization parameter. 

 

III. PROPORTIONATE SIGN SUBBAND ADAPTIVE FILTERING 

ALGORITHM 

Instead of using L2-norm to the constraint on the filter 

coefficients in (3), we can use a “weighted norm with a 

positive definite weighting matrix ( )kΣ  as  

Minimizing 

1
|| ( ) ( ) ( 1) ||

T

D
k k k− +d U w

 

Subject to 

 
2 2

( )
|| ( 1) ( ) ||

k
k k µ+ − ≤

Σ
w w                     (6) 

 

Using the method of Lagrange multipliers, the cost function 

can be obtained as  

 

1
( ( 1)) =|| ( ) ( ) ( 1) ||

T

D
J k k k k+ − +w d U w  

2 2

( )
[|| ( 1) ( ) || ]

k
k kγ µ+ + − −

Σ
w w                   (7) 

 

where γ  is a Lagrange multiplier. Setting the derivative of (7) 

with respect to the ( 1)k +w  equal to zero, we get  

 

11
( 1) = ( ) ( ) ( ) ( ( )).

2
p

k k k k sgn k
γ

−+ +w w Σ U e        (8) 

 

Since a posteriori error vector ( )
p

ke  is not accessible 

before the update, we need to approximate it to a priori error 

vector ( )
D

ke . Then, (8) can be replaced with 

 

11
( 1) = ( ) ( ) ( ) ( ( )).

2
D

k k k k sgn k
γ

−+ +w w Σ U e       (9) 

 

Substituting (9) to the constraint in (7), we obtain  

 

1

1
=

2 ( ( )) ( ) ( ) ( ) ( ( ))
T T

D D
sgn k k k k sgn k

µ
γ −

e U Σ U e

  (10) 

 

Substituting (10) into (9), the update equation of the filter 

coefficients can be expressed as  

 

( 1) = ( )k k+w w  

1

1

( ) ( ) ( ( ))

( ( )) ( ) ( ) ( ) ( ( ))

D

T T

D D

k k sgn k

sgn k k k k sgn k
µ

−

−
+

Σ U e

e U Σ U e

  (11) 

 

We can choose the matrix ( )kΣ  depending on the 

environment. Thus, we choose 1
( ) = ( )k k

−
Σ G  

1

=0
= [1 / ( )]

M

l l
diag g k

−  as a weighting matrix, and then (11) can 
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be expressed with the matrix ( )kG  as  

 

( 1) = ( )k k+w w  

( ) ( ) ( ( ))

( ( )) ( ) ( ) ( ) ( ( ))

D

T T

D D

k k sgn k

sgn k k k k sgn k
µ+

G U e

e U G U e
    (12) 

 

The components of ( )kG  can be determined according to 

[4] and [5] as  

 

1

=0

( )
( ) =

( ) /

l

l M

l

l

k
g k

k M

γ

γ
−

∑
                       (13) 

 

where  

 

0 1
( ) = max( max( ,| ( ) |, , | ( ) |), | ( ) |)

l M l
k q w k w k w kγ ρ −⋯ (14) 

 

or  

1

| ( ) |1
( ) = (1 ) .

2 (2 || ( ) || ) /

l

l

w k
g k

k M

α α
ε

−
+ +

+w
    (15) 

 

The resulting algorithms depending on the component 

( )
l

g k  in two ways are called proportionate sign subband 

adaptive filtering (PSSAF) and improved PSSAF(IPSSAF) 

algorithms, repectively. In (14), the parameter ρ prevents 

( )
l

w k  from stalling when it is much smaller than the largest 

coefficient and q regularizes the updating when all 

coefficients are zero for the PSSAF algorithm. In (15), the 

parameter α controls the behavior of the IPSSAF algorithm. 

When α = -1, the IPSSAF and SSAF are identical, and the 

IPSSAF behaves like the PSSAF when α gets closer to 1.  

 

IV. SIMULATION RESULTS 

A. Performance Comparison 

In this section, we did several simulations to verify the 

performance of our proposed algorithm. The echo paths used 

for simulations have 512 coefficients and two typical impulse 

responses are depicted in Fig. 3. Two input signals are used in 

the simulations: the first one is obtained by filtering a white 

zero-mean Gaussian random sequence through the 
1

1
( ) = 1 / (1 0.9 )G z z

−− , and the second one is a speech signal. 

The measurement noise, ( )v k , is added to ( )c k  with a 

signal-to-noise ratio (SNR) defined by 

 
2

10 2

[ ( )]
= 10 log

[ ( )]

E c k
SNR

E v k

 
 
 

 

 

where ( ) = ( )
T

o
c k ku w . The near-end signal, ( )z k , is a 

strong impulsive interference with a signal-to-interference 

ratio (SIR) of -30dB and Bernoulli-Gaussian (BG) 

distribution is used for modeling the interference signal. The 

BG distribution is generated as the product of a Bernoulli 

process and a Gaussian process, i.e., ( ) = ( ) ( )z k w k n k , 

where ( )n k  is a white Gaussian random sequence with zero 

mean and variance 2

n
σ , and ( )w k  is a Bernoulli process with 

the probability mass function given as ( ) = 1P w Pr−  for 

= 0w , and ( ) =P w Pr  for =1w . The average power of a 

BG process is 2

n
Pr σ⋅ . Keeping the average power constant, a 

BG process is spikier when Pr  is smaller. It reduces to a 

Gaussian process when = 1Pr . The MSD, i.e., 
2

|| ( ) ||
o

E k−w w , is an indicator of the performance of the 

algorithms, and it is obtained by ensemble averaging over 20 

independent trials. In addition, the regularization factors are 

set to 2
=

u
δ σ  for the NSAF, PSAF, SSAF, and PSSAF 

algorithms, and = (1 ) / 2
IP

δ α δ−  for the IPSAF and 

IPSSAF algorithms where 2

u
σ  is a variance of input signal. 

Fig. 4 shows the MSD curves for our proposed algorithms 

and several other algorithms under consideration for 

comparison. AR(1) process generated using 
1

G  was used as 

an input signal, and SNR was set to 30dB. Considering the 

strong interference with 0.01Pr = , the proposed PSSAF and 

IPSSAF algorithms show faster convergence rate than the 

SSAF algorithm, while the NSAF, PSAF, and IPSAF 

algorithm diverges because of their L2-norm minimization of 

the error vector. 

 

 
Fig. 3. Room impulse response of the echo path for NEC. (a) Sparse impulse 

response. (b) Dispersive impulse response. 

 

 
Fig. 4. MSD curves for the NSAF, PSAF, IPSAF, SSAF, and proposed 

PSSAF and IPSSAF algorithm with interference for sparse impulse response. 

Input signal is AR(1), and SNR = 30dB. 
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Fig. 5. MSD curves for the SSAF, PSSAF and IPSSAF algorithm with 

interference for sparse impulse response. Input signal is AR(1), and SNR = 

30dB. Echo path is changed abruptly at k = 25000. 

 

B. Tracking  

Another possible scenario in NEC is the change of the echo 

path. The result for this scenario is depicted in Fig. 6, where 

the sparse echo path (Fig. 3(a)) was abruptly changed at 

= 25000k  to the dispersive impulse response (Fig. 3(b)). 

Environment for this simulation is the same as in Fig. 4, and 

the step sizes for the SSAF, PSSAF, and IPSSAF were set to 

make them achieve the same steady-state MSD. In Fig. 5, the 

IPSSAF algorithm achieves the fastest tracking performance 

among the comparing algorithms, and the PSSAF algorithm 

achieves better tracking performance than the SSAF 

algorithm, where the other algorithms track the changed echo 

path slowly. 

C. Parameters 

To verify the effects of the proportionate matrix for sparse 

and dispersive echo paths, we did additional simulations by 

varying parameters used for proportionate matrix. Fig. 6, Fig. 

7 depict the results of the simulation for the PSSAF and 

IPSSAF algorithms, respectively. AR(1) input and BG 

interference was used in the simulations for impulse responses 

shown in Fig. 3, and the step size was set to µ = 0.01. 

In Fig. 6(a), the PSSAF algorithm with small ρ(ρ = 0.01) 

leads to fast convergence rate for sparse impulse response 

because more proportionality for the filter PSSAF algorithm 

with larger value of ρ achieves better performance for 

dispersive impulse response because larger ρ makes little 

proportionality, and the algorithm updates the filter 

coefficients with a similar rate. We verified that the value of ρ 

considerably affects the performance of the PSSAF algorithm 

depending on the sparseness of the network impulse 

responses. We also did experiment about the effect of α for 

the IPSSAF algorithm in Fig. 7. In Fig. 7(a), as the value of α 

get closer to -1, the convergence rate of the IPSSAF algorithm 

get slower for sparse impulse response. The convergence 

behavior of the IPSSAF for dispersive impulse response is 

shown in Fig. 7(b), and we can notice that the algorithm shows 

similar initial convergence rate regardless of the value of α. 

As the value of α increases, the convergence rate of the 

IPSSAF algorithm get slower after initial convergence, but 

the steady-state estimation error of the algorithm with 

different α is not much different for dispersive impulse 

response. The effect of α is less sensitive than the effect ρ of 

the PSSAF algorithm, and it is good to choose α = 0 or α = 

-0.5 to make the IPSSAF algorithm perform robust to 

sparseness of the network impulse responses. 

 

 
Fig. 6. MSD curves for the PSSAF algorithm for different ρ for µ =0.01. The 

simulation environment is the same as in Fig. 5. Impulse responses in Fig. 3 

were used as the (a) sparse and (b) dispersive impulse responses, 

respectively. 

 

 
Fig. 7. MSD curves for the IPSSAF algorithm for different α  for µ =0.01. 

The simulation environment is the same as in Fig. 5. Impulse responses in 

Fig. 3 were used as the (a) sparse and (b) dispersive impulse responses, 

respectively. 

 

D. Double-Talk Scenario 

In this subsection, we show the performance of the 

proposed and competing algorithms in the double-talk 

situation. Experimental environment is the same as Fig. 4 

except excitation signal, and impulse response in Fig. 3(a) is 

used as the network echo path. Speech signals used for 

double-talk scenario are depicted in Fig. 8; far-end and 

near-end speech, respectively. Double-talk happen in the 

period with sample 4
[2.0, 4.0] 10× . As shown in Fig. 9 and Fig. 
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10, the NSAF, PSAF, and IPSAF show non-robust 

performance against double-talk disturbance without and with 

interferences. In contrast, the NSA, SSAF, PSSAF and 

IPSSAF algorithm, a family of sign algorithms, show 

somewhat robust performance against both impulsive 

interferences and double-talk disturbance. Among these 

family of sign algorithms, the proposed PSSAF and IPSSAF 

achieves faster convergence rate and smaller steady-state 

estimation error than the NSA and SSAF algorithm. Without 

any double-talk detector, the proposed PSSAF and IPSSAF 

show better robustness to double-talk. 

 

 
Fig. 8. Speech signals used in the double-talk scenario. (a) Far-end speech (b) 

Near-end speech. 

 

 
Fig. 9. MSD curves for the NSAF, PSAF, IPSAF, NSA, SSAF, and proposed 

PSSAF and IPSSAF algorithm for double-talk scenario without impulsive 

interferences. 

 

 
Fig. 10. MSD curves for the NSAF, PSAF, IPSAF, NSA, SSAF, and 

proposed PSSAF and IPSSAF algorithm for double-talk scenario with 

impulsive interferences. 

 

V. CONCLUSION 

In this paper, we proposed proportionate-type sign subband 

adaptive filtering algorithms for network echo cancellation. 

The proposed algorithm minimizes L1-norm of the subband a 

posteriori error vector subject to a weighted constraint. 

Applying proper positive-definite weighting matrix to the 

weighted constraint, we obtained proportionate sing subband 

adaptive filtering (PSSAF) algorithm and improved PSSAF 

(IPSSAF) algorithm. The resulting PSSAF and IPSSAF 

algorithm showed faster convergence rate than the 

conventional L1 algorithm for sparse network impulse 

response. Moreover, they achieved more robust performance 

against impulsive interferences and double-talk than the 

existing algorithms. 
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