
  

 

Abstract—Two paths between a source node and a 

destination node in a network are node- disjoint if they do not 

share any nodes except the end points. Node-disjoint paths have 

numerous uses in distributed systems including ways to deal 

with lost, damaged or altered messages during delivery. Many 

topologies such as hypercube, star networks, and their variants 

have been proposed, providing multiple disjoint paths between 

a pair of endpoints. The exchanged hypercube is a new topology 

that is obtained by systematically removing edges from a binary 

hypercube. Exchanged hypercube topology increases scalability 

and relative cost of the networks by reducing the number of 

edges per node. In this paper, we propose a distributed 

algorithm that is both stabilizing and inherently stabilizing to 

route messages over all node-disjoint paths in an exchanged 

hypercube network.   

 
Index Terms—Distributed algorithms, exchanged hypercube, 

node-disjoint paths, stabilization. 

 

I. INTRODUCTION 

In distributed systems, communication delays and 

throughput of the interconnection network are important 

factors on the overall performance of the system [1]. In order 

to minimize communication delays and to increase network 

throughput, system components can be connected via a 

network providing node-disjoint paths. Two paths from a 

source to a destination are said to be node-disjoint if they 

share no common nodes except for the source and the 

destination. The (all) node-disjoint paths problem is a 

fundamental problem with many applications in diverse areas 

including VLSI layout [1], reliable network routing [2], [3], 

secure message transmission [4], and network survivability 

[5]. For instance, node-disjoint paths can be used for 

perfectly secure transmission as follows. The simple 

expedient of breaking up data into several shares and sending 

them along the disjoint paths makes it difficult for an 

adversary with bounded eavesdropping capability to intercept 

a transmission or tamper with it. Alternatively, the same 

crucial message can be sent over multiple node-disjoint paths 

in a network that is prone to message losses to avoid omission 

failures, or information on the re-routing of traffic along 

non-faulty disjoint paths can be provided in the presence of 

faults in some disjoint paths. Other applications of disjoint 

paths include network coding to provide 1+N protection 

against single link failures in optical hypercube networks [5], 

where N is the dimension of the network, and VLSI layout [6]. 
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Due to the continuous increase in the number of nodes 

included in massively parallel systems, the probability of 

faults is constantly increasing. For this reason, it is critical to 

find mutually disjoint paths in order to establish 

communication routes under such a faulty environment as 

proposed in [7]. The presence of node-disjoint paths in a 

network can be used to reduce delays and increase system 

throughput; however, it reduces the scalability of the network 

due to increased connectivity. 

A desirable network topology should provide a reasonable 

balance between the number of links and the number of nodes 

in the network, while providing other desirable properties 

such as ease of routing, network embeddings, and fault 

tolerance [8]. In addition, as the number of links per node is 

restricted due to hardware limitations, the underlying 

topology used needs to minimize the number of links per 

node while retaining a small diameter to remain efficient. 

Several network topologies have been proposed with some of 

these desirable properties. For instance, Hypercubes and star 

graphs are rich, recursively structured and symmetrical 

interconnection topologies for multiprocessor systems with 

many desirable fault tolerance characteristics. However, in 

star graphs, the number of nodes needs to be the factorial of 

an integer. In practical terms, this is a severe restriction on the 

sizes of systems that can be built; there is a large gap between 

the numbers (n−1)! and n!. The n-dimensional hypercube 

(n-cube) with 2n nodes and n2n−1 links proposed by Saad 

and Schulz [9] is a topology with many properties such as the 

presence of n disjoint paths between each pair of distinct 

nodes. Extensive research has been undertaken on the n-cube, 

such as routing, fault tolerance, and embeddings [9]-[11]. C. 

N. Lai presents an algorithm for constructing n disjoint paths 

of optimal total length between a source and a destination 

nodes in an n-cube, where n is the dimension of the 

hypercube [7]. However, the n-cube scales too rapidly as 

dimension n grows, i.e., the number of links is high relative to 

the number of nodes. In order to overcome the scalability 

problem of the simple interconnection networks such as the 

hypercube, star and ring topologies have been superseded by 

more complex variations of the n-cube such as Gaussian 

Hypercube, perfect hierarchical hypercube and Reduced 

Hypercube [7], [12], [13]. These variants of the n-cube are 

produced by removing some of the links of a regular n-cube. 

These interconnection networks can connect many nodes 

while keeping a small diameter and low degree compared to 

hypercubes of the same size. The removal process affects 

some of the topological properties such as ease of routing in 

the presence of faults. 

The Exchanged Hypercube is a topology obtained by 

systematically removing links from an n-cube to reduce 

interconnection complexity while maintaining several 

essential properties of the n-cube, such as being Hamiltonian, 
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optimally embedding linear arrays and rings, and embedding 

meshes and trees with reasonable efficiencies. A spanning 

tree of the Exchanged Hypercube referred to as the Extended 

Binomial Tree provides the necessary framework for solving 

many applications such as broadcasting, prefix sum 

computing and load balancing in the Exchanged Hypercube. 

In addition, the Exchanged Hypercube has a number of 

desirable properties such as small diameter, low degree, fault 

tolerance, strong connectivity, recursive construction, 

partition capability and low latency. These properties enable 

it to serve as a cost effective interconnection topology for 

constructing fault tolerant networks in a peer-to-peer (P2P) 

environment. A system is referred to as an inherently 

stabilizing system iff neither arbitrary initialization nor 

transient faults affecting the configuration of the system 

processes have any effect on the execution of the algorithm or 

its progress. However, such a system offers no guarantee if 

the transient faults affect the communication links or 

message buffers. While an inherently stabilizing system 

continues its correct execution without any delay in the event 

of a transient fault or after starting in an arbitrary initial 

configuration, a stabilizing system ensures correct execution 

of the algorithm only upon stability is reached after a delay. 

On the other hand, an inherently stabilizing system may 

neither mask nor tolerate transient faults affecting 

communication links and message buffers of the system, 

whereas a stabilizing system can cope with these faults in 

addition to those affecting the configuration of the processes. 

As a result, an inherently stabilizing system may not be 

stabilizing and vice versa. The first inherently stabilizing 

algorithm is proposed in for routing in hypercube networks. 

The paradigm of inherent stabilization resembles that of 

snap stabilization. A system is snap stabilizing if after the 

system starts, it behaves as per its specification without any 

delay, regardless of the system configuration, in the absence 

of faults. However, such systems provide no guarantees in the 

event of transient fault (s) after the system starts. On the other 

hand, an inherently stabilizing system always behaves 

correctly without any delay in the presence of faults even 

after transient faults take place. The inherent stabilization 

property is a stronger property than the snap-stabilization 

property. 

The problem of finding disjoint paths in various topologies 

including OTIS networks, incomplete WK-recursive 

networks, and a level block of generalized hierarchical 

completely connected networks are available. However, a 

stabilizing or inherently stabilizing algorithm for finding 

disjoint paths in Exchanged Hypercubes is not available in 

the literature. 

In this paper, we propose a stabilizing and inherently 

stabilizing algorithm for routing over all node-disjoint paths 

between any two nodes in an exchanged hypercube. In 

particular, the proposed routing algorithm allows source 

process S to send k messages to destination process D, where 

S ≠ D in at most d(S,D)+4 rounds in the absence of transient 

faults in an exchanged hypercube such that each message 

traverses a distinct node-disjoint path in reaching the 

destination process, where k is the number of available paths 

in the graph, and d(S,D) denotes the (shortest) distance in 

hops between node S and D. A round refers to the minimal 

execution in the system in which each process executes all its 

enabled actions at the beginning of the round, and all the 

messages sent by these executed actions are delivered to the 

neighboring destination message buffers. The proposed 

algorithm is stabilizing and inherently stabilizing, due to 

being inherently stabilizing, transient faults affecting the 

system configuration, excluding system buffers, are masked 

and have no effect on the correct execution of the algorithm. 

Also, since it is stabilizing, the algorithm eventually recovers 

from transient faults affecting system buffers. Note that the 

proposed algorithm can be viewed as an extension of the 

protocol presented by Sinanoglu et al. [14] for the hypercube 

topology to the Exchanged Hypercube topology. 

 

II. PRELIMINARIES 

Let Exchanged Hypercube EH (s, t)=(V, E) be an 

undirected graph, where s ≥ 1 and t ≥ 1, V is the vertex set, E 

is the edge set, and s and t are dimensions of subcubes in the 

Exchanged Hypercube. The id of node v in EH (s, t) is a bit 

sequence as-1…a0bt-1…b0c where ai, bj, c ∈ {0, 1} for i ∈ [0, 

s-1], j ϵ [0, t-1]. v[i] denotes the i
th

 bit in the id of node v.v [x:y] 

denotes a subsequence of idv ∈ EH (s, t) between two bit 

positions x and y, where s+t≥x≥y≥0.Observe that each 

1 0 1 0... ...s tidv a a b b c  is composed of three subsequences, 

namely, 
1 2 0 1 2 0... , ...s s t ta a a b b b   

, and c referred to as 

s-subsequence, t-subsequence and dummy bit, respectively. 

The least significant bit c (v [0]) of each node v is referred to 

as a dummy bit. The dummy bit value of a node determines 

whether the node is of s-type or t-type. In particular, if c=0 

holds for node v in EH(s, t), node v is called s-type; otherwise, 

t-type. 

 An Exchanged Hypercube EH (s, t) consists of 2
t 

s-subcubes each of which containing 2
s 
s-type nodes with the 

same t-subsequence, and 2
s
 t-subcubes each of which 

containing 2
t
 t-type nodes with the same s-subsequence. In an 

Exchanged Hypercube, the number of s-type and t-type nodes 

are the same.Each s-type node is connected to a t-type node 

by an edge referred to as a dummy edge such that their bit 

sequences are the same except for their dummy bits. An edge 

(v1, v2) is included in E if v1 and v2 are of t-type, their 

hamming distance is one and their s-subsequences are the 

same. The hamming distance between two bit sequences 

refers to the number of positions at which the corresponding 

bits are different. An Exchanged Hypercube of dimensions (1, 

2) is shown in Fig. 1. The figure illustrates the concepts given 

above where dummy edges are shown by dashed lines 

whereas edges between same type nodes are shown by solid 

lines. 

 

 
Fig. 1. An exchanged hypercube of dimensions (1, 2). 
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III. INPUT, OUTPUT AND ACTIONS 

We assume that there is a separate protocol called the 

application protocol, which uses the proposed node-disjoint 

paths algorithm to send a sequence of messages from a source 

process to a destination process over all node-disjoint paths. 

The node-disjoint paths algorithm maintains two implicit 

buffers for each process referred to as the implicit input 

buffer and the implicit output buffer. These two buffers are 

also referred to as interface buffers, and are used to 

implement the interface between the application protocol and 

the node-disjoint paths algorithm. 

The node-disjoint paths algorithm maintains two implicit 

buffers for each process referred to as the implicit input 

buffer and the implicit output buffer. These two buffers are 

also referred to as interface buffers, and are used to 

implement the interface between the application protocol and 

the node-disjoint paths algorithm. 

When the application protocol is to send a set of messages 

from source process S to destination process D, it places a 

sequence of k messages M=m0, m1, m2…mk-1destination 

process id D, and the exchanged hypercube dimensions s and 

t in the input buffer of process S. This input is removed from 

the input buffer of process S, by the node-disjoint paths 

algorithm and the k messages are routed by the proposed 

protocol over k disjoint paths from S to D. Upon arrival of 

each message m at the destination process D, the message is 

placed in the output buffer of destination process Dso that the 

message is ready to be collected by the application protocol. 

The input and output buffers are maintained by each 

process of the proposed system to allow each process to be 

the source process or the destination process. The input 

buffer of each process contains at most a single sequence of k 

messages at any point in time. Analogously, the output buffer 

of each process contains at most one message. Furthermore, 

in every x+4 rounds, the application protocol allows each 

process to initiate a single message sequence consisting of at 

most k messages, where x is the diameter of the exchanged 

hypercube EH(s, t). 

In addition to the interface buffers, each system process 

maintains an implicit message buffer which holds at most k 

incoming messages until these messages are received by the 

process. 

 

IV. BASIS OF THE ALGORITHM 

Source S and destination D (or any other process) in an 

s-subcube and in a t-subcube has s+1 and t+1 neighbors, 

respectively. Since s and t are not necessarily equal, S and D 

may not have the same number of neighbors. Therefore, the 

number of available disjoint paths k between S and D depends 

on the smaller of the number of neighbors of S and D. The 

maximum number of disjoint paths k between nodes S and D, 

varies depending on the types of nodes S and D as follows: 

 

 

1 if and are of type

1 if  and are of type

min , 1 if  and are not of the same type

s S D s -

k t S D  t -

s t S D  

 
 

  
  

 

 

When the input buffer of source process S contains an 

input M from the application protocol, the routing protocol 

removes the input from the buffer by executing the 

corresponding guard, where 
0 1 1, ,..., kM m m m    is a 

sequence of k messages, and D is the destination id. Then, 

source node S maps each of its neighbors to a distinct 

neighbor of the destination, using function map (). After the 

mapping is completed, the routing protocol at the source 

sends each message mi , for 0≤i<k, to a distinct neighbor of 

the source with appropriate parameters. Then, the routing 

protocol routes each message mi, 0≤i<k, between a neighbor v 

of the source and a neighbor w of the destination that are 

mapped over a path disjoint from the paths traversed by other 

messages. Finally, when a message reaches a neighbor of the 

destination, it is forwarded to the destination to complete the 

routing.  

Each process in an s-subcube has s neighbors in the same 

s-subcube, and a single neighbor in a t-subcube called a 

dummy neighbor. 

The routing over all disjoint paths between S and D 

depends on whether S and D are of the same or different type 

(s-type or t-type).  

We now describe the routing process when S is of s-type 

and D is of t-type and s≤t holds. We know that there are 

snon-dummy paths and a single dummy path between S and D. 

A path that contains the dummy neighbor of the source as the 

second process towards D is referred to as a dummy path, and 

non-dummypath otherwise. We describe the routing of 

messages from S to D over s+1 paths in seven phases. First, 

the routing begins when S sends each of the s messages to a 

distinct neighbor v in the same s-cube by flipping a distinct 

position in its s-subsequence and the dummy bit. Below we 

describe the routing of each one of these messages to 

destination D through the mapped neighbors v and w of S and 

D, respectively. Second, upon arrival of a message at a 

non-dummy node v, non-dummy neighbor v of S flips its 

dummy bit to route the message to a node in a t-subcube. 

Observe that since the neighbors of S in the same subcube 

have distinct s-subsequences, after flipping its dummy bit, 

each message reaches a distinct t-subcube. On the other hand, 

upon reciept of a message by the dummy neighbor of S, the 

message is already in a t-cube. Third, each message is routed 

in the reached t-subcube until the t-subsequence of the 

process reached by the message is equal to that of w. Fourth, 

by flipping the dummy bit, each message reaches a distinct 

s-subcube. Observe that, when routing is complete in the 

t-cubes, t-subsequences of the reached nodes are the same as 

those of the corresponding neighbors of the destination and 

therefore are unique. As a result, after flipping the dummy bit, 

each message reaches a distinct s-subcube (addressed by the 

unique t-subsequence). Fifth, each message is routed in the 

reached s-subcube until the s-subsequence is equal to that of 

the neighbor w of the destination. Sixth, the dummy bit is 

flipped to reach w except for the message that is mapped to 

the dummy neighbor of D. The message mapped to the 

dummy neighbour of the destination reaches destination D 

after the dummy bit-flip in the sixth step while others reach 

neighbors of destination D. Finally, if the message did not 

reach the destination, it is sent to the destination. Observe that 

the routing when S is of t-type and D is of s-type where t≤s is 

analogous. We illustrate the above concepts using Fig. 2 

showing k disjoint paths 
0 1 2 1, , ,... kP P P P 

 from source S to 

destination D. In the figure, 
0 1 1, ,..., kv v v 

. 
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Fig. 2. Routing in an exchanged hypercube where source S is s-type and 

destination D is t-type. 

 

We now describe the routing when S and D are of both 

s-type. We know that there are snon-dummy paths and a 

single dummy path between S and D. We first describe the 

routing of a message over a non-dummy path from S to D 

through the mapped neighbors v and w of S and D, 

respectively, in six phases. First, routing begins when S sends 

each message to a distinct neighbor v in the same subcube by 

flipping a distinct position I n its s-subsequence. Second, the 

message is routed from node v to node v' where v' is in the 

same s-subcube as S such that the s-subsequence of v' is the 

same as that of w. Third, the dummy bit of v' is flipped to 

enter a t-subcube where each message reaches a distinct 

t-cube. Fourth, the bits in the t-subsequence that are different 

from the t-subsequence of w are flipped to carry out the 

routing in the reached t-subcube. Fifth, the dummy bit is 

flipped to reach w in the s-subcube containing D. Sixth, the 

last remaining bit in w that is different from D is flipped to 

reach D. 

We now describe the routing of a message over a dummy 

path between source S and destination D through the mapped 

dummy neighbors of v and w of S and D, respectively, in six 

phases. First, starting from S, the dummy bit is flipped to 

reach v in a t-subcube. (Then, the routing needs to continue in 

an s-cube different from the one containing S and the initial 

segments of other non-dummy paths. To implement this, the 

dummy path is extended in the following manner after 

reaching a t-subcube). Second, a sorted bit of v in its 

t-subsequence is flipped to move to another process in the 

same t-subcube. A bit position i is said to be sorted if 

v[i]=w[i], and unsorted otherwise, where v is the current 

process id and w is the id of the mapped destination neighbor. 

If no sorted bit exists, an unsorted bit is flipped. Third, the 

dummy bit is flipped to reach an s-subcube different from the 

one containing S. Since these two steps lead the message to a 

subcube of the same type as S but different than the one 

containing S, the second and third steps of the routing are 

referred to as subcubeswitch. In the next two phases, routing 

in s-cubes followed by routing in t-cubes are performed as in 

the case of routing over a non-dummy path between S and D 

ofs-type as described above to reach w0 which is a dummy 

neighbor of D. Finally, the dummy bit is flipped to reach D. It 

is easy to see the case where S and D are of t-type is 

analogous. We use Fig. 3 to illustrate the concepts mentioned 

in the above paragraph. Fig. 3 is similar to Fig. 2 but it has a 

dummy path P0 for which routing is slightly different from 

that of non-dummy paths. 

 
Fig. 3. Routing in an exchanged hypercube where source S and destination D 

are both s-type. 

 

V. MAPPING 

Map (S, D, i) is any function that satisfies all of the 

following conditions, 

1) ∑ d (i, j) is minimal, i ∈ Ns ˄ j=map (S, D, i), where Ns 

denotes the set of neighbors of the source S. 

2) If s < t, each neighbor of the source is mapped to a 

distinct neighbor of the destination. On the other hand, 

if t ≤ s then each neighbor of the destination is mapped 

to a distinct neighbor of the source. 

3) If j=map(S, D, i) for i ∈ Ns, then j ∈ ND, where ND 

denotes the set of neighbors of the destination D. 

Condition 1) guarantees that the mapped set of nodes do 

not intersect in the resulting routing scheme since the 

generated routes follow the shortest path overall. It also 

maintains the disjointness of the algorithm. 

Condition 2) and 3) facilitates routing the messages 

without generated paths intersecting one another.  

 

VI. ROUTING 

Source S sends each of the k messages of message 

sequence M to a distinct neighbor i of S with appropriate 

parameters. Each message contains the following parameters: 

message mi, source id S, destination id D, N (D, map(S, D, i)), 

fPhase(S, D, i) and map (S, D, i). N(D, map(S, D, i)) denotes 

the neighbor of destination D that i
th

 neighbor of S is mapped 

to and map(S, D, i) denotes the bit-flip position in destination 

id D flipped to obtain the id of the neighbor of D that i
th

 

neighbor of S is mapped to. Function fPhase() is described 

below. After determining all the parameters, source process S 

sends each message mi, 0≤i<k, to its i
th

 neighbor determined 

using N(S,i) by executing send().  

The routing between the source and the destination takes 

place in two consecutive phases. The routing phase is said to 

be s-phase and t-phase when routing takes place in s-cubes 

and t-cubes, respectively. The routing sequence is either 

s-phase routing followed by t-phase routing or t-phase 

routing followed by s-phase routing. The selection of the 

proper sequence of phases depends on the destination type: if 

the destination is of s-type, the routing phase sequence is 

s-phase then t-phase. If the destination is of t-type, the 

routing phase sequence is t-phase then s-phase. 

We need the following definitions to facilitate the 

description of the algorithm. fPhase(S, D, i) returns 0 to 
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indicate that a subcube switch is required prior to the first 

phase, returns 1, otherwise. This subcube switch is required 

only for the message routed through the dummy neighbor of 

the source when the source and the destination are of the 

same type. 

 

0 if [0] [0] 0
( , , )

1 Otherwise

S D i
fPhase S D i

   
  
 

 

 

We now describe the routing carried out between a 

neighbor of S and a neighbor of D that are mapped. Upon 

receipt of a message, if process p is the destination, the 

message will be output to the application protocol. If process 

Pd is not a neighbor of destination D, then an error in Pd, f, or 

D is encountered and the routing is terminated. If process p is 

a neighbor of the destination, the message is sent to the 

destination. Otherwise, process p is an intermediate process, 

and process p determines the next process to which the 

message is to be forwarded, and then forwards it to the 

decided neighboring process. 

The next process to forward the message is determined by 

first deciding the current phase of the routing. We use 

function routPhase() as defined below to determine the order 

of phases, s-phase and t-phase, in the routing.  

 

𝑟𝑒𝑠𝑢𝑙𝑡𝑃ℎ𝑎𝑠𝑒(𝑆, 𝐷, 𝑐𝑢𝑟𝑃ℎ𝑎𝑠𝑒)

= {

𝐶𝑇(𝑆)     𝑖𝑓 (𝑆[0] = 𝐷[0] ∧ curPhase = 1) 𝑜𝑟 

(𝑆[0] ≠ 𝐷[0] ∧ curPhase = 2)

≠ 𝐶𝑇(𝑆)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                        

 

 

where, function CT(S) returns the type of node S, i.e., CT(S) 

returns s if S is s-type and returns t otherwise. On the other 

hand, ≠CT(S) returns t if S is s-type and returns s, otherwise. 

Function decidePhase() determines the current phase of 

routing by returning 0 to indicate that the subcube switch is 

the current required action, returning 1 to indicate that the 

current phase is the first phase, and returning 2 to indicate 

that the current phase is the second phase and is defined 

below.  

 

𝑑𝑒𝑐𝑖𝑑𝑒𝑃ℎ𝑎𝑠𝑒(𝑝, 𝑆, 𝑃𝑑, 𝑐𝑢𝑟𝑃ℎ𝑎𝑠𝑒, 𝑝ℎ𝑎𝑠𝑒)

= {
2                𝑖𝑓 (curPhase = 1 ∧ 𝑃𝑝ℎ𝑎𝑠𝑒 = 𝑃𝑑𝑝ℎ𝑎𝑠𝑒)

 
𝑐𝑢𝑟𝑃ℎ𝑎𝑠𝑒   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                        

 

 

where 
phasev  returns the s-subsequence (t-subsequence) of 

the process id v if the routing phase, indicated by phase, is 

s-phase (t-phase).  

After determining the current phase, routing in the current 

phase is carried out by identifying the neighbor to forward the 

message using functions nextPosDummy() and nextPos(). 

They both return the position in the id of process p to be 

flipped to obtain the id of the neighbor on the path leading to 

the destination neighbor Pd.  

Function nextPosDummy() is used only for the dummy 

path in the first step of the subcube switch to determine the 

bit-flip position. We know that knon-dummy paths of the k+1 

paths between S and D are routed initially in the subcube 

where source S exists in the first phase. In the first phase, the 

dummy path is routed in a subcube of type same as that of S 

but in a subcube different from the one containing S to ensure 

that the dummy path does not intersect with the other k paths. 

For that purpose, upon receipt of a message, the dummy 

neighbor v of S flips a bit to identify a neighbor in the same 

subcube containing v and then forwards the message. This 

neighbor of v is identified using function nextPosDummy(). 

Function nextPosDummy returns a bit position j such that

[ ] [ ]phase phaseS j D j , if such a bit position does not exist, 

it returns a position such that it is not the first position in the 

t-subsequence or in the s-subsequence. Then, v forwards the 

message to its dummy neighbor which is of the same type as 

S but is in a different subcube than the one containing S. Now, 

the dummy path does not intersect with the other paths and 

the first phase of routing for the dummy path is started.  

 

𝑛𝑒𝑥𝑡𝑃𝑜𝑠𝐷𝑢𝑚𝑚𝑦(𝑝, 𝑆, 𝐷)

= {
𝑗                𝑖𝑓 ∃0<𝑗<|𝑃𝑝ℎ𝑎𝑠𝑒|𝑆

𝑝ℎ𝑎𝑠𝑒[𝑗] = 𝐷𝑝ℎ𝑎𝑠𝑒[𝑗]
 

 2                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                        

 

 

For the s and t-phases, the neighbor to forward the message 

is determined by function nextPos(). Function nextPos() 

returns the next position to be flipped within the 

t-subsequence if function routPhase() returns t, or within the 

s-subsequence if function routPhase() returns s. Function 

nextPos() returns the next most significant bit position after f 

where the current node id p and destination neighbor Pd 

differ, if exists, in their s or t sub-sequences depending on 

whether the current phase is the s-phase and t-phase. 

Otherwise, it returns the least significant bit position before f, 

if exists where the current node id p and destination neighbor 

Pd differ, if exists, in their s or t sub-sequences depending on 

whether the current phase is the s-phase and 

t-phaserespectively. If no bit position where p and Pd differ 

exists in the current phase, it returns NULL. The function 

nextPos() is defined as 

 

𝑛𝑒𝑥𝑡𝑃𝑜𝑠(𝑝, 𝑃𝑑, 𝑝ℎ𝑎𝑠𝑒, 𝑓)

= {

  𝑗        𝑖𝑓 𝑅1

𝑗        𝑖𝑓 ∃0<𝑗<𝑓min (𝑗) ∧ 𝑃𝑝ℎ𝑎𝑠𝑒(𝑗) ≠ 𝑃𝑑𝑝ℎ𝑎𝑠𝑒(𝑗) ∧  ⌐𝑅1

  𝑛𝑢𝑙𝑙𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                              

 

 

where 
1 min( ) [ ] [ ]phase

phase phase

f j p
R j p j Pd j

 
     

and [ ]phasev j  returns the bit value at position j in the 

subsequence specified by the routing phase.  

 

VII. ALGORITHM 

The distributed algorithm for routing over all node-disjoint 

paths in an exchanged hypercube is as follows: 

 

Parameters:  

M:      Message Sequence 

m:      Message 

S, D, Pd, q:   Process Id 

f, i, k:     Integer 

posToFlip:   Integer U NULL 

curPhase:   {0, 1, 2} 

 

begin 
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input(M, D) → 

k := min(s, t) + 1; 

for each i, 0 ≤ i< k 

send(mi, p, D, N(D, map(p, D, i)), fPhase(p, D, i), map(p, D, 

i)) to N(p, i); 

rcv(mi, S, D, Pd, curPhase, f) from q → 

 

if p = D  (message reached destination D) 

output(mi); terminate ; 

if p = N(Pd, f) ≠ D (parameters Pd, f and D are 

inconsistent) 

output error; terminate ; 

if p = Pd(message reached a neighbor of destination) 

send(mi, S, D, Pd, curPhase, f) to D; terminate; 

 

curPhase = 

decidePhase(p,S,Pd,curPhase,routPhase(S,D,curPhase)); 

ifcurPhase = 0 (subcube switch) 

posToFlip := nextPosDummy(p,D,⌐CT(S), f); 

curPhase + +; 

send(mi, S, D,Pd,curPhase, posToFlip) to 

N(p,posToFlip); 

else  (s-phase or t-phase routing) 

ifposToFlip := nextPos(p,Pd,routPhase(S,D, curPhase), 

q) ≠ NULL; 

send(mi, S,D, Pd, curPhase,posToFlip) to 

N(p,posToFlip); 

terminate; 

end 

 

VIII. CORRECTNESS 

The correctness of the algorithm is out of the scope of this 

version of the paper. 
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