

Abstract—Two paths between a source node and a

destination node in a network are node- disjoint if they do not

share any nodes except the end points. Node-disjoint paths have

numerous uses in distributed systems including ways to deal

with lost, damaged or altered messages during delivery. Many

topologies such as hypercube, star networks, and their variants

have been proposed, providing multiple disjoint paths between

a pair of endpoints. The exchanged hypercube is a new topology

that is obtained by systematically removing edges from a binary

hypercube. Exchanged hypercube topology increases scalability

and relative cost of the networks by reducing the number of

edges per node. In this paper, we propose a distributed

algorithm that is both stabilizing and inherently stabilizing to

route messages over all node-disjoint paths in an exchanged

hypercube network.

Index Terms—Distributed algorithms, exchanged hypercube,

node-disjoint paths, stabilization.

I. INTRODUCTION

In distributed systems, communication delays and

throughput of the interconnection network are important

factors on the overall performance of the system [1]. In order

to minimize communication delays and to increase network

throughput, system components can be connected via a

network providing node-disjoint paths. Two paths from a

source to a destination are said to be node-disjoint if they

share no common nodes except for the source and the

destination. The (all) node-disjoint paths problem is a

fundamental problem with many applications in diverse areas

including VLSI layout [1], reliable network routing [2], [3],

secure message transmission [4], and network survivability

[5]. For instance, node-disjoint paths can be used for

perfectly secure transmission as follows. The simple

expedient of breaking up data into several shares and sending

them along the disjoint paths makes it difficult for an

adversary with bounded eavesdropping capability to intercept

a transmission or tamper with it. Alternatively, the same

crucial message can be sent over multiple node-disjoint paths

in a network that is prone to message losses to avoid omission

failures, or information on the re-routing of traffic along

non-faulty disjoint paths can be provided in the presence of

faults in some disjoint paths. Other applications of disjoint

paths include network coding to provide 1+N protection

against single link failures in optical hypercube networks [5],

where N is the dimension of the network, and VLSI layout [6].

Manuscript received July 16, 2014; revised December 12, 2014. This

work supported by Kuwait University Research Grant EO 01/11.
Thamer Alsulaiman is with the University of Iowa, 14 MacLean Hall,

Iowa City, IA 52242-1419, US (email: thamer.mohsen@gmail.com)

Mehmet HakanKaraata is with Kuwait University, Safat 13090, Khaldiya,
Kuwait (e-mail: karaata@eng.kuniv.edu.kw).

Due to the continuous increase in the number of nodes

included in massively parallel systems, the probability of

faults is constantly increasing. For this reason, it is critical to

find mutually disjoint paths in order to establish

communication routes under such a faulty environment as

proposed in [7]. The presence of node-disjoint paths in a

network can be used to reduce delays and increase system

throughput; however, it reduces the scalability of the network

due to increased connectivity.

A desirable network topology should provide a reasonable

balance between the number of links and the number of nodes

in the network, while providing other desirable properties

such as ease of routing, network embeddings, and fault

tolerance [8]. In addition, as the number of links per node is

restricted due to hardware limitations, the underlying

topology used needs to minimize the number of links per

node while retaining a small diameter to remain efficient.

Several network topologies have been proposed with some of

these desirable properties. For instance, Hypercubes and star

graphs are rich, recursively structured and symmetrical

interconnection topologies for multiprocessor systems with

many desirable fault tolerance characteristics. However, in

star graphs, the number of nodes needs to be the factorial of

an integer. In practical terms, this is a severe restriction on the

sizes of systems that can be built; there is a large gap between

the numbers (n−1)! and n!. The n-dimensional hypercube

(n-cube) with 2n nodes and n2n−1 links proposed by Saad

and Schulz [9] is a topology with many properties such as the

presence of n disjoint paths between each pair of distinct

nodes. Extensive research has been undertaken on the n-cube,

such as routing, fault tolerance, and embeddings [9]-[11]. C.

N. Lai presents an algorithm for constructing n disjoint paths

of optimal total length between a source and a destination

nodes in an n-cube, where n is the dimension of the

hypercube [7]. However, the n-cube scales too rapidly as

dimension n grows, i.e., the number of links is high relative to

the number of nodes. In order to overcome the scalability

problem of the simple interconnection networks such as the

hypercube, star and ring topologies have been superseded by

more complex variations of the n-cube such as Gaussian

Hypercube, perfect hierarchical hypercube and Reduced

Hypercube [7], [12], [13]. These variants of the n-cube are

produced by removing some of the links of a regular n-cube.

These interconnection networks can connect many nodes

while keeping a small diameter and low degree compared to

hypercubes of the same size. The removal process affects

some of the topological properties such as ease of routing in

the presence of faults.

The Exchanged Hypercube is a topology obtained by

systematically removing links from an n-cube to reduce

interconnection complexity while maintaining several

essential properties of the n-cube, such as being Hamiltonian,

Thamer Alsulaiman and Mehmet Hakan Karaata

An Optimal Inherently Stabilizing Algorithm for Routing

over All Node-Disjoint Paths in Exchanged Hypercubes

32

Journal of Advances in Computer Networks, Vol. 3, No. 1, March 2015

DOI: 10.7763/JACN.2015.V3.138

optimally embedding linear arrays and rings, and embedding

meshes and trees with reasonable efficiencies. A spanning

tree of the Exchanged Hypercube referred to as the Extended

Binomial Tree provides the necessary framework for solving

many applications such as broadcasting, prefix sum

computing and load balancing in the Exchanged Hypercube.

In addition, the Exchanged Hypercube has a number of

desirable properties such as small diameter, low degree, fault

tolerance, strong connectivity, recursive construction,

partition capability and low latency. These properties enable

it to serve as a cost effective interconnection topology for

constructing fault tolerant networks in a peer-to-peer (P2P)

environment. A system is referred to as an inherently

stabilizing system iff neither arbitrary initialization nor

transient faults affecting the configuration of the system

processes have any effect on the execution of the algorithm or

its progress. However, such a system offers no guarantee if

the transient faults affect the communication links or

message buffers. While an inherently stabilizing system

continues its correct execution without any delay in the event

of a transient fault or after starting in an arbitrary initial

configuration, a stabilizing system ensures correct execution

of the algorithm only upon stability is reached after a delay.

On the other hand, an inherently stabilizing system may

neither mask nor tolerate transient faults affecting

communication links and message buffers of the system,

whereas a stabilizing system can cope with these faults in

addition to those affecting the configuration of the processes.

As a result, an inherently stabilizing system may not be

stabilizing and vice versa. The first inherently stabilizing

algorithm is proposed in for routing in hypercube networks.

The paradigm of inherent stabilization resembles that of

snap stabilization. A system is snap stabilizing if after the

system starts, it behaves as per its specification without any

delay, regardless of the system configuration, in the absence

of faults. However, such systems provide no guarantees in the

event of transient fault (s) after the system starts. On the other

hand, an inherently stabilizing system always behaves

correctly without any delay in the presence of faults even

after transient faults take place. The inherent stabilization

property is a stronger property than the snap-stabilization

property.

The problem of finding disjoint paths in various topologies

including OTIS networks, incomplete WK-recursive

networks, and a level block of generalized hierarchical

completely connected networks are available. However, a

stabilizing or inherently stabilizing algorithm for finding

disjoint paths in Exchanged Hypercubes is not available in

the literature.

In this paper, we propose a stabilizing and inherently

stabilizing algorithm for routing over all node-disjoint paths

between any two nodes in an exchanged hypercube. In

particular, the proposed routing algorithm allows source

process S to send k messages to destination process D, where

S ≠ D in at most d(S,D)+4 rounds in the absence of transient

faults in an exchanged hypercube such that each message

traverses a distinct node-disjoint path in reaching the

destination process, where k is the number of available paths

in the graph, and d(S,D) denotes the (shortest) distance in

hops between node S and D. A round refers to the minimal

execution in the system in which each process executes all its

enabled actions at the beginning of the round, and all the

messages sent by these executed actions are delivered to the

neighboring destination message buffers. The proposed

algorithm is stabilizing and inherently stabilizing, due to

being inherently stabilizing, transient faults affecting the

system configuration, excluding system buffers, are masked

and have no effect on the correct execution of the algorithm.

Also, since it is stabilizing, the algorithm eventually recovers

from transient faults affecting system buffers. Note that the

proposed algorithm can be viewed as an extension of the

protocol presented by Sinanoglu et al. [14] for the hypercube

topology to the Exchanged Hypercube topology.

II. PRELIMINARIES

Let Exchanged Hypercube EH (s, t)=(V, E) be an

undirected graph, where s ≥ 1 and t ≥ 1, V is the vertex set, E

is the edge set, and s and t are dimensions of subcubes in the

Exchanged Hypercube. The id of node v in EH (s, t) is a bit

sequence as-1…a0bt-1…b0c where ai, bj, c ∈ {0, 1} for i ∈ [0,

s-1], j ϵ [0, t-1]. v[i] denotes the i
th

 bit in the id of node v.v [x:y]

denotes a subsequence of idv ∈ EH (s, t) between two bit

positions x and y, where s+t≥x≥y≥0.Observe that each

1 0 1 0... ...s tidv a a b b c is composed of three subsequences,

namely,
1 2 0 1 2 0... , ...s s t ta a a b b b

, and c referred to as

s-subsequence, t-subsequence and dummy bit, respectively.

The least significant bit c (v [0]) of each node v is referred to

as a dummy bit. The dummy bit value of a node determines

whether the node is of s-type or t-type. In particular, if c=0

holds for node v in EH(s, t), node v is called s-type; otherwise,

t-type.

 An Exchanged Hypercube EH (s, t) consists of 2
t

s-subcubes each of which containing 2
s
s-type nodes with the

same t-subsequence, and 2
s
 t-subcubes each of which

containing 2
t
 t-type nodes with the same s-subsequence. In an

Exchanged Hypercube, the number of s-type and t-type nodes

are the same.Each s-type node is connected to a t-type node

by an edge referred to as a dummy edge such that their bit

sequences are the same except for their dummy bits. An edge

(v1, v2) is included in E if v1 and v2 are of t-type, their

hamming distance is one and their s-subsequences are the

same. The hamming distance between two bit sequences

refers to the number of positions at which the corresponding

bits are different. An Exchanged Hypercube of dimensions (1,

2) is shown in Fig. 1. The figure illustrates the concepts given

above where dummy edges are shown by dashed lines

whereas edges between same type nodes are shown by solid

lines.

Fig. 1. An exchanged hypercube of dimensions (1, 2).

33

Journal of Advances in Computer Networks, Vol. 3, No. 1, March 2015

III. INPUT, OUTPUT AND ACTIONS

We assume that there is a separate protocol called the

application protocol, which uses the proposed node-disjoint

paths algorithm to send a sequence of messages from a source

process to a destination process over all node-disjoint paths.

The node-disjoint paths algorithm maintains two implicit

buffers for each process referred to as the implicit input

buffer and the implicit output buffer. These two buffers are

also referred to as interface buffers, and are used to

implement the interface between the application protocol and

the node-disjoint paths algorithm.

The node-disjoint paths algorithm maintains two implicit

buffers for each process referred to as the implicit input

buffer and the implicit output buffer. These two buffers are

also referred to as interface buffers, and are used to

implement the interface between the application protocol and

the node-disjoint paths algorithm.

When the application protocol is to send a set of messages

from source process S to destination process D, it places a

sequence of k messages M=m0, m1, m2…mk-1destination

process id D, and the exchanged hypercube dimensions s and

t in the input buffer of process S. This input is removed from

the input buffer of process S, by the node-disjoint paths

algorithm and the k messages are routed by the proposed

protocol over k disjoint paths from S to D. Upon arrival of

each message m at the destination process D, the message is

placed in the output buffer of destination process Dso that the

message is ready to be collected by the application protocol.

The input and output buffers are maintained by each

process of the proposed system to allow each process to be

the source process or the destination process. The input

buffer of each process contains at most a single sequence of k

messages at any point in time. Analogously, the output buffer

of each process contains at most one message. Furthermore,

in every x+4 rounds, the application protocol allows each

process to initiate a single message sequence consisting of at

most k messages, where x is the diameter of the exchanged

hypercube EH(s, t).

In addition to the interface buffers, each system process

maintains an implicit message buffer which holds at most k

incoming messages until these messages are received by the

process.

IV. BASIS OF THE ALGORITHM

Source S and destination D (or any other process) in an

s-subcube and in a t-subcube has s+1 and t+1 neighbors,

respectively. Since s and t are not necessarily equal, S and D

may not have the same number of neighbors. Therefore, the

number of available disjoint paths k between S and D depends

on the smaller of the number of neighbors of S and D. The

maximum number of disjoint paths k between nodes S and D,

varies depending on the types of nodes S and D as follows:

1 if and are of type

1 if and are of type

min , 1 if and are not of the same type

s S D s -

k t S D t -

s t S D

When the input buffer of source process S contains an

input M from the application protocol, the routing protocol

removes the input from the buffer by executing the

corresponding guard, where
0 1 1, ,..., kM m m m is a

sequence of k messages, and D is the destination id. Then,

source node S maps each of its neighbors to a distinct

neighbor of the destination, using function map (). After the

mapping is completed, the routing protocol at the source

sends each message mi , for 0≤i<k, to a distinct neighbor of

the source with appropriate parameters. Then, the routing

protocol routes each message mi, 0≤i<k, between a neighbor v

of the source and a neighbor w of the destination that are

mapped over a path disjoint from the paths traversed by other

messages. Finally, when a message reaches a neighbor of the

destination, it is forwarded to the destination to complete the

routing.

Each process in an s-subcube has s neighbors in the same

s-subcube, and a single neighbor in a t-subcube called a

dummy neighbor.

The routing over all disjoint paths between S and D

depends on whether S and D are of the same or different type

(s-type or t-type).

We now describe the routing process when S is of s-type

and D is of t-type and s≤t holds. We know that there are

snon-dummy paths and a single dummy path between S and D.

A path that contains the dummy neighbor of the source as the

second process towards D is referred to as a dummy path, and

non-dummypath otherwise. We describe the routing of

messages from S to D over s+1 paths in seven phases. First,

the routing begins when S sends each of the s messages to a

distinct neighbor v in the same s-cube by flipping a distinct

position in its s-subsequence and the dummy bit. Below we

describe the routing of each one of these messages to

destination D through the mapped neighbors v and w of S and

D, respectively. Second, upon arrival of a message at a

non-dummy node v, non-dummy neighbor v of S flips its

dummy bit to route the message to a node in a t-subcube.

Observe that since the neighbors of S in the same subcube

have distinct s-subsequences, after flipping its dummy bit,

each message reaches a distinct t-subcube. On the other hand,

upon reciept of a message by the dummy neighbor of S, the

message is already in a t-cube. Third, each message is routed

in the reached t-subcube until the t-subsequence of the

process reached by the message is equal to that of w. Fourth,

by flipping the dummy bit, each message reaches a distinct

s-subcube. Observe that, when routing is complete in the

t-cubes, t-subsequences of the reached nodes are the same as

those of the corresponding neighbors of the destination and

therefore are unique. As a result, after flipping the dummy bit,

each message reaches a distinct s-subcube (addressed by the

unique t-subsequence). Fifth, each message is routed in the

reached s-subcube until the s-subsequence is equal to that of

the neighbor w of the destination. Sixth, the dummy bit is

flipped to reach w except for the message that is mapped to

the dummy neighbor of D. The message mapped to the

dummy neighbour of the destination reaches destination D

after the dummy bit-flip in the sixth step while others reach

neighbors of destination D. Finally, if the message did not

reach the destination, it is sent to the destination. Observe that

the routing when S is of t-type and D is of s-type where t≤s is

analogous. We illustrate the above concepts using Fig. 2

showing k disjoint paths
0 1 2 1, , ,... kP P P P

 from source S to

destination D. In the figure,
0 1 1, ,..., kv v v

.

34

Journal of Advances in Computer Networks, Vol. 3, No. 1, March 2015

Fig. 2. Routing in an exchanged hypercube where source S is s-type and

destination D is t-type.

We now describe the routing when S and D are of both

s-type. We know that there are snon-dummy paths and a

single dummy path between S and D. We first describe the

routing of a message over a non-dummy path from S to D

through the mapped neighbors v and w of S and D,

respectively, in six phases. First, routing begins when S sends

each message to a distinct neighbor v in the same subcube by

flipping a distinct position I n its s-subsequence. Second, the

message is routed from node v to node v' where v' is in the

same s-subcube as S such that the s-subsequence of v' is the

same as that of w. Third, the dummy bit of v' is flipped to

enter a t-subcube where each message reaches a distinct

t-cube. Fourth, the bits in the t-subsequence that are different

from the t-subsequence of w are flipped to carry out the

routing in the reached t-subcube. Fifth, the dummy bit is

flipped to reach w in the s-subcube containing D. Sixth, the

last remaining bit in w that is different from D is flipped to

reach D.

We now describe the routing of a message over a dummy

path between source S and destination D through the mapped

dummy neighbors of v and w of S and D, respectively, in six

phases. First, starting from S, the dummy bit is flipped to

reach v in a t-subcube. (Then, the routing needs to continue in

an s-cube different from the one containing S and the initial

segments of other non-dummy paths. To implement this, the

dummy path is extended in the following manner after

reaching a t-subcube). Second, a sorted bit of v in its

t-subsequence is flipped to move to another process in the

same t-subcube. A bit position i is said to be sorted if

v[i]=w[i], and unsorted otherwise, where v is the current

process id and w is the id of the mapped destination neighbor.

If no sorted bit exists, an unsorted bit is flipped. Third, the

dummy bit is flipped to reach an s-subcube different from the

one containing S. Since these two steps lead the message to a

subcube of the same type as S but different than the one

containing S, the second and third steps of the routing are

referred to as subcubeswitch. In the next two phases, routing

in s-cubes followed by routing in t-cubes are performed as in

the case of routing over a non-dummy path between S and D

ofs-type as described above to reach w0 which is a dummy

neighbor of D. Finally, the dummy bit is flipped to reach D. It

is easy to see the case where S and D are of t-type is

analogous. We use Fig. 3 to illustrate the concepts mentioned

in the above paragraph. Fig. 3 is similar to Fig. 2 but it has a

dummy path P0 for which routing is slightly different from

that of non-dummy paths.

Fig. 3. Routing in an exchanged hypercube where source S and destination D

are both s-type.

V. MAPPING

Map (S, D, i) is any function that satisfies all of the

following conditions,

1) ∑ d (i, j) is minimal, i ∈ Ns ˄ j=map (S, D, i), where Ns

denotes the set of neighbors of the source S.

2) If s < t, each neighbor of the source is mapped to a

distinct neighbor of the destination. On the other hand,

if t ≤ s then each neighbor of the destination is mapped

to a distinct neighbor of the source.

3) If j=map(S, D, i) for i ∈ Ns, then j ∈ ND, where ND

denotes the set of neighbors of the destination D.

Condition 1) guarantees that the mapped set of nodes do

not intersect in the resulting routing scheme since the

generated routes follow the shortest path overall. It also

maintains the disjointness of the algorithm.

Condition 2) and 3) facilitates routing the messages

without generated paths intersecting one another.

VI. ROUTING

Source S sends each of the k messages of message

sequence M to a distinct neighbor i of S with appropriate

parameters. Each message contains the following parameters:

message mi, source id S, destination id D, N (D, map(S, D, i)),

fPhase(S, D, i) and map (S, D, i). N(D, map(S, D, i)) denotes

the neighbor of destination D that i
th

 neighbor of S is mapped

to and map(S, D, i) denotes the bit-flip position in destination

id D flipped to obtain the id of the neighbor of D that i
th

neighbor of S is mapped to. Function fPhase() is described

below. After determining all the parameters, source process S

sends each message mi, 0≤i<k, to its i
th

 neighbor determined

using N(S,i) by executing send().

The routing between the source and the destination takes

place in two consecutive phases. The routing phase is said to

be s-phase and t-phase when routing takes place in s-cubes

and t-cubes, respectively. The routing sequence is either

s-phase routing followed by t-phase routing or t-phase

routing followed by s-phase routing. The selection of the

proper sequence of phases depends on the destination type: if

the destination is of s-type, the routing phase sequence is

s-phase then t-phase. If the destination is of t-type, the

routing phase sequence is t-phase then s-phase.

We need the following definitions to facilitate the

description of the algorithm. fPhase(S, D, i) returns 0 to

35

Journal of Advances in Computer Networks, Vol. 3, No. 1, March 2015

indicate that a subcube switch is required prior to the first

phase, returns 1, otherwise. This subcube switch is required

only for the message routed through the dummy neighbor of

the source when the source and the destination are of the

same type.

0 if [0] [0] 0
(, ,)

1 Otherwise

S D i
fPhase S D i

We now describe the routing carried out between a

neighbor of S and a neighbor of D that are mapped. Upon

receipt of a message, if process p is the destination, the

message will be output to the application protocol. If process

Pd is not a neighbor of destination D, then an error in Pd, f, or

D is encountered and the routing is terminated. If process p is

a neighbor of the destination, the message is sent to the

destination. Otherwise, process p is an intermediate process,

and process p determines the next process to which the

message is to be forwarded, and then forwards it to the

decided neighboring process.

The next process to forward the message is determined by

first deciding the current phase of the routing. We use

function routPhase() as defined below to determine the order

of phases, s-phase and t-phase, in the routing.

𝑟𝑒𝑠𝑢𝑙𝑡𝑃ℎ𝑎𝑠𝑒(𝑆, 𝐷, 𝑐𝑢𝑟𝑃ℎ𝑎𝑠𝑒)

= {

𝐶𝑇(𝑆) 𝑖𝑓 (𝑆[0] = 𝐷[0] ∧ curPhase = 1) 𝑜𝑟

(𝑆[0] ≠ 𝐷[0] ∧ curPhase = 2)

≠ 𝐶𝑇(𝑆) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where, function CT(S) returns the type of node S, i.e., CT(S)

returns s if S is s-type and returns t otherwise. On the other

hand, ≠CT(S) returns t if S is s-type and returns s, otherwise.

Function decidePhase() determines the current phase of

routing by returning 0 to indicate that the subcube switch is

the current required action, returning 1 to indicate that the

current phase is the first phase, and returning 2 to indicate

that the current phase is the second phase and is defined

below.

𝑑𝑒𝑐𝑖𝑑𝑒𝑃ℎ𝑎𝑠𝑒(𝑝, 𝑆, 𝑃𝑑, 𝑐𝑢𝑟𝑃ℎ𝑎𝑠𝑒, 𝑝ℎ𝑎𝑠𝑒)

= {
2 𝑖𝑓 (curPhase = 1 ∧ 𝑃𝑝ℎ𝑎𝑠𝑒 = 𝑃𝑑𝑝ℎ𝑎𝑠𝑒)

𝑐𝑢𝑟𝑃ℎ𝑎𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where
phasev returns the s-subsequence (t-subsequence) of

the process id v if the routing phase, indicated by phase, is

s-phase (t-phase).

After determining the current phase, routing in the current

phase is carried out by identifying the neighbor to forward the

message using functions nextPosDummy() and nextPos().

They both return the position in the id of process p to be

flipped to obtain the id of the neighbor on the path leading to

the destination neighbor Pd.

Function nextPosDummy() is used only for the dummy

path in the first step of the subcube switch to determine the

bit-flip position. We know that knon-dummy paths of the k+1

paths between S and D are routed initially in the subcube

where source S exists in the first phase. In the first phase, the

dummy path is routed in a subcube of type same as that of S

but in a subcube different from the one containing S to ensure

that the dummy path does not intersect with the other k paths.

For that purpose, upon receipt of a message, the dummy

neighbor v of S flips a bit to identify a neighbor in the same

subcube containing v and then forwards the message. This

neighbor of v is identified using function nextPosDummy().

Function nextPosDummy returns a bit position j such that

[] []phase phaseS j D j , if such a bit position does not exist,

it returns a position such that it is not the first position in the

t-subsequence or in the s-subsequence. Then, v forwards the

message to its dummy neighbor which is of the same type as

S but is in a different subcube than the one containing S. Now,

the dummy path does not intersect with the other paths and

the first phase of routing for the dummy path is started.

𝑛𝑒𝑥𝑡𝑃𝑜𝑠𝐷𝑢𝑚𝑚𝑦(𝑝, 𝑆, 𝐷)

= {
𝑗 𝑖𝑓 ∃0<𝑗<|𝑃𝑝ℎ𝑎𝑠𝑒|𝑆

𝑝ℎ𝑎𝑠𝑒[𝑗] = 𝐷𝑝ℎ𝑎𝑠𝑒[𝑗]

 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

For the s and t-phases, the neighbor to forward the message

is determined by function nextPos(). Function nextPos()

returns the next position to be flipped within the

t-subsequence if function routPhase() returns t, or within the

s-subsequence if function routPhase() returns s. Function

nextPos() returns the next most significant bit position after f

where the current node id p and destination neighbor Pd

differ, if exists, in their s or t sub-sequences depending on

whether the current phase is the s-phase and t-phase.

Otherwise, it returns the least significant bit position before f,

if exists where the current node id p and destination neighbor

Pd differ, if exists, in their s or t sub-sequences depending on

whether the current phase is the s-phase and

t-phaserespectively. If no bit position where p and Pd differ

exists in the current phase, it returns NULL. The function

nextPos() is defined as

𝑛𝑒𝑥𝑡𝑃𝑜𝑠(𝑝, 𝑃𝑑, 𝑝ℎ𝑎𝑠𝑒, 𝑓)

= {

 𝑗 𝑖𝑓 𝑅1

𝑗 𝑖𝑓 ∃0<𝑗<𝑓min (𝑗) ∧ 𝑃𝑝ℎ𝑎𝑠𝑒(𝑗) ≠ 𝑃𝑑𝑝ℎ𝑎𝑠𝑒(𝑗) ∧ ⌐𝑅1

 𝑛𝑢𝑙𝑙𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where
1 min() [] []phase

phase phase

f j p
R j p j Pd j

and []phasev j returns the bit value at position j in the

subsequence specified by the routing phase.

VII. ALGORITHM

The distributed algorithm for routing over all node-disjoint

paths in an exchanged hypercube is as follows:

Parameters:

M: Message Sequence

m: Message

S, D, Pd, q: Process Id

f, i, k: Integer

posToFlip: Integer U NULL

curPhase: {0, 1, 2}

begin

36

Journal of Advances in Computer Networks, Vol. 3, No. 1, March 2015

input(M, D) →

k := min(s, t) + 1;

for each i, 0 ≤ i< k

send(mi, p, D, N(D, map(p, D, i)), fPhase(p, D, i), map(p, D,

i)) to N(p, i);

rcv(mi, S, D, Pd, curPhase, f) from q →

if p = D (message reached destination D)

output(mi); terminate ;

if p = N(Pd, f) ≠ D (parameters Pd, f and D are

inconsistent)

output error; terminate ;

if p = Pd(message reached a neighbor of destination)

send(mi, S, D, Pd, curPhase, f) to D; terminate;

curPhase =

decidePhase(p,S,Pd,curPhase,routPhase(S,D,curPhase));

ifcurPhase = 0 (subcube switch)

posToFlip := nextPosDummy(p,D,⌐CT(S), f);

curPhase + +;

send(mi, S, D,Pd,curPhase, posToFlip) to

N(p,posToFlip);

else (s-phase or t-phase routing)

ifposToFlip := nextPos(p,Pd,routPhase(S,D, curPhase),

q) ≠ NULL;

send(mi, S,D, Pd, curPhase,posToFlip) to

N(p,posToFlip);

terminate;

end

VIII. CORRECTNESS

The correctness of the algorithm is out of the scope of this

version of the paper.

REFERENCES

[1] R. L. Sharma, Network Topology Optimization, The Art of and Science

of Network Design, Van Nostrand Reinhold, New York, NY, USA,

1990.
[2] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout,

John Wiley & Sons, Inc., New York, NY, USA, 1990.

[3] S. A. Plotkin, “Competitive routing of virtual circuits in ATM

networks,” IEEE Journal of Selected Areas in Communications, vol.

13, pp. 1128.
[4] D. Dolev, C. Dwork, O. Waarts, and M. Yung, “Perfectly secure

message transmission,” J. ACM, vol. 40, pp. 17, 1993.

[5] A. E. Kamal, “1+n protection in mesh networks using network coding
over p-cycles,” in Proc. GLOBECOM, 2006.

[6] X. Yang, G. M. Megson, S. Zhang, and X. Liu, “A solution to the three

disjoint path problem on honeycomb meshes,” Parallel Processing
Letters, vol. 14, pp. 399-410, 2004.

[7] C.-N. Lai, “Optimal construction of all shortest node-disjoint paths in

hypercubes with applications, parallel and distributed systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, pp.

1129-1134, 2012.

[8] P. K. K. Loh, W. J. Hsu, and Y. Pan, “The exchanged hypercube,”
IEEE Trans. Parallel Distrib. Syst., vol. 16, pp. 866-874, 2005.

[9] Y. Saad and M. H. Schultz, “Topological properties of hypercubes,”

IEEE Transactions on Computers, vol. 37, pp. 867-872, 1988.
[10] W.-K. Chen and M. F. M. Stallmann, “On embedding binary trees into

hypercubes,” J. Parallel Distrib. Comput., vol. 24, pp. 132-138, 1995.

[11] J. Wu, “Adaptive fault-tolerant routing in cube-based multicomputers
using safety vectors,” IEEE Trans. Parallel Distrib. Syst., vol. 9, pp.

321-334, 1998.

[12] A. Bossard, K. Kaneko, and S. Peng, “Node-to-set disjoint-path routing
in perfect hierarchical hypercubes,” in Proc. the International

Conference on Computational Science, vol. 4, pp. 442-451, 2011.

[13] S. Ziavras, “RH: A versatile family of reduced hypercube
interconnection networks,” IEEE Transactions on Parallel and

Distributed Systems, vol. 5, no. 11, pp. 1210-1220, 1994.

[14] O. Sinanoglu, M. H. Karaata, and B. AlBdaiwi, “An inherently
stabilizing algorithm for node-to-node routing over all shortest

node-disjoint paths in hypercube networks,” IEEE Transactions on

Computers, pp. 995-999, 2010.

Thamer Alsulaiman graduated from Kuwait
University and is currently a PhD candidate in the

University of Iowa. His research interests include

distributed systems, networking, fault tolerant
computing and self-stabilization.

Mehmet Hakan Karaata received his PhD degree in

computer science in 1995 from the University of Iowa.

He joined Bilkent University, Ankara, Turkey as an
assistant professor in 1995. He is currently working as

a Professor in the Department of Computer

Engineering, Kuwait University. His research interests
include mobile computing, distributed systems, fault

tolerant computing and self-stabilization.

37

Journal of Advances in Computer Networks, Vol. 3, No. 1, March 2015

