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Abstract—Proximal Policy Optimization (PPO) is a widely 

used algorithm in reinforcement learning. We observe that the 

agent may repeatedly select actions in a fixed sequence in some 

environments, leading to rapid decline of rewards. After that, 

the reward remains very low for a prolonged training period. 

Consequently, the training efficiency reduces. In this paper, we 

propose an approach to dynamically adjust the constant in the 

entropy term in the objective function of the PPO algorithm to 

encourage the agent to explore. Our experimental results show 

that the proposed algorithm is effective to relief this detrimental 

situation of rapid decline of episode rewards.  

 
Keywords—entropy, Proximal Policy Optimization (PPO), 

exploration rate, reinforcement learning 

 

I. INTRODUCTION 

With its wide applications, machine learning techniques 

have received much attention. According to Wikipedia [1], 

traditionally there are three categories of machine learning 

algorithms, supervised learning, unsupervised learning, and 

reinforcement learning. For supervised learning paradigms, 

inputs and outputs (labels) of examples are given to the 

computer to learn the relationships between the inputs and 

outputs. Therefore, supervised learning is used for 

classification and regression problems. For unsupervised 

learning paradigms, input data do not have labels. Thus, the 

main applications of this type of learning are for clustering 

and dimensionality reduction. As to the reinforcement 

learning, a built-in agent interacts with the dynamic 

environment to perform a goal [2] based on the received 

rewards. There are many successful applications of 

reinforcement learning, such as playing video games [3], 

modeling human behavior in dynamic tasks [4], decision of 

offloading from smart phones to clouds [5]. 

In terms of the agent implementation, it can be a simple, 

table-based program, or a much more complicated program 

(or hardware), such as Convolutional Neural Networks 

(CNN), or Long Short-term Memory (LSTM) networks. To 

use a reinforcement learning algorithm, we need to choose a 

suitable agent. The agent, in most cases, is related to the 

environment it interacts with. For example, in the 

video-game environment, a CNN-based agent is widely used. 

During exploring the environment, the agent receives 

rewards as feedback. In this case, the agent is expected to 

maximize the expected return (defined as cumulative future 

rewards) by choosing a sequence of appropriate actions. How 

to maximize the cumulated rewards is an optimization 

problem, where various types of algorithms have been 

developed to solve. One widely used type is the value-based 

algorithms, whereas another type is the policy-based 

algorithms. The former uses a value function to estimate the 

expected return for any chosen action, and picks the action 

with the maximum (expected) return. One well-known 

algorithm in this type is the Deep Q-Learning (DQN) 

algorithm, which has been shown to play video games with 

skill levels comparable to, if not exceeding, that of human 

experts [3]. Despite its success, the DQN algorithm “fails on 

many simple problems,” such as those requiring continuous 

control [6].  

The agent in a policy-based algorithm learns an optimal 

policy directly, which in turn provides the probability of each 

action. The chosen action is random, according to the 

associated probability, in nature. To learn the policy, the 

agent interacts with the environment, and collects a sequence 

of actions, states (i.e., instantaneous environment) and 

rewards, called a trajectory. By exploring the environment, 

the agent gradually learns a (sub-)optimal policy.  

The original policy-based algorithm (REINFORCE) 

suffers from low training efficiency because a trajectory is 

used only once for training. To re-use the collected 

trajectories, the Proximal Policy Optimization (PPO) 

algorithm was developed. Due to its superior performance, 

this algorithm was chosen as a default learning algorithm in 

the OpenAI gym [7].  

When applying the PPO algorithm to real-world problems, 

sometimes certain actions may not be useful, or even allowed, 

such as buying stocks without sufficient fund. To this end, 

Tan et al. [8] proposed the use of action masks to remove 

invalid actions from the action list. While this approach is 

effective, it nevertheless reduces the candidates in the action 

list. Consequently, it is more likely to observe “valleys with 

low rewards” during training, although the original PPO 

algorithm also has the same problem. This type of “valleys 

with low rewards” situation is an adverse effect, as it reduces 

the training efficiency. In this paper, we provide an in-depth 

study about this problem and propose an approach to solve 

this problem. We also conduct experiments to confirm the 

usability of the proposed algorithm. 

This paper is organized as follows: Section II is the 

description of the PPO algorithm and the description of the 

problem. Section III is the proposed approach. Section IV 

describes the experiments and results. Finally, Section V is 

the conclusion. 
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II. PPO ALGORITHM AND REWARD RAPID DECLINE 

A. PPO Algorithm 

To be self-contained, we briefly describe the PPO 

algorithm. The description given here closely follows the 

paper by Tan et al. [8]. Initially, the agent randomly chooses 

actions to interact with the environment in order to collect 

trajectories  

 𝑇 = {(𝑠𝑡 , 𝑎𝑡 , 𝑦𝑎𝑡
′ (𝑠𝑡), 𝑟𝑡): 1 ≤ 𝑡 ≤ 𝑀}       (1) 

Each element in T is a 4-tuple, where 𝑠𝑡 is the state at step 

(or time) t, 𝑎𝑡 is the used action 1 ≤ 𝑎𝑡 ≤ 𝐾, 𝑦𝑎𝑡
′ (𝑠𝑡) is the 

probability of choosing action 𝑎𝑡 ,  and 𝑟𝑡  is the received 

reward. In terms of implementation, the agent usually is a 

variation of neural-network model, such as CNN or CNN 

plus LSTM. In this case, the state information (from 

environment) is the inputs to the network, and 𝑦𝑘
′ , 1 ≤ 𝑘 ≤ 𝐾, 

are the outputs from the network to represent the probability 

that action k is chosen. For example, if 𝑦3
′ = 0.8, then action 

3 has 80 % of chance to be selected. If action 3 is indeed used 

to interact with the environment at step t, then 𝑎𝑡 = 3.  

Once we have the trajectory, we can compute the return 𝑅𝑡 

from 𝑡 = 1 till 𝑀 . To simplify the discussion, we let one 

trajectory contain exactly one episode. The return in each 

step can be computed as 

 𝑅𝑡 = 𝐺𝑡 + 𝑣(𝑠𝑡)       (2) 

where 𝐺𝑡 is an advantage function and 𝑣(𝑠𝑡) is an estimation 

of the state value function 𝑉𝜋(𝑠𝑡). The function 𝑉𝜋(𝑠𝑡) is the 

expected (average) return from state 𝑠𝑡  to the end of the 

episode with a policy . In the actual implementation, 𝑣(𝑠𝑡) 

is estimated by a neural network. Both the estimation 

network and the agent network can share the same network 

model except the output layers. 

The N-step advantage function is computed as 

𝐺𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 ⋯ + 𝛾𝑁𝑟𝑡+𝑁 − 𝑣(𝑠𝑡)     (3) 

where 𝛾  is a discount factor. We use 𝛾 = 0.9  in the 

experiments. If we further define 

𝛿𝑡 = (𝑟𝑡 + 𝛾 𝑣(𝑠𝑡+1) − 𝑣(𝑠𝑡)),    (4) 

then 𝐺𝑡 can be expressed as 

𝐺𝑡 = 𝛿𝑡 + 𝛾𝜆𝛿𝑡+1 + (𝛾𝜆)2𝛿𝑡+2 + ⋯ + (𝛾𝜆)𝑁𝛿𝑡+𝑁   (5) 

where 𝜆 is a smoothing factor (𝜆 = 0.95 in the experiments).  

The training process adjusts the network parameter 𝜃 

through a gradient search to maximize the following 

objective function 

𝐽(𝜃) = 𝐽1(𝜃) + 𝐽2(𝜃) + 𝐽3(𝜃)      (6) 

The first term 𝐽1(𝜃)  computes the policy-gradient term 

with a clipping. The policy-gradient term is computed as 

𝑝𝑡(𝜃)𝐺𝑡, where 𝐺𝑡 is given in Eq. (5) and  

 𝑝𝑡(𝜃) =
𝑦𝑎𝑡

′ (𝑠𝑡)

y𝑎𝑡
(𝑠𝑡)

.       (7) 

In Eq. (7), y𝑎𝑡
(𝑠𝑡) is the actual agent-network output at 

state 𝑠𝑡  on action 𝑎𝑡  when reusing a previous trajectory T, 

whereas 𝑦𝑎𝑡
′ (𝑠𝑡)  is previously obtained value in T. When 

computing the gradients, 𝑦𝑎𝑡
′ (𝑠𝑡) is treated as a constant. To 

avoid excessively large 𝑝𝑡(𝜃) , a clip function is used. 

Therefore, 

𝐽1(𝜃) = min (𝑝𝑡(𝜃)𝐺𝑡 , clip(𝑝𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐺𝑡)   (8) 

where clip(∙) is a clipping function and 𝜖 is its parameter. 

We use 𝜖 = 0.2 in the experiments.  

The 𝐽2(𝜃) term is the mean-squared error of the advantage 

term, computed as 

𝐽2(𝜃) = −𝐶1(𝑣(𝑠𝑡) − 𝑅𝑡)2       (9) 

The 𝐽3(𝜃) term computes the entropy for all actions, as 

follows 

𝐽3(𝜃) = −𝐶2 ∑ 𝑦𝑘(𝑠𝑡) log(𝑦𝑘(𝑠𝑡))𝑘 .  (10) 

Higher value of 𝐽3(𝜃)  indicates that all actions have 

comparable probabilities.  Therefore, if 𝐶2 is large, this term 

has a higher weight to determine the gradient direction. 

Consequently, the agent is encouraged to explore.  

In summary, a simplified version of the PPO algorithm is 

given as follows. This simplified version uses a stochastic 

gradient ascent search. It can be easily modified to perform 

mini-batch gradient ascent.  

Algorithm for A simplified version of the PPO 

For iter = 1 … ITER 

   Collect a trajectory 𝑇 of one episode with M steps 

   Compute advantage 𝐺 and return 𝑅 

 

// Perform stochastic gradient ascent 
   For epoch = 1 … EPOCH  

 For i = 1 … M 

     Compute agent outputs 𝑦𝑘 , 1 ≤ 𝑘 ≤ 𝐾 

    Compute estimated output 𝑣 

    Compute gradient of objective function 𝐽 

    Update network parameter 𝜃 

B. The Problem of Rapid Decline of Reward 

To illustrate this problem, we use the “mouse in a maze” [8] 

as an example. Fig. 1(a) shows the episode reward with 

respect to the training episode. It is clear that the reward has 

rapid decline around 1.2 M training steps, and falls into a 

“valley with low rewards” for a period of 200 k steps. In 

some cases, the agent may never leave this low-reward 

situation till the end of the training, such as the one shown in 

Fig. 1(b).  

 
(a) 

 
(b) 

Fig. 1. Episode reward of the game “mouse-in-a-maze.” 
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When closely examining the behavior of the agent in the 

low-episode-reward period, we find that the agent repeatedly 

moves upward by one step, downward by one step, and 

repeats these two steps many, many times, as shown in Fig. 2. 

 
(a) 

 
(b) 

Fig. 2. Movement of the mouse from step index 1,017,427 to 1,017,430. The 

meanings of the characters are “X” for wall, “M” for mouse, “F” for food, “P” 

for poison, and “E” for exit. 

 

We now consider the impact of a repeated action sequence 

on the objective function in Eq. (6). With a repeated sequence 

of actions, the first term (policy gradient) tends to go to zero 

because 𝐺𝑡 is very small. The second term also tends to zero 

as the difference between 𝑣(𝑠𝑡)  and 𝑅𝑡  is very small. 

Therefore, the first two terms provide little or no gradient 

information for the optimizer to follow. The only useful term 

is the entropy term. From Eq. (10) we know that if the agent 

has comparable probability 𝑦𝑘  on all actions, this term is 

large. Therefore, the gradient search tends to make relatively 

even probabilities among all actions. In a sense, this term 

determines the exploration probability of the agent. 

Therefore, if the constant 𝐶2 is large, the agent is encouraged 

to explore more aggressively. However, in the reference 

implementation [7], the constant 𝐶1 is set to 0.5, whereas 𝐶2 

is only 0.01. Therefore, when the agent is in the 

low-episode-reward period, a small 𝐶2  makes this term 

insignificant in performing the gradient ascent. Table I shows 

some numerical values produced during the period of low 

episode rewards. It is clearly seen that the objective-function 

term is small, indicating that the agent does not have a clear 

gradient direction to follow. With this observation, one way 

to mitigate this problem is to increase the value of 𝐶2  for 

more aggressive exploration. However, arbitrarily assigning 

a large value to 𝐶2 is not a good strategy. If the agent already 

learns to solve a particular problem, it also closely follows its 

previous actions. In this case, further exploration is not 

desirable. In short, a better strategy is to dynamically adjust 

this constant based on some metrics. 

III. PROPOSED APPROACH 

From Fig. 1 we know that when the episode reward sharply 

drops, it remains low for a long period. Therefore, a simple 

and straightforward approach is to continuously monitor the 

episode reward, and then to increase the constant 𝐶2 in case 

that the rapid decline of reward is detected. 

The proposed approach uses a smoothed cumulative return  
𝑍𝑡 as the basic function to detect the decline. Specifically, let 

𝑍𝑡 = (1 − 𝛼)𝑍𝑡−1 + 𝛼𝑟𝑡     (11) 

where  𝑟𝑡 is the received reward, 𝛼 is a constant, and 𝑍0 = 0. 

In the experiments, we set 𝛼 = 0.001. To determine if 𝑍𝑡 

rapidly declines in the present state, we further define a local 

maximum of past 𝑍𝑡 as 

𝑍𝑡
𝑀𝑥 = max

𝜏∈[0,𝑡−𝑛0×𝑆𝑏]
 (𝑍𝜏)      (12) 

where 𝑛0 is the number of mini-batches and 𝑆𝑏 is the size of a 

mini-batch. The term 𝑛0 × 𝑆𝑏  is used to determine the ending 

point of the maximum operation. In the experiments, we use 

𝑆𝑏 = 128.  The value 𝑛0  does not significantly affect the 

results, and can be set to any reasonable value, such as 5. 

With the local maximum 𝑍𝑡
𝑀𝑥 , we define 

�̃�𝑡 = max (0.01,
0.1(𝑍𝑡

𝑀𝑥−𝑍𝑡)

(𝑍𝑡
𝑀𝑥+10−5)

)     (13) 

as a substitute for 𝐶2. If the present return 𝑍𝑡 is close to 𝑍𝑡
𝑀𝑥 , 

the term 
0.1(𝑍𝑡

𝑀𝑥−𝑍𝑡)

(𝑍𝑡
𝑀𝑥+10−5)

 is close to 0. Therefore, �̃�𝑡 is 0.01, which 

is the default value of 𝐶2 . Consequently, the proposed 

algorithm degenerates to the original version. On the other 

hand, if  𝑍𝑡 → 0, then 
0.1(𝑍𝑡

𝑀𝑥−𝑍𝑡)

(𝑍𝑡
𝑀𝑥+10−5)

 is close to 0.1, and then  

�̃�𝑡 ≈ 0.1. In this case, the agent is encouraged to explore 

more aggressively than the original version does. Finally, to 

avoid the situation that 𝑍𝑡
𝑀𝑥 → 0, we set an upper limit to �̃�𝑡. 

Thus, the constant 𝐶2 used in Eq. (10) is set as 

𝐶2 = min (𝑘0, �̃�𝑡)     (14) 

In the experiments, we set 𝑘0 = 0.1 . Please note that 

though not explicitly shown, 𝐶2 is a function of training step 

𝑡. 
 
Table 1. Some numerical values Recorded during the period of low episode 

rewards 

Step index 
Policy 

gradient 

Advantage 

network 
Entropy 

Objective 

function 

1429888 −7.45E-09 5.45E-04 7.14E-01 −6.87E-03 

1429920 1.83E-03 4.93E-04 7.09E-01 −5.01E-03 

1429952 1.88E-03 4.56E-04 7.06E-01 −4.94E-03 

1429984 2.74E-04 4.43E-04 7.04E-01 −6.54E-03 

1430016 3.73E-08 2.05E-02 7.50E-01 2.73E-03 

1430048 −3.62E-03 1.81E-02 7.43E-01 −1.98E-03 

1430080 −6.81E-03 1.41E-02 7.34E-01 −7.10E-03 

IV. EXPERIMENTS AND RESULTS 

This section covers the hardware specifications and 

software versions of experiments, the used learning 

environments (video games), and experimental results. 

A. Hardware and Software Used in Experiments 

The experiments are conducted on a personal computer 
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equipped with two graphic cards. The detailed specification 

of the computer is given in Table 2. The experiments are 

conducted based on the stable baselines 2 [9] with action 

mask [10]. The programs are run on a docker to have a higher 

flexibility and portability. The used software versions are 

given in Table 3. 

 
 Table 2. Experimental hardware 

Component Specification / Name 

Processor 
Intel(R) Core(TM) i9–9900X CPU @ 
3.50 GHz 

Mother board Gigabyte X299 DESIGNARE EX-CF 

Graphic card Nvidia GeForce GTX 1080 Ti * 2 

RAM size 32GB 

 
Table 3. Experimental software 

Component Version 

OS Ubuntu 20.04 

Python 3.6.9 

Docker Engine Version 20.10.7 

Docker Image ntutselab/stable-baselines-gpu 

NVIDIA Driver 460.80 

Tensorflow 1.14 

CUDA 11.2 

 

B. Learning Environments for Conducted Experiments 

To evaluate the performance and potential side effects of 

the proposed approach, we use the following video games as 

the learning environments for the agent to learn.  

1) Mouse in a maze. This is a self-developed game already 

used in [6]. If the mouse eats a fruit, the reward is 2. If it 

eats a poison, the reward is −1 and the episode ends. If 

the mouse reaches the exit, the reward is 1 and the 

episode also ends. Any action that leads to hit a wall is 

ignored (no penalty) in the original version and is an 

invalid action in the proposed algorithm. Again, the 

maximum number of steps in an episode is also 1,000 

steps. Fig. 2, given previously, shows the snapshots of 

the game. 

2) Empty room. This game is a simplified version of the 

mouse in a maze. The only reward given to the agent is 

when the agent reaches the exit. As the reward is sparse, 

this experiment is a good test for the proposed approach. 

A snapshot of this environment is given in Fig. 3. 

 
Fig. 3. Empty room. 

 

3) Atari games. We also conduct experiments on several 

Atari games. These games do not suffer from the rapid 

decline of episode rewards. We choose these games to 

check if the proposed approach has any downsides for 

normal, reward-rich tasks. According to Bellemare [11], 

there are four different categories of games in Atari 

game set: Human-optimal, Score exploit, Dense reward, 

and Sparse reward. In the experiments, one game is 

chosen form each of the categories. In addition, the first 

two are easy exploration, and the last two are hard 

exploration. The chosen games are: Breakout, Seaquest, 

MsPacman, and Freeway. The snapshots of the games 

are given in Fig. 4 to Fig. 7.  

 

 
Fig. 4. Breakout. 

 

 
Fig. 5. Seaquest. 

 

 
Fig. 6. MsPacman 

 

 
Fig. 7. Freeway 

 

The chosen agent for the mouse in a maze and Empty room 

is the MlpPolicy provided by the stable baseline. The agent 

for Atari games is the CNNPolicy with the hyperparameters 

given in RL-Baselines-Zoo [12]. 

C. Experimental Results for Mouse in a Maze 

We use this experiment to observe whether the proposed 

approach can dynamically adjust the coefficient 𝐶2, and also 
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observe the change of the episode reward with respect to 

training steps. 

Fig. 8 and Fig. 9 show two different trials during training. 

There is no obvious rapid decline of reward in Fig. 8 (a). 

Therefore, the variation of 𝐶2 over training steps fluctuates 

between 0.01 to greater than 0.05 in Fig. 8 (b). On another 

trial, as shown in Fig. 9 (a), the reward exhibits a small 

low-episode-reward period (highlighted with a red box). 

However, this period is much smaller when compared with 

that in Fig. 1(a). Fig. 9 (b) shows the change of 𝐶2 over time, 

where the maximum value of 𝐶2 reaches almost 0.1. With 

these observations, the proposed approach behaves as 

expected.  

 

 
(a) 

 

 
 (b) 

 

Fig. 8. Coefficient 𝐶2 with respect to training steps. 

 

To have quantitative comparison, we repeat the training 50 

times (i.e., 50 trials) and present the results in Table IV. The 

first parameter, average episode reward calculates the 

average reward per episode over the 50 trials. This parameter, 

in a sense, measures the efficiency of the training, as a higher 

value indicates a more efficient training (learning). The 

second parameter picks the maximum reward in each trial, 

and takes the average. This parameter is another useful 

parameter to measure how well the agent can behave during 

the learning process. The third parameter counts the average 

number of episodes in the low-episode-reward periods, and 

the final one counts the number of trials with observable 

low-reward instances. It is clear from Table IV that the 

proposed approach is better, especially in the first parameter 

“average episode reward.” In addition, the small number of 

episodes in low-episode-reward periods also signifies that the 

proposed algorithm works as expected.  

 
 (a) 

 
(b) 

Fig. 9. Episode reward with respect to training steps. 

 
Table 4. Experimental results for mouse in a maze 

Parameter Original Proposed 

Average Episode Reward 10.70 17.48 

Avg of Max Reward in 50 Trials 33.06 40.42 

Avg Low Reward Episodes per Trial 234.38 11.95 

Trials with Low Rewards 27/50 2/50 

 

D. Experimental Results for Empty Room 

We use the “empty room” learning environment to test if 

the agent can constantly find a path to the exit. It is quite often 

to observe that the agent occasionally finds a path to exit, but 

forgets the learnt knowledge in subsequent learning steps, 

such as the one shown in Fig. 10. It clearly shows that the 

agent only finds a path to exit with two occasions. 

 

 
Fig. 10. Episode reward with respect to training steps. 

 

When applying the proposed approach to this problem, the 

reward plot is shown in Fig. 11, where the low-reward period 

is still pretty long, but the coefficient 𝐶2  increases to its 

maximum for higher exploration rates. In this experiment, 

although the agent cannot retain the learnt knowledge, the 

proposed approach meets its original goal: to encourage the 

agent to explore more when encountered low-reward 

situations. 
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Fig. 11. Episode reward with respect to training steps. 

 

We follow the discussion in Section IV.C and report the 

quantitative results in Table V. It is shown that the proposed 

approach also significantly improves the training 

performance. Note that this experiment only repeats 10  trials. 

Therefore, the value of “Trials with Low Reward” is not 

given. 

 
Table 5. Experimental results for empty room 

Parameter Original Proposed 

Average Episode Reward 4.22 8.55 

Max Reward 10 10 

Avg Low Reward Episodes 775.63 467.37 

 

E. Experimental Results for Atari Games 

The Atari games have rich backgrounds, and different 

screenshots are considered as different states. Therefore, the 

agent is unlikely to revisit the same states many times in these 

video games. Consequently, the agent rarely exhibits rapid 

reward decline. The main purpose of this experiment is to 

observe any undesirable side effects. In this experiment, to 

save space, we thus only provide the results of average 

episode reward in Table VI. It is observed that the proposed 

approach does not negatively affect the performance in three 

games, and slightly reduce the training performance in the 

Seaquest game.  

 
Table 6. Average episode reward in Atari games 

Game Original Proposed 

Breakout 9.59 9.14 

Seaquest 16.56 13.70 

MsPacman 28.42 27.09 

Freeway 28.20 28.85 

 

To understand the problem of the proposed approach 

performs in Seaquest, we repeat the experiment several times. 

We observe that this game can lead to two distinct episode 

reward plots when using the original PPO algorithm: one has 

a terminal reward approaching 23, whereas the other one is 

close to 10, as shown in Fig. 12. For both situations, we check 

the 𝐶2  values in our approach. We find that our approach 

does not change 𝐶2 at most of the time. Therefore, the lower 

average episode reward is mainly due to different initial seeds 

used in the PPO algorithm for generating random numbers. 

Unfortunately, the seeds are implicitly implemented, and the 

user is unable to control the seeds. Therefore, we are unable 

to report results with the exactly the same simulation 

conditions. Still, with our observations, we conclude that the 

proposed approach does not have any obvious side effects. 

 
Fig. 12. Episode reward with respect to training steps in Seaquest. 

 

F. Limitations and Future Work 

In our experiments, we showed that the proposed approach 

can reduce the detrimental low-reward effects appeared 

during training. Nevertheless, increasing exploration rate, in 

a sense, is equivalent to reducing exploitation. Consequently, 

the learnt knowledge is not applied as frequently as the 

original algorithm although the proposed algorithm is 

designed to minimize this situation when the rewards are not 

declined rapidly.  

In the proposed algorithm, there are some hyperparameters 

to be determined by the user, such as 𝛼 in Eq. (11) and 𝑘0 in 

Eq. (14). We plan to investigate the impact of these 

hyperparameters on the performance of the proposed 

approach in the future. 

Finally, although the proposed approach has been tested on 

various environments, the number of tested environments is 

still very limited. Further experiments and the corresponding 

analysis are necessary to confirm the generalizability of this 

approach to other environments. As the experiments are time 

consuming, this part is also our future work.  

V. CONCLUSION 

We propose an approach to dynamically control the 

exploration rate in the PPO algorithm. Doing so prevents the 

agent from entering a prolonged low-reward, low-efficient 

training period. The proposed approach is tested on several 

training environments. The results show that the proposed 

approach can improve the training efficiency for simple and 

reward-sparse environments. For other environments, the 

proposed approach reduces to the original version. Overall, 

the proposed approach can directly replace the original PPO 

algorithm without any noticeably adverse effects. 
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