

Dynamic Adjustment of Exploration Rate for PPO Algorithm

to Relief Rapid Decline of Episode Rewards

Shingchern D. You1,*, Chao-Wei Ku1,2, and Chien-Hung Liu1

1Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan
2Taiwan Semiconductor Manufactory Co., Taiwan

Email: scyou@ntut.edu.tw (S.D.Y.); weichaoku@gmail.com (C.W.K.); cliu@ntut.edu.tw (C.H.L.)
*Corresponding author

Manuscript received May 20, 2023, revised July 27, 2023; accepted August 30, 2023; published February 2, 2024.

Abstract—Proximal Policy Optimization (PPO) is a widely

used algorithm in reinforcement learning. We observe that the

agent may repeatedly select actions in a fixed sequence in some

environments, leading to rapid decline of rewards. After that,

the reward remains very low for a prolonged training period.

Consequently, the training efficiency reduces. In this paper, we

propose an approach to dynamically adjust the constant in the

entropy term in the objective function of the PPO algorithm to

encourage the agent to explore. Our experimental results show

that the proposed algorithm is effective to relief this detrimental

situation of rapid decline of episode rewards.

Keywords—entropy, Proximal Policy Optimization (PPO),

exploration rate, reinforcement learning

I. INTRODUCTION

With its wide applications, machine learning techniques

have received much attention. According to Wikipedia [1],

traditionally there are three categories of machine learning

algorithms, supervised learning, unsupervised learning, and

reinforcement learning. For supervised learning paradigms,

inputs and outputs (labels) of examples are given to the

computer to learn the relationships between the inputs and

outputs. Therefore, supervised learning is used for

classification and regression problems. For unsupervised

learning paradigms, input data do not have labels. Thus, the

main applications of this type of learning are for clustering

and dimensionality reduction. As to the reinforcement

learning, a built-in agent interacts with the dynamic

environment to perform a goal [2] based on the received

rewards. There are many successful applications of

reinforcement learning, such as playing video games [3],

modeling human behavior in dynamic tasks [4], decision of

offloading from smart phones to clouds [5].

In terms of the agent implementation, it can be a simple,

table-based program, or a much more complicated program

(or hardware), such as Convolutional Neural Networks

(CNN), or Long Short-term Memory (LSTM) networks. To

use a reinforcement learning algorithm, we need to choose a

suitable agent. The agent, in most cases, is related to the

environment it interacts with. For example, in the

video-game environment, a CNN-based agent is widely used.

During exploring the environment, the agent receives

rewards as feedback. In this case, the agent is expected to

maximize the expected return (defined as cumulative future

rewards) by choosing a sequence of appropriate actions. How

to maximize the cumulated rewards is an optimization

problem, where various types of algorithms have been

developed to solve. One widely used type is the value-based

algorithms, whereas another type is the policy-based

algorithms. The former uses a value function to estimate the

expected return for any chosen action, and picks the action

with the maximum (expected) return. One well-known

algorithm in this type is the Deep Q-Learning (DQN)

algorithm, which has been shown to play video games with

skill levels comparable to, if not exceeding, that of human

experts [3]. Despite its success, the DQN algorithm “fails on

many simple problems,” such as those requiring continuous

control [6].

The agent in a policy-based algorithm learns an optimal

policy directly, which in turn provides the probability of each

action. The chosen action is random, according to the

associated probability, in nature. To learn the policy, the

agent interacts with the environment, and collects a sequence

of actions, states (i.e., instantaneous environment) and

rewards, called a trajectory. By exploring the environment,

the agent gradually learns a (sub-)optimal policy.

The original policy-based algorithm (REINFORCE)

suffers from low training efficiency because a trajectory is

used only once for training. To re-use the collected

trajectories, the Proximal Policy Optimization (PPO)

algorithm was developed. Due to its superior performance,

this algorithm was chosen as a default learning algorithm in

the OpenAI gym [7].

When applying the PPO algorithm to real-world problems,

sometimes certain actions may not be useful, or even allowed,

such as buying stocks without sufficient fund. To this end,

Tan et al. [8] proposed the use of action masks to remove

invalid actions from the action list. While this approach is

effective, it nevertheless reduces the candidates in the action

list. Consequently, it is more likely to observe “valleys with

low rewards” during training, although the original PPO

algorithm also has the same problem. This type of “valleys

with low rewards” situation is an adverse effect, as it reduces

the training efficiency. In this paper, we provide an in-depth

study about this problem and propose an approach to solve

this problem. We also conduct experiments to confirm the

usability of the proposed algorithm.

This paper is organized as follows: Section II is the

description of the PPO algorithm and the description of the

problem. Section III is the proposed approach. Section IV

describes the experiments and results. Finally, Section V is

the conclusion.

Journal of Advances in Computer Networks, Vol. 12, No. 1, 2024

1doi: 10.18178/jacn.2024.12.1.288

mailto:weichaoku@gmail.com
mailto:cliu@ntut.edu.tw

II. PPO ALGORITHM AND REWARD RAPID DECLINE

A. PPO Algorithm

To be self-contained, we briefly describe the PPO

algorithm. The description given here closely follows the

paper by Tan et al. [8]. Initially, the agent randomly chooses

actions to interact with the environment in order to collect

trajectories

 𝑇 = {(𝑠𝑡 , 𝑎𝑡 , 𝑦𝑎𝑡
′ (𝑠𝑡), 𝑟𝑡): 1 ≤ 𝑡 ≤ 𝑀} (1)

Each element in T is a 4-tuple, where 𝑠𝑡 is the state at step

(or time) t, 𝑎𝑡 is the used action 1 ≤ 𝑎𝑡 ≤ 𝐾, 𝑦𝑎𝑡
′ (𝑠𝑡) is the

probability of choosing action 𝑎𝑡 , and 𝑟𝑡 is the received

reward. In terms of implementation, the agent usually is a

variation of neural-network model, such as CNN or CNN

plus LSTM. In this case, the state information (from

environment) is the inputs to the network, and 𝑦𝑘
′ , 1 ≤ 𝑘 ≤ 𝐾,

are the outputs from the network to represent the probability

that action k is chosen. For example, if 𝑦3
′ = 0.8, then action

3 has 80 % of chance to be selected. If action 3 is indeed used

to interact with the environment at step t, then 𝑎𝑡 = 3.

Once we have the trajectory, we can compute the return 𝑅𝑡

from 𝑡 = 1 till 𝑀 . To simplify the discussion, we let one

trajectory contain exactly one episode. The return in each

step can be computed as

 𝑅𝑡 = 𝐺𝑡 + 𝑣(𝑠𝑡) (2)

where 𝐺𝑡 is an advantage function and 𝑣(𝑠𝑡) is an estimation

of the state value function 𝑉𝜋(𝑠𝑡). The function 𝑉𝜋(𝑠𝑡) is the

expected (average) return from state 𝑠𝑡 to the end of the

episode with a policy . In the actual implementation, 𝑣(𝑠𝑡)

is estimated by a neural network. Both the estimation

network and the agent network can share the same network

model except the output layers.

The N-step advantage function is computed as

𝐺𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 ⋯ + 𝛾𝑁𝑟𝑡+𝑁 − 𝑣(𝑠𝑡) (3)

where 𝛾 is a discount factor. We use 𝛾 = 0.9 in the

experiments. If we further define

𝛿𝑡 = (𝑟𝑡 + 𝛾 𝑣(𝑠𝑡+1) − 𝑣(𝑠𝑡)), (4)

then 𝐺𝑡 can be expressed as

𝐺𝑡 = 𝛿𝑡 + 𝛾𝜆𝛿𝑡+1 + (𝛾𝜆)2𝛿𝑡+2 + ⋯ + (𝛾𝜆)𝑁𝛿𝑡+𝑁 (5)

where 𝜆 is a smoothing factor (𝜆 = 0.95 in the experiments).

The training process adjusts the network parameter 𝜃

through a gradient search to maximize the following

objective function

𝐽(𝜃) = 𝐽1(𝜃) + 𝐽2(𝜃) + 𝐽3(𝜃) (6)

The first term 𝐽1(𝜃) computes the policy-gradient term

with a clipping. The policy-gradient term is computed as

𝑝𝑡(𝜃)𝐺𝑡, where 𝐺𝑡 is given in Eq. (5) and

 𝑝𝑡(𝜃) =
𝑦𝑎𝑡

′ (𝑠𝑡)

y𝑎𝑡
(𝑠𝑡)

. (7)

In Eq. (7), y𝑎𝑡
(𝑠𝑡) is the actual agent-network output at

state 𝑠𝑡 on action 𝑎𝑡 when reusing a previous trajectory T,

whereas 𝑦𝑎𝑡
′ (𝑠𝑡) is previously obtained value in T. When

computing the gradients, 𝑦𝑎𝑡
′ (𝑠𝑡) is treated as a constant. To

avoid excessively large 𝑝𝑡(𝜃) , a clip function is used.

Therefore,

𝐽1(𝜃) = min (𝑝𝑡(𝜃)𝐺𝑡 , clip(𝑝𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐺𝑡) (8)

where clip(∙) is a clipping function and 𝜖 is its parameter.

We use 𝜖 = 0.2 in the experiments.

The 𝐽2(𝜃) term is the mean-squared error of the advantage

term, computed as

𝐽2(𝜃) = −𝐶1(𝑣(𝑠𝑡) − 𝑅𝑡)2 (9)

The 𝐽3(𝜃) term computes the entropy for all actions, as

follows

𝐽3(𝜃) = −𝐶2 ∑ 𝑦𝑘(𝑠𝑡) log(𝑦𝑘(𝑠𝑡))𝑘 . (10)

Higher value of 𝐽3(𝜃) indicates that all actions have

comparable probabilities. Therefore, if 𝐶2 is large, this term

has a higher weight to determine the gradient direction.

Consequently, the agent is encouraged to explore.

In summary, a simplified version of the PPO algorithm is

given as follows. This simplified version uses a stochastic

gradient ascent search. It can be easily modified to perform

mini-batch gradient ascent.

Algorithm for A simplified version of the PPO

For iter = 1 … ITER

 Collect a trajectory 𝑇 of one episode with M steps

 Compute advantage 𝐺 and return 𝑅

// Perform stochastic gradient ascent
 For epoch = 1 … EPOCH

 For i = 1 … M

 Compute agent outputs 𝑦𝑘 , 1 ≤ 𝑘 ≤ 𝐾

 Compute estimated output 𝑣

 Compute gradient of objective function 𝐽

 Update network parameter 𝜃

B. The Problem of Rapid Decline of Reward

To illustrate this problem, we use the “mouse in a maze” [8]

as an example. Fig. 1(a) shows the episode reward with

respect to the training episode. It is clear that the reward has

rapid decline around 1.2 M training steps, and falls into a

“valley with low rewards” for a period of 200 k steps. In

some cases, the agent may never leave this low-reward

situation till the end of the training, such as the one shown in

Fig. 1(b).

(a)

(b)

Fig. 1. Episode reward of the game “mouse-in-a-maze.”

Journal of Advances in Computer Networks, Vol. 12, No. 1, 2024

2

When closely examining the behavior of the agent in the

low-episode-reward period, we find that the agent repeatedly

moves upward by one step, downward by one step, and

repeats these two steps many, many times, as shown in Fig. 2.

(a)

(b)

Fig. 2. Movement of the mouse from step index 1,017,427 to 1,017,430. The

meanings of the characters are “X” for wall, “M” for mouse, “F” for food, “P”

for poison, and “E” for exit.

We now consider the impact of a repeated action sequence

on the objective function in Eq. (6). With a repeated sequence

of actions, the first term (policy gradient) tends to go to zero

because 𝐺𝑡 is very small. The second term also tends to zero

as the difference between 𝑣(𝑠𝑡) and 𝑅𝑡 is very small.

Therefore, the first two terms provide little or no gradient

information for the optimizer to follow. The only useful term

is the entropy term. From Eq. (10) we know that if the agent

has comparable probability 𝑦𝑘 on all actions, this term is

large. Therefore, the gradient search tends to make relatively

even probabilities among all actions. In a sense, this term

determines the exploration probability of the agent.

Therefore, if the constant 𝐶2 is large, the agent is encouraged

to explore more aggressively. However, in the reference

implementation [7], the constant 𝐶1 is set to 0.5, whereas 𝐶2

is only 0.01. Therefore, when the agent is in the

low-episode-reward period, a small 𝐶2 makes this term

insignificant in performing the gradient ascent. Table I shows

some numerical values produced during the period of low

episode rewards. It is clearly seen that the objective-function

term is small, indicating that the agent does not have a clear

gradient direction to follow. With this observation, one way

to mitigate this problem is to increase the value of 𝐶2 for

more aggressive exploration. However, arbitrarily assigning

a large value to 𝐶2 is not a good strategy. If the agent already

learns to solve a particular problem, it also closely follows its

previous actions. In this case, further exploration is not

desirable. In short, a better strategy is to dynamically adjust

this constant based on some metrics.

III. PROPOSED APPROACH

From Fig. 1 we know that when the episode reward sharply

drops, it remains low for a long period. Therefore, a simple

and straightforward approach is to continuously monitor the

episode reward, and then to increase the constant 𝐶2 in case

that the rapid decline of reward is detected.

The proposed approach uses a smoothed cumulative return
𝑍𝑡 as the basic function to detect the decline. Specifically, let

𝑍𝑡 = (1 − 𝛼)𝑍𝑡−1 + 𝛼𝑟𝑡 (11)

where 𝑟𝑡 is the received reward, 𝛼 is a constant, and 𝑍0 = 0.

In the experiments, we set 𝛼 = 0.001. To determine if 𝑍𝑡

rapidly declines in the present state, we further define a local

maximum of past 𝑍𝑡 as

𝑍𝑡
𝑀𝑥 = max

𝜏∈[0,𝑡−𝑛0×𝑆𝑏]
 (𝑍𝜏) (12)

where 𝑛0 is the number of mini-batches and 𝑆𝑏 is the size of a

mini-batch. The term 𝑛0 × 𝑆𝑏 is used to determine the ending

point of the maximum operation. In the experiments, we use

𝑆𝑏 = 128. The value 𝑛0 does not significantly affect the

results, and can be set to any reasonable value, such as 5.

With the local maximum 𝑍𝑡
𝑀𝑥 , we define

𝐶̃𝑡 = max (0.01,
0.1(𝑍𝑡

𝑀𝑥−𝑍𝑡)

(𝑍𝑡
𝑀𝑥+10−5)

) (13)

as a substitute for 𝐶2. If the present return 𝑍𝑡 is close to 𝑍𝑡
𝑀𝑥 ,

the term
0.1(𝑍𝑡

𝑀𝑥−𝑍𝑡)

(𝑍𝑡
𝑀𝑥+10−5)

 is close to 0. Therefore, 𝐶̃𝑡 is 0.01, which

is the default value of 𝐶2 . Consequently, the proposed

algorithm degenerates to the original version. On the other

hand, if 𝑍𝑡 → 0, then
0.1(𝑍𝑡

𝑀𝑥−𝑍𝑡)

(𝑍𝑡
𝑀𝑥+10−5)

 is close to 0.1, and then

𝐶̃𝑡 ≈ 0.1. In this case, the agent is encouraged to explore

more aggressively than the original version does. Finally, to

avoid the situation that 𝑍𝑡
𝑀𝑥 → 0, we set an upper limit to 𝐶̃𝑡.

Thus, the constant 𝐶2 used in Eq. (10) is set as

𝐶2 = min (𝑘0, 𝐶̃𝑡) (14)

In the experiments, we set 𝑘0 = 0.1 . Please note that

though not explicitly shown, 𝐶2 is a function of training step

𝑡.

Table 1. Some numerical values Recorded during the period of low episode

rewards

Step index
Policy

gradient

Advantage

network
Entropy

Objective

function

1429888 −7.45E-09 5.45E-04 7.14E-01 −6.87E-03

1429920 1.83E-03 4.93E-04 7.09E-01 −5.01E-03

1429952 1.88E-03 4.56E-04 7.06E-01 −4.94E-03

1429984 2.74E-04 4.43E-04 7.04E-01 −6.54E-03

1430016 3.73E-08 2.05E-02 7.50E-01 2.73E-03

1430048 −3.62E-03 1.81E-02 7.43E-01 −1.98E-03

1430080 −6.81E-03 1.41E-02 7.34E-01 −7.10E-03

IV. EXPERIMENTS AND RESULTS

This section covers the hardware specifications and

software versions of experiments, the used learning

environments (video games), and experimental results.

A. Hardware and Software Used in Experiments

The experiments are conducted on a personal computer

Journal of Advances in Computer Networks, Vol. 12, No. 1, 2024

3

equipped with two graphic cards. The detailed specification

of the computer is given in Table 2. The experiments are

conducted based on the stable baselines 2 [9] with action

mask [10]. The programs are run on a docker to have a higher

flexibility and portability. The used software versions are

given in Table 3.

 Table 2. Experimental hardware

Component Specification / Name

Processor
Intel(R) Core(TM) i9–9900X CPU @
3.50 GHz

Mother board Gigabyte X299 DESIGNARE EX-CF

Graphic card Nvidia GeForce GTX 1080 Ti * 2

RAM size 32GB

Table 3. Experimental software

Component Version

OS Ubuntu 20.04

Python 3.6.9

Docker Engine Version 20.10.7

Docker Image ntutselab/stable-baselines-gpu

NVIDIA Driver 460.80

Tensorflow 1.14

CUDA 11.2

B. Learning Environments for Conducted Experiments

To evaluate the performance and potential side effects of

the proposed approach, we use the following video games as

the learning environments for the agent to learn.

1) Mouse in a maze. This is a self-developed game already

used in [6]. If the mouse eats a fruit, the reward is 2. If it

eats a poison, the reward is −1 and the episode ends. If

the mouse reaches the exit, the reward is 1 and the

episode also ends. Any action that leads to hit a wall is

ignored (no penalty) in the original version and is an

invalid action in the proposed algorithm. Again, the

maximum number of steps in an episode is also 1,000

steps. Fig. 2, given previously, shows the snapshots of

the game.

2) Empty room. This game is a simplified version of the

mouse in a maze. The only reward given to the agent is

when the agent reaches the exit. As the reward is sparse,

this experiment is a good test for the proposed approach.

A snapshot of this environment is given in Fig. 3.

Fig. 3. Empty room.

3) Atari games. We also conduct experiments on several

Atari games. These games do not suffer from the rapid

decline of episode rewards. We choose these games to

check if the proposed approach has any downsides for

normal, reward-rich tasks. According to Bellemare [11],

there are four different categories of games in Atari

game set: Human-optimal, Score exploit, Dense reward,

and Sparse reward. In the experiments, one game is

chosen form each of the categories. In addition, the first

two are easy exploration, and the last two are hard

exploration. The chosen games are: Breakout, Seaquest,

MsPacman, and Freeway. The snapshots of the games

are given in Fig. 4 to Fig. 7.

Fig. 4. Breakout.

Fig. 5. Seaquest.

Fig. 6. MsPacman

Fig. 7. Freeway

The chosen agent for the mouse in a maze and Empty room

is the MlpPolicy provided by the stable baseline. The agent

for Atari games is the CNNPolicy with the hyperparameters

given in RL-Baselines-Zoo [12].

C. Experimental Results for Mouse in a Maze

We use this experiment to observe whether the proposed

approach can dynamically adjust the coefficient 𝐶2, and also

Journal of Advances in Computer Networks, Vol. 12, No. 1, 2024

4

observe the change of the episode reward with respect to

training steps.

Fig. 8 and Fig. 9 show two different trials during training.

There is no obvious rapid decline of reward in Fig. 8 (a).

Therefore, the variation of 𝐶2 over training steps fluctuates

between 0.01 to greater than 0.05 in Fig. 8 (b). On another

trial, as shown in Fig. 9 (a), the reward exhibits a small

low-episode-reward period (highlighted with a red box).

However, this period is much smaller when compared with

that in Fig. 1(a). Fig. 9 (b) shows the change of 𝐶2 over time,

where the maximum value of 𝐶2 reaches almost 0.1. With

these observations, the proposed approach behaves as

expected.

(a)

 (b)

Fig. 8. Coefficient 𝐶2 with respect to training steps.

To have quantitative comparison, we repeat the training 50

times (i.e., 50 trials) and present the results in Table IV. The

first parameter, average episode reward calculates the

average reward per episode over the 50 trials. This parameter,

in a sense, measures the efficiency of the training, as a higher

value indicates a more efficient training (learning). The

second parameter picks the maximum reward in each trial,

and takes the average. This parameter is another useful

parameter to measure how well the agent can behave during

the learning process. The third parameter counts the average

number of episodes in the low-episode-reward periods, and

the final one counts the number of trials with observable

low-reward instances. It is clear from Table IV that the

proposed approach is better, especially in the first parameter

“average episode reward.” In addition, the small number of

episodes in low-episode-reward periods also signifies that the

proposed algorithm works as expected.

 (a)

(b)

Fig. 9. Episode reward with respect to training steps.

Table 4. Experimental results for mouse in a maze

Parameter Original Proposed

Average Episode Reward 10.70 17.48

Avg of Max Reward in 50 Trials 33.06 40.42

Avg Low Reward Episodes per Trial 234.38 11.95

Trials with Low Rewards 27/50 2/50

D. Experimental Results for Empty Room

We use the “empty room” learning environment to test if

the agent can constantly find a path to the exit. It is quite often

to observe that the agent occasionally finds a path to exit, but

forgets the learnt knowledge in subsequent learning steps,

such as the one shown in Fig. 10. It clearly shows that the

agent only finds a path to exit with two occasions.

Fig. 10. Episode reward with respect to training steps.

When applying the proposed approach to this problem, the

reward plot is shown in Fig. 11, where the low-reward period

is still pretty long, but the coefficient 𝐶2 increases to its

maximum for higher exploration rates. In this experiment,

although the agent cannot retain the learnt knowledge, the

proposed approach meets its original goal: to encourage the

agent to explore more when encountered low-reward

situations.

Journal of Advances in Computer Networks, Vol. 12, No. 1, 2024

5

Fig. 11. Episode reward with respect to training steps.

We follow the discussion in Section IV.C and report the

quantitative results in Table V. It is shown that the proposed

approach also significantly improves the training

performance. Note that this experiment only repeats 10 trials.

Therefore, the value of “Trials with Low Reward” is not

given.

Table 5. Experimental results for empty room

Parameter Original Proposed

Average Episode Reward 4.22 8.55

Max Reward 10 10

Avg Low Reward Episodes 775.63 467.37

E. Experimental Results for Atari Games

The Atari games have rich backgrounds, and different

screenshots are considered as different states. Therefore, the

agent is unlikely to revisit the same states many times in these

video games. Consequently, the agent rarely exhibits rapid

reward decline. The main purpose of this experiment is to

observe any undesirable side effects. In this experiment, to

save space, we thus only provide the results of average

episode reward in Table VI. It is observed that the proposed

approach does not negatively affect the performance in three

games, and slightly reduce the training performance in the

Seaquest game.

Table 6. Average episode reward in Atari games

Game Original Proposed

Breakout 9.59 9.14

Seaquest 16.56 13.70

MsPacman 28.42 27.09

Freeway 28.20 28.85

To understand the problem of the proposed approach

performs in Seaquest, we repeat the experiment several times.

We observe that this game can lead to two distinct episode

reward plots when using the original PPO algorithm: one has

a terminal reward approaching 23, whereas the other one is

close to 10, as shown in Fig. 12. For both situations, we check

the 𝐶2 values in our approach. We find that our approach

does not change 𝐶2 at most of the time. Therefore, the lower

average episode reward is mainly due to different initial seeds

used in the PPO algorithm for generating random numbers.

Unfortunately, the seeds are implicitly implemented, and the

user is unable to control the seeds. Therefore, we are unable

to report results with the exactly the same simulation

conditions. Still, with our observations, we conclude that the

proposed approach does not have any obvious side effects.

Fig. 12. Episode reward with respect to training steps in Seaquest.

F. Limitations and Future Work

In our experiments, we showed that the proposed approach

can reduce the detrimental low-reward effects appeared

during training. Nevertheless, increasing exploration rate, in

a sense, is equivalent to reducing exploitation. Consequently,

the learnt knowledge is not applied as frequently as the

original algorithm although the proposed algorithm is

designed to minimize this situation when the rewards are not

declined rapidly.

In the proposed algorithm, there are some hyperparameters

to be determined by the user, such as 𝛼 in Eq. (11) and 𝑘0 in

Eq. (14). We plan to investigate the impact of these

hyperparameters on the performance of the proposed

approach in the future.

Finally, although the proposed approach has been tested on

various environments, the number of tested environments is

still very limited. Further experiments and the corresponding

analysis are necessary to confirm the generalizability of this

approach to other environments. As the experiments are time

consuming, this part is also our future work.

V. CONCLUSION

We propose an approach to dynamically control the

exploration rate in the PPO algorithm. Doing so prevents the

agent from entering a prolonged low-reward, low-efficient

training period. The proposed approach is tested on several

training environments. The results show that the proposed

approach can improve the training efficiency for simple and

reward-sparse environments. For other environments, the

proposed approach reduces to the original version. Overall,

the proposed approach can directly replace the original PPO

algorithm without any noticeably adverse effects.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

SDY initiated the problem, directed the progress of the

research, and wrote the paper; CWK conducted experiments;

CHL co-investigated the research and proofread the paper; all

authors had approved the final version.

REFERENCES

[1] Machine_learning. [Online]. Available:

https://en.wikipedia.org/wiki/Machine_learning

[2] R. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd Ed., Cambridge, MA: MIT Press, 2018.

[3] V. Mnih, et al., “Human-level control through deep reinforcement

learning,” Nature, vol. 518, pp. 529–533, 2015.
[4] V. Dutt, “Explaining human behavior in dynamic tasks through

reinforcement learning,” Journal of Advances in Information

Technology, vol. 2, no. 3, pp. 177-188, August, 2011.

Journal of Advances in Computer Networks, Vol. 12, No. 1, 2024

6

[5] N. Muslim, S. Islam, and J. C Grégoire, “Reinforcement learning based

offloading framework for computation service in the edge cloud and
core cloud,” Journal of Advances in Information Technology, vol. 13,

no. 2, pp. 139–146, April 2022

[6] J. Schulman, et al., “Proximal policy optimization algorithms,” arXiv
preprint arXiv:1707.06347, 2017.

[7] OpenAI Ltd. Gym toolkit software [Online]. Available:

https://gym.openai.com/
[8] C. Y. Tang, C. H. Liu, W. K. Chen, and S. D. You, “Implementing

action mask in proximal policy optimization (PPO) algorithm,” ICT

Express, vol. 6, no. 3, pp. 200–203, 2020.
[9] Stable Baselines. [Online]. Available:

https://github.com/hill-a/stable-baselines

[10] Stable Baselines ActionMask. [Online]. Available:

https://github.com/NTUT-SELab/stable-baselines/tree/ActionMask
[11] Bellemare, et al., “Count-based exploration with neural density

models,” in Proc. of the 34th International Conference on Machine

Learning, 2017.
[12] RL Baselines Zoo: a Collection of Pre-Trained Reinforcement

Learning Agents. [Online]. Available:

https://github.com/araffin/rl-baselines-zoo

Copyright © 2024 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Journal of Advances in Computer Networks, Vol. 12, No. 1, 2024

7

https://creativecommons.org/licenses/by/4.0/

