

Abstract—This paper presents an ongoing project to build an

application development and execution platform for Linux-

based embedded systems called Yapers. To avoid the peripheral

failure problem from traditional super-loop architecture,

Yapers supports real-time task and event-driven models such

that an application consists of periodic real-time tasks and tasks

triggered by certain events. The primary objectives of Yapers

are: (1) to help developers build applications for embedded

systems more efficiently and (2) to schedule and execute real-

time tasks without violating their timing constraints. To

accomplish the former objective, periodic and aperiodic task

templates are provided to implement tasks more efficiently.

Furthermore, Yapers provides a pool of shared variables, files,

and database objects such that various forms of data can be

shared/ exchanged between different tasks. An API library,

called YapersLIB, is also provided to access shared data for ease

of use. Developers only need to provide (1) tasks that comprise

the application, and (2) configuration files that define the

parameters and options for the system; the application will be

generated by synthesizing an image with a patched operating

system, booting scripts, tasks, required libraries and tools. This

paper also provides an example of how to use Yapers to develop

real-world applications.

Index Terms—Embedded real-time systems, embedded

applications, application platforms, real-time tasks, aperiodic

tasks.

I. INTRODUCTION

In recent decades, embedded systems have been widely

used in many domains, such as medical, transportation,

aerospace, automotive, industrial automation, security,

surveillance, etc. Accordingly, the need for varied embedded

applications has increased. However, most embedded

systems are resource-constrained compared to desktop PCs

and servers [1, 2]. It is difficult to develop applications for a

system with limited computing capabilities, less memory, and

power. Furthermore, the hardware diversity of embedded

systems also increases the difficulty even further. It decreases

the reusability of program code and the portability of

applications. In order to overcome those difficulties, many

approaches have been proposed (such as [3–10]) for

embedded systems. However, more work must be done for

embedded real-time systems [11], which must guarantee that

all the task instances can be completed without violating their

strict timing constraints.

In this paper, an ongoing project, called Yet another

platform for embedded real-time systems (Yapers), is

presented to support real-time task model for Linux-based

embedded systems. The primary goal of Yapers is to help

developers build applications for embedded systems more

efficiently. Since Linux has become one of the most popular

operating systems for embedded systems. Yapers supports

Linux-based embedded systems for which the hardware

diversity issue has been reduced predominantly. As a result,

an application developed by Yapers, denoted YaperAPP, can

be executed on many Linux-based embedded systems

with/without minor modification. Under Yapers, developers

only need to provide (1) tasks that comprise the application,

and (2) configuration files that define the parameters and

options for the system, a YapersAPP will be generated and

synthesized as an image with a patched Linux operating

system, booting scripts, tasks, required libraries and tools. At

the run-time, every running YapersAPP has a pool of shared

variables, files, and database objects, which can be accessed

by YapersLIB’s APIs to communicate and share data

between tasks. Another subproject, called YapersServer,

provides the capabilities to manage multiple YapersAPP’s

and to access shared data from different YapersAPP’s.

Unlike many other development tools and solutions,

Yapers doesn’t use the well-known super-loop architecture

as the application paradigm. The super-loop architecture uses

an infinite loop to perform a sequence of operations such that

the functionalities of an application can be implemented.

However, a potential issue is that the entire system might stop

running when an operation fails in the super loop (due to an

execution or a peripheral failure). To overcome the issue,

Yapers uses the real-time task model and event-driven task

model. We consider an application consisting of a set of

periodic/aperiodic real-time tasks and tasks triggered by

specific events. Using these two task models, an execution or

peripheral failure at the run-time will not cause a YapersAPP

to stop its execution. Furthermore, we have implemented a

real-time task scheduler for Yapers to schedule tasks without

violating their timing constraints (i.e., without missing their

deadlines). Currently, two well-known real-time task

scheduling algorithms (i.e., the rate monotonic (RM) [12] and

the earliest deadline first (EDF) [12] scheduling algorithms)

have been supported by the scheduler.

In the rest of this paper, Section II presents an overview of

the Yapers project, which includes the software architecture,

supported hardware and devices, and the current status of the

project. Section III illustrates how to use Yapers to develop a

real-world application for Raspberry Pi. Finally, Section IV

is the conclusion and the future work of this research.

An Application Platform for Embedded

Real-Time Systems

Jun Wu*, Chin-Shung Hwang, Jun-Yu Liau, Jian-Liuang Huang and Ming-In Kuo

Journal of Advances in Computer Networks, Vol. 11, No. 2, December 2023

14doi: 10.18178/jacn.2023.11.2.287

Manuscript received September 7, 2023; revised November 12, 2023;
accepted December 29, 2023.

This work was supported in part by the National Science and Technology
Council of Taiwan under a grant 110-2221-E-153-001-MY3.

J. Wu, C. S. Hwang, J. Y. Liau, J. L. Hwang and M. I. Kuo are with the

Department of Computer Science and Information Engineering, National
Pingtung University, 900 Pingtung City, Pingtung County, Taiwan

*Correspondence: junwu@mail.nptu.edu.tw

Fig. 1. Overview of Yapers.

II. YAPERS: AN EMBEDDED APPLICATION PLATFORM

In this section, an embedded application platform, called

Yet another platform for embedded real-time systems

(Yapers), is presented for the development and execution of

embedded applications. Yapers is an ongoing project

formerly known as meCreate [13, 14] designed originally for

an energy-critical multiple versions task model. Yapers is not

only a refinement, it further provides missing features to the

project, such as mechanisms for data sharing between tasks,

the API library for easy manipulate”on of peripheral devices

and sensors, and the capabilities to manage multiple

applications and target boards at the run-time. In the rest of

this section, an overview, supported task models and target

boards, the data sharing mechanisms, etc., shall be presented.

A. Overview

Yapers is an ongoing project that aims to build an

application platform for Linux-based embedded real-time

systems. At the current stage, we have implemented the

platform prototype and built several real-world applications

(i.e., YapersAPP). Fig. 1 shows the build stage and the run-

time stage of a YapersAPP. In order to build an application

upon Yapers, developers only need to provide a configuration

file, a task description file, and a set of tasks at the build stage.

The configuration file defines the target board’s options and

settings, including the network setting, task scheduling

algorithm, etc. The task description file defines the

parameters of tasks, such as arrival time, periodic, worst-case

computation time, deadlines, trigger events, and minimum

separation time. The Image Synthesizer is responsible for

synthesizing an image that comprises the task set, booting

scripts, and a patched Linux operating system. After the

image has been synthesized, it can be downloaded into a

target board to execute the application.

At the run-time, the Task Manager and Timer & Event

Handler will generate task instances according to the

parameters defined in the task description file (such as tasks’

arrival time, periodic, trigger event, and minimum separation

time). All the generated task instances will be put into the

ready queue and scheduled by Scheduler. The Scheduler uses

a dynamic priority scheduling algorithm (determined in the

configuration file) to assign a proper priority to every task

instance via Priority Assigner. As a result, all task instances

in the ready queue can be appropriately scheduled. Note that

Yapers also supports fixed priority scheduling algorithms for

which the priority of each task’s instances can be assigned

statically. Furthermore, a task instance can share data with

other tasks’ instances via a pool of shared variables, files, and

a shared database. Developers can use APIs provided in

YapersLIB to access the shared data. To further analyze the

workload and the usage, tools for monitoring data, usage

statistics, and logs are also provided in Yapers.

B. Task Models

Traditionally, many embedded applications are

implemented by using the well-known super-loop

architecture—an infinite loop consisting of a sequence of

operations. However, the super-loop architecture has a

potential issue that the entire system might stop running

because of a malfunction or a peripheral failure. In order to

overcome the potential issue, Yapers use the periodic real-

time task model [12] to treat each operation as a periodic real-

time task. By using this task model, only the failure task will

stop running while the other tasks are still running when a

failure occurs.

Currently, Yapers supports two task models: periodic real-

time task model and event-driven task model. We consider an

application (i.e., YapersAPP) consists of a set of N periodic

tasks 𝒯𝓇𝓉 = {𝜏1
𝑟𝑡 , 𝜏2

𝑟𝑡 , ⋯ , 𝜏𝑁
𝑟𝑡} and a set of M aperiodic event-

driven task 𝒯ℯ𝒹 = {𝜏1
𝑒𝑑 , 𝜏2

𝑒𝑑 , ⋯ , 𝜏𝑀
𝑒𝑑}. We describe these two

task models as follows:

1) Periodic Real-Time Task: Each task τi
rt ∈ 𝒯𝓇𝓉 can be

defined by (𝐴𝑖 , 𝑇𝑖 , 𝐶𝑖 , 𝐷𝑖) where 𝐴𝑖 , 𝑇𝑖 , 𝐶𝑖 , and 𝐷𝑖 are

the arrival time, period, worst-case computation time,

and relative deadline, respectively. A periodic real-time

task 𝜏𝑖
𝑟𝑡 will instantiate an instance 𝜏𝑖,1

𝑟𝑡 at its arrival

time 𝐴𝑖, and then instantiate a new instance τi,j
rt (for j ≥

1) for every period of time (i.e.,Ti). Every task instance

τi,j
rt has to complete its execution no later than the

deadline (i.e.,𝐴𝑖 + 𝑇𝑖 × 𝑗 + 𝐷𝑖).

2) Event-Driven Task: Each task 𝜏𝑖
𝑒𝑑 ∈ 𝒯ℯ𝒹 can be defined

by(𝐸𝑉𝑖 , 𝑆𝑇𝑖 , 𝐶𝑖 , 𝐷𝑖), where𝐸𝑉𝑖 , 𝑆𝑇𝑖 , 𝐶𝑖 , and 𝐷𝑖 are the

triggered event, minimum separation time, worst-case

computation time, and relative deadline, respectively.

An event-driven task 𝜏𝑖
𝑒𝑑 will instantiate an instance as

long as the event 𝐸𝑉𝑖 occurs. Let 𝜏𝑖,𝑗
𝑒𝑑 denote the jth

instance of 𝜏𝑖
𝑒𝑑 , and its instantiated time is defined

Journal of Advances in Computer Networks, Vol. 11, No. 2, December 2023

15

as𝐼𝑇𝑖,𝑗. Every task instance 𝜏𝑖,𝑗
𝑒𝑑 also has to complete its

execution no later than its deadline (i.e.,𝐼𝑇𝑖,𝑗 + 𝐷𝑖). Note

that for any two consecutive task instances 𝜏𝑖,𝑗
𝑒𝑑 and

𝜏𝑖,𝑗+1
𝑒𝑑 of an event-driven task 𝜏𝑖

𝑒𝑑 , we assume

that(𝐼𝑇𝑖,𝑗+1 − 𝐼𝑇𝑖,𝑗) ≥ 𝑆𝑇𝑖 .

C. Target Boards and the OS

Currently, Yapers supports Raspberry Pi 4 family and

Linux kernel 5.10.17. We will expand it to support more

target boards working with the Linux operating system. In

particular, we are working on porting it to ASUS Tinker

boards.

D. Task Scheduling Algorithms

Since Yapers supports two types of task models, we

transform one of them to another for ease of scheduling. In

particular, we create a fake real-time task τN+i
rt for each event-

dirven task τi
ed , where AN+i = 0 , TN+i = STi , CN+i = Ci ,

andDN+i = Di. Note that the arrival time of the fake task is

set as 0 because we can’t predict the instantiated time ofτi,1
ed,

and 0 is the worst-case consideration. After the

transformation, a YapersAPP is considered to have a set of

N+M real-time tasks {τ1
rt, τ2

rt, ⋯ , τN
rt, τN+1

rt , τN+2
rt , ⋯ , τN+M

rt } .

These N+M tasks are scheduled by the Scheduler as shown in

Fig. 1. We have implemented two well-known real-time task

scheduling algorithms: Rate Monotonic (RM) [12] and

Earliest Deadline First (EDF) [12]. Developers can decide on

the scheduling algorithm in the task description file.

E. Shared Data

When the traditional super-loop architecture is adopted,

operations in the loop can share data simply by using

variables. However, a YapersAPP consists of a set of real-

time tasks and event-driven tasks. For many applications,

there is a need to share data between different tasks.

Therefore, we have designed a mechanism in Yapers to

handle the need. In particular, Yapers provides a pool of

shared variables, files, and database objects such that various

forms of data can be shared/exchanged between different

tasks. Currently, Yapers only supports 32-bit int, 32-bit float,

and 8-bit char data types. By default, a running YapersAPP

has 20 shared variables identified by VID 0 to 19. We also

provide 20 shared files and 10 shared database objects that

are identified by FID and DBID. Note that we also use svi,

sfi, sdbi to denote the shared variable, shared file, and shared

database object with ID i, respectively. When an FID is

specified, developers can read/write data from/to the

corresponding shared files. Each database object represents a

document of a NoSQL database (i.e., MongoDB). Note that

the number of shared variables, files, and database objects can

be defined in the task description file.

F. YapersLIB

To ease the development of YapersAPP, we provide an

API library, called YapersLIB, to help developers access

shared data (including shared variables, files, and databases)

and to manipulate peripheral devices. In fact, a task of a

YapersAPP is a program in Linux (and a task instance is a

process). Yapers can support programs written in all

languages. However, we only provide Python at the current

stage since Python is getting more and more popular in the

field of embedded systems. The following Python functions

are selected from YapersLIB, which provide the capabilities

for accessing share data:

yapersLIB.get_sv(vid:int) -> Any

yapersLIB.set_sv(vid:int, value:Any)

yapersLIB.openfile(

 fid: int,

 mode: OpenTextMode | OpenBinaryMode

) -> FileIO | TextIOWrapper

yapersLIB.copyfile(

 sourcefile: int | str,

 destfile: int | str

)

yapersLIB.insert_sdb(dbid:int, key:str, data:Any)

yapersLIB.remove_sdb(dbid:int, key:str)

yapersLIB.update_sdb(dbid:int, key:str, data:Any)

yapersLIB.find_sdb(dbid:int, key:str) -> Any

yapersLIB.empty_sdb(dbid:int)

III. A REAL-WORLD YAPERSAPP

Using Yapers, applications are easy to build for Linux-

based embedded real-time systems. This section provides a

real-world example to demonstrate the procedures for

building a YapersAPP. The application is a campus

surveillance system placed in National Pingtung University,

called Safe@NPTU, which aims to improve security around

our campus. The Safe@NPTU is deployed on Raspberry Pi 4,

and it is equipped with a camera, speakers, flame sensor,

temperature and humidity sensor, PM 2.5 sensor, sunlight

sensor, gas sensor, and six 18600 Lithium-Ion battery (which

provides up to 13,200 mAh power bank), as shown in Fig. 2.

With the helps from Yapers, developers only need to provide

a configuration file, a task description file, and a set of tasks,

a YapersAPP’s image will be synthesized. For Safe@NPTU,

we have designed and implemented a set of real-time tasks

and event-driven tasks for detecting and monitoring campus

security. Table I shows some selected tasks (and their

parameters) from Safe@NPTU.

As shown in Table I, task τ11
rt gets the value from the flame

sensor, and saves it in shared variable sv0 for every 3000ms.

τ2
ed is an event-driven task, and it will be triggered when the

value of the shared variable sv0 equals to 1 (i.e., the flame has

been detected by τ11
rt). τ2

ed will sound the speaker for 1

second, then the value of sv0 will be reset to 0. Similar to τ11
rt ,

τ15
rt gets the value of gas concentration (value ranged from 0

to 1024) from the gas sensor, and saves it in shared variable

sv1 for every 3000ms. Another task τ16
rt will check the value

of sv1 for every 3000ms. Since the value of sv0 will be set to

1 if the gas concentration is getting higher (i.e., higher than

200), τ2
edwill be triggered to sound the speaker. Task τ21

rt and

τ22
rt act in a similar way to take a photo via the camera for

every 5000ms, and then it will check the differences between

any two consecutive photos (which are saved in shared files

𝑠𝑓0 and 𝑠𝑓1 alternately). According to the check result, it will

sound the speaker when abnormal behavior is detected (i.e.,

two consecutive photos taken in a closed space have

significant differences). Note that Yapers will monitor the

status, values, or contents of all the shared data (including

Journal of Advances in Computer Networks, Vol. 11, No. 2, December 2023

16

shared variables, files, and database objects). Once a shared

data has changed or meets some condition, Yapers will fire

an event to notify related tasks. For example, τ2
ed is an event-

driven task, and it will be triggered when the condition sv0 =
= 1 is met.

TABLE I: SELECTED TASKS OF SAFE@NPTU.

Task

ID
Task File Name Type

Triggering

Event

Arrival

Time

Period/Minimum

Separation Time
WCET Deadline Description

𝜏11
𝑟𝑡

 flame_detect.py P 0 3000 170 3000
Check the status of the flame sensor

and save the value to 𝑠𝑣0.

𝜏15
𝑟𝑡 gas_detect.py P 0 3000 210 3000

Get the gas concentration (0-1024)

from the gas sensor and save it to

𝑠𝑣1.

𝜏16
𝑟𝑡 check_gas.py P 0 3000 150 3000 Set 𝑠𝑣0 = 1 if 𝑠𝑣1 > 200.

𝜏21
𝑟𝑡 take_photo.py P 0 5000 1610 5000

Take a photo from the camera and

save it to 𝑠𝑓0 and 𝑠𝑓1 alternately.

𝜏22
𝑟𝑡 check_photo.py P 0 5000 150 5000

Check the differences between 𝑠𝑓0

and 𝑠𝑓1. Set 𝑠𝑣0 = 1 if the

differences are high.

𝜏2
𝑒𝑑

 alert.py ED 𝑠𝑣0 == 1 1160 150 1160
Sound the speaker for 1 second and

reset 𝑠𝑣0.

* Type P and ED stand for periodic real-time tasks and event-driven tasks.

** The unit of time in this table is millisecond (ms).

Fig. 2. An example YapersAPP — Safe@NPTU.

IV. CONCLUSION AND FUTURE WORK

This paper aims to provide an application platform, called

Yapers, for building and executing applications on embedded

real-time systems. At the current stage, the implementation of

Yapers’ prototype has been completed. Several real-world

applications also have been built upon Yapers such that the

correctness and efficiency are verified. In future work, we

shall work on several subprojects, including YaperSERVER

and YapersDEV. YapersSERVER is a server designed for

managing multiple YapersAPP’s, allowing a task to access

the shared data from different YapersAPP’s. YapersDEV is

an integrated development environment for designing,

building, and synthesizing YapersAPP’s. We are also

working on refining Linux so that Yapers can work with a

more reliable, efficient, and predictable operating system.

REFERENCES

[1] P. Koopman, “Embedded system design issues (the rest of the story),”
in Proc. the 1996 IEEE International Conference on Computer Design:

VLSI in Computers and Processors (ICCD), Austin, TX, USA, 1996,

pp. 310–317.

[2] T. A. Henziger and J. Sifakis, “The embedded systems design

challenge,” in Proc. of the 14th International Symposium on Formal

Methods, Hamilton, Canada, August 21-27 2006, pp. 1–15.
[3] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin, “Actor-oriented

designof embedded hardware and software systems,” Journal of

Circuits, Systems, and Computers, vol. 12, no. 3, pp. 231–260, 2003.
[4] C. F. Hsu, “A component-based software development platform for

rapid prototyping of embedded software,” Master Thesis, Department

of Computer Science and Information Engineering, National Pingtung
University, July 2009.

[5] J. Wiklander, J. Eliasson, A. Kruglyak, P. Lindgren, and J. Nordlander,

“Enabling component-based design for embedded real-time software,”
Journal of Computers, vol. 4, no. 12, pp. 1309–1321, 2009.

[6] J. Wiklander, J. Eriksson, and P. Lindgren, “An IDE for

componentbased design of embedded real-time software,” in Proc. of
6th IEEE Int'l. Symposium on Industrial & Embedded Systems, 2011,

pp. 47–50.

[7] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-integrated
development of embedded software,” in Proc. of the IEEE, vol. 91, no.

1, 2003, pp. 145–164.

[8] N. Hili, C. Fabre, S. Dupuy-Chessa, and D. Rieu, “A model-driven
approach for embedded system prototyping and design,” in Proc. IEEE

International Symposium on Rapid System Prototyping, New Delhi,

India, 2014, pp. 23–29.
[9] A. Sangiovanni-Vincentelli and G. Martin, “Platform-based design and

software design methodology for embedded systems,” IEEE Design

and Test of Computers, vol. 18, no. 6, pp. 23–33, 2001.
[10] J. Fu, Y. Jiang, W. Ren, and D. He, “A hardware and software

programmable platform for industrial embedded application,” in Proc.

2015 Chinese Automation Congress (CAC), 2015, pp. 360–365.
[11] K. V. Prashanth, P. S. Akram, and T. A. Reddy, “Real-time issues in

embedded system design,” in Proc. the 2015 International Conference
on Signal Processing and Communication Engineering Systems, 2015,

pp. 167–171.

[12] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard real-time environment,” Journal of the

Association for Computing Machinery, vol. 20, no. 1, pp. 46–61, 1973.

[13] J. Wu and J. L. Wang, “A real-time embedded platform for mixed

energy-criticality systems,” in Proc. of the 7th IEEE ICASI, 2021.

[14] J. Wu and J. L Wang, “An energy-efficient embedded system platform

for energy-critical real-time tasks,” Engineering Letters, vol. 31, no. 1,
pp. 105-112, 2023.

Copyright © 2023 by the authors. This is an open access article distributed

under the Creative Commons Attribution License (CC BY-NC-ND 4.0),
which permits use, distribution and reproduction in any medium, provided

that the article is properly cited, the use is non-commercial and no

modifications or adaptations are made.

Journal of Advances in Computer Networks, Vol. 11, No. 2, December 2023

17

https://creativecommons.org/licenses/by-nc-nd/4.0/

