

1doi: 10.18178/jacn.2023.11.1.285

Journal of Advances in Computer Networks, Vol. 11, No. 1, June 2023

Distributed Multilevel Secure Data Access Using

SELinux-Enhanced Linux over Cloud Environments

Haklin Kimm* , Eun-Joo Lee , and Hanke Kimm

Abstract—Cloud computing is an emerging technology,

which provides a spectrum of services such as database,

networks, software, storage over the cloud to many

organizations on the internet; there is no need of keeping local

servers for the organizations that adapt cloud computing for

storing and accessing data and services, provided by remote

servers. However, there are organization still hesitant to

accommodate a cloud system due to security issues and risks. In

this work, Security-Enhanced Linux (SELinux) with MultiLevel

Security (MLS) framework is applied as a cloud security model;

SELinux runs based on sensitivity and category labels of subject

and objects − mostly users and data files respectively. The

proposed MLS data access is a framework that employs data

classification that works on subsequent changes in the sensitivity

levels of subjects and objects to meet the dynamic changes of

cloud security. To implement the proposed secure data access

framework over the cloud system, the Fedora 35 system with

SELinux is used as a testbed. We also present that data

modification history can be retrieved on a MLS system by using

user sensitivity and data information labels.

Index Terms—Security-enhanced Linux, multilevel security,

data access, cloud computing

I. INTRODUCTION

Cloud computing is an emerging technology, which

provides a spectrum of services such as database, networks,

software, storage, over the cloud to many organizations on

the Internet, and has evolved along with computer networks

and information technologies, distributed file systems, cluster

applications. With cloud computing, there is no need of

keeping local servers for the organizations that adapt cloud

computing for storing and accessing data and services,

provided by remote servers. A large number of various types

of storage devices are well collected and organized in cloud

computing whose service products are provided by Google

Cloud [1, 2], Amazon Web Services [3, 4], Microsoft Azure

[5], iCloud [6], etc. Cloud computing is defined by the

National Institute of Standard and Technology (NIST) such

as: a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction

[7,8].

The essential aspects of cloud computing are on demand

self-service, broad network access, measured service, rapid

elasticity, and resource pooling. Cloud service offerings

divide into three broad categories: Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), and Software as a

Manuscript received November 20, 2022; revised February 2, 2023;

accepted March 29, 2023.

Haklin Kimm and Eun-Joo Lee are with Department of Computer Science,
East Stroudsburg University, PA, 18301, USA

Hanke Kimm is with Department of Computer Science, Stony Brook

University, Stony Brook, NY, 11794, USA
*Correspondence: hkimm@esu.edu

Service (SaaS). Note that there has been a recent proliferation

of other “as-a-Service” assortments such as Business

Integration-as-a-Service, Cloud-Based Analytics-as-a-

Service (CLAaaS), Data-as-a-Service (DaaS) [9, 10]. Cloud

computing provides many advantages to many organizations;

however, there are some organizations still reluctant to

accommodate their work on the cloud due to security issues

and risks.

Fig. 1. NIST cloud computing model

Thus, it is important to address the security issues and

problems in cloud systems, and the security requirements for

data and services on cloud systems are getting more attention

nowadays [11].

Security is the main huddle to accommodating a cloud

system as stated in Cloud Security Alliance’s survey report

[12]. Other hindrances from encompassing cloud services are

the loss of control over IT services, concern over

compromised accounts, insider threats, business continuity,

and disaster recovery [13]. In cloud systems, data owner does

not have full authority over their own data stored on remote

servers since internal and external users, who might misuse

their access to harm or disclosure the valuable sensitive data,

access and share the data stored on cloud storage. Hence, the

data owners seek to develop or deploy strict security in order

to protect their sensitive data. These security challenges on

cloud systems focused through a robust security management

initiative that outlines the role and responsibility of the

service provider and the data owner [14-17].

Sensitive information on cloud platforms are required to

extend with technical measures and organizational policies to

avoid security breaches that might result in enormous

damages. Sensitive information in the context of cloud

computing encompasses data from a wide range of different

areas and disciplines. Cloud computing platforms that

support the deployment of security policies to data, owners,

Journal of Advances in Computer Networks, Vol. 11, No. 1, June 2023

2

and users have been evolving recently, and these security

policies apply to control when user data flows at runtime. In

this paper we contribute to a multilevel security framework

based on data sensitivity and security−providing adequate

level of data security with various classifications and

categories. The proposed multilevel security embedded

information retrieval tool encompasses suitable access

control, which combine with Security Enhanced Linux

(SELinux) that facilitates classification of data based on

subsequent changes in the sensitivity levels and the security

measures meeting the dynamic changes in cloud security

threats [16-20].

The rest of this paper is organized as follows. Section II

demonstrates some previous and related work about cloud

computing and security. Section III illustrates our distributed

MLS model in detail along with SELiux. Section IV

introduces the main idea and details of our proposed MLS

information retrieval framework that follows the

experimental details using SELinux over Fedora Linux.

Finally, we conclude with further research directions in

Section V.

II. BACKGROUND AND RELATED WORK

Cloud Computing is defined as a model for facilitating

ubiquitous, convenient, pay-as-go access to a shared pool of

configurable computing resources, providing five major

actors as shown in Fig. 1: Cloud consumers, cloud providers,

cloud carriers, cloud auditors and cloud brokers. Each of

these actors is an entity (either a person or an organization)

that participates in a cloud computing transaction or process,

and/or performs cloud computing tasks.

A. Cloud Computing and Security

Cloud computing model is a layered architecture

providing different services with levels. As seen in Fig. 1 and

Table I, each layer of the cloud computing is classified with

its own security problems based on a shared cloud

responsibility model mostly processing as cloud consumers

and providers. The cloud security risk and problems, shared

by cloud customers and providers, are delineated as IasS,

PasS, and SasS. It notices that SaaS customers are responsible

for securing their data and user access; PaaS customers for

securing their data, user access, and applications; IaaS

customers for securing data, user access, application,

operating systems, and virtual network traffic [27].

TABLE I: CLOUD SECURITY CLASSIFICATION BY MCAFEE

Infrastructure as a Service (IaaS) Clouds: IaaS provides

a hardware platform as a service such as virtual machines,

processing power, storage, networks, and database services

as shown in Table I. IaaS was the first widely available

commercial cloud type, initiated by Amazon’s launch of their

EC2 service [13], and made possible by the widespread

availability of efficient open-source hardware virtualization

such as Google Cloud, and Microsoft Azure [22, 23]. IaaS

resources are usually provided to cloud consumers over the

internet as virtualized resources such as virtual storage,

virtual network, virtual machine (VM). Hence, IaaS is more

flexible and scalable than on physical dedicated hardware.

This platform virtualization concerns on security on hardware

and software virtualizations.

Platform as a Service (PaaS) Clouds: PaaS customers

develop their applications upon IaaS using languages and

service APIs provided by the cloud provider without buying

and maintaining hardware, software and hosting severs. PaaS

providers have their own specialties such as Microsoft Azure

PaaS, AWS Lambda, Google App Engine, Apache Stratos,

etc. PaaS customers can deploy cloud resources upon their

need and capability, utilizing infrastructure scalability of IaaS.

Securing PaaS infrastructure is not easy when considering

that the PaaS services are mostly heterogeneous, and varying

in their security offerings, which usually share with multiple

users simultaneously.

Software as a Service (SaaS) Clouds: SaaS is an on-

demand cloud model that allows cloud users to subscribe to

the application and/or data hosted by the cloud provider upon

their need and capability. The data on SaaS manipulate and

remain within the cloud, and there is no need for in-house

hardware and on-site IT staff to maintain and support the

application. Unlike IaaS or PaaS offerings, SaaS users need

little technical knowledge. Individual users are unlikely to

distinguish SaaS from other types of web-based service.

B. Multilevel Security

The proposed approaches to cloud security are identifying

sensitive data, accessing sensitive data and sharing,

uncovering misuse of resources including malicious

behaviors of cloud users and providers [27]. Any malicious

insider may intentionally or accidently misuses the sensitive

data in the cloud system even though there are efforts trying

to protect the sensitive data stored in their servers. Cloud

providers and consumers are in an imperative need to have

their own security schemes to protect their valuable data in

the cloud. Hence, a MLS management framework for the

valuable and sensitive data is suggested, which is more

flexible and reliable allowing data owners to choose the

appropriate schemes for different data in different classes

along with standard authentication and access control

mechanisms. Multilevel security or multiple levels of security

is to classify data and protect the classified data by providing

security at various levels, starting with access permission

based on security clearance [21].

Multilevel Security (MLS) policy is an implementation of

Mandatary Access Control (MAC), which focuses on

confidentiality. A Multilevel Security operating system can

enforce the separation of multiple classes of information and

manage multiple users with varying levels of information

clearance. MLS is based on a formal model called the Bell-

LaPadula model designed by David E Bell and Leonard

Padula [24, 28]. MLS is designed to control the flow of

information between subjects. Subjects and objects in a

system are given with hierarchical sensitivity labels, and the

MLS policy controls the flow of information between the

designated sensitivities [25, 26].

SELinux, maintained and recommended by National

Security Agency (NSA), seeks to specify fully the principle

Journal of Advances in Computer Networks, Vol. 11, No. 1, June 2023

3

of least privilege on modern operating systems using a

Mandatory Access Control (MAC) security policy. SELinux

provides several mechanisms to protect against attacks and

exploitation of software vulnerabilities. SELinux carries out

role-based access control and sandboxing or combination of

role-based access control, type enforcement, and MLS

models [29-31].

III. MLS INFORMATION RETRIEVAL

TABLE II: GLOBAL DATA DICTIONARY FOR SECURE RETRIEVAL

Metadatabase with security and category labels

jan ndp001r3:january:r:7.2:/tmp/stc/2021/budget/:s2:c1

feb ndp001r3:february:r:7.2:/tmp/stc/2021/budget/:s4:c1

mar ndp001r3:march:r:7.2:/tmp/stc/2021/budget/:s2:c1

apr ndp001r3:april:r:7.2:/tmp/stc/2021/budget/:s0:c3

may ndp001r3:may:r:7.2:/tmp/stc/2021/budget/:s0:c3

jun ndp001r3:june:r:7.2:/tmp/stc/2021/budget/:s4:c3

jul ndp001r3:july:r:7.2:/tmp/stc/2021/budget/:s0:c4

aug ndp001r3:august:r:7.2:/tmp/stc/2021/budget/:s2:c4

sep ndp001r3:september:r:7.2:/tmp/stc/2021/budget/:s4:c4

oct ndp001r3:october:r:7.2:/tmp/stc/2021/budget/:s4:c4

nov ndp001r3:november:r:7.2:/tmp/stc/2021/budget/:s2:c5

dec ndp001r3:december:r:7.2:/tmp/stc/2021/budget/:s4:c4

In our framework design, SELinux system is used as a

testbed to retrieve information securely. At any time, SELinux

users or processes are allowed to read data with lower-or-equal

sensitivity levels to their current process sensitivity level. In a

SELinux system, all user interactions are initiated through the

default command-driven terminals. SELinux users are allowed

to perform multiple tasks, and to operate at several different

sensitivity levels in a single login session [31]. A global data

dictionary as shown in Table II, which we call a metadatabase

is provided in order to provide name and location transparency

to our information retrieval tool. The users do not need to

provide information about their own location, file name or file

types with security to retrieve information from their local sites

because name and location transparency are being kept by the

metadatabase as shown in Table II above.

A. MLS Information Platform

Here we present a MLS information retrieval tool that runs

user queries for retrieving and integrating data. Since our

retrieval tool uses the SELinux system, the security level of a

global query is the same as the security level of the current

user’s MLS security context − user:role:type:mls/mcs such as

staff_u:system_r:unconfined_t:s0-s5:c1.c5. Data can be

retrieved from the distributed secure database system shown in

Table II, satisfying up to a query’s security level [32] from the

current user. Each individual data of jan, feb, … dec has been

saved under /tmp/stc/2021/budget/ folder, which can be

replaced with actual hostname and its corresponding file folder

when the proposed MLS information platform is implemented

on a real cloud system. For example, the global query with a

confidential sensitivity label, which is the sensitivity label of

the current terminal window or user, may not retrieve the data

with a Secret label even if the user logins with Top Secret label

if the category context of the user and the data are not matched;

the user is equipped with category c1 and the data is with

category c2. The proposed SELinux Information Retrieval

(SELIR) algorithm evaluates the current user’s sensitivity

levels and category contexts first, comparing with the current

sensitivity levels and category context of each data in the global

data dictionary: jan, feb, … dec. Then the user types in data

they like to retrieve not knowing the location, security level,

and category context of data. All the allowed data for the user

to access are displayed on the screen, satisfying security level

and category context. The proposed SELIR algorithm is shown

in the following.

SELinux labels (information label and sensitivity label) are

used to implement the mandatory access control (MAC) policy;

hence, the steps 1 and 2 of SELIR algorithm are performed

with ease. Therefore, in our SELIR algorithm, we do not need

to check or compare security levels of subjects and/or objects

to retrieve information manually.

B. Tracking Information Modification History

The following section shows the correctness of using

information labels of a MLS system to track the data

modification history. There are two security labels which are

related to each subject and object in SELinux: a sensitivity

label (SL) and an information label (IL). MLS Security labels

are represented by the SL and IL together. A sensitivity label

(SL) indicates the security level with which an entity such as a

file is protected by the mandatory access control (MAC) policy.

An information label (IL) indicates the security level of the data

actually contained within a subject or object, an entity such as

a file. The IL gives an indication of how the data should be

handled. The IL can also help users decide whether to

downgrade the SL of a file. A user might choose to downgrade

the SL of a file if the IL is below the SL of the file that contains

the data. An SL consists of a classification and a set of

compartments (categories). An IL also consists of a

classification and a set of compartments, plus a set of markings.

As mentioned in [22], the encodings of security labels

control the translation between the human-readable and

internal formats of information labels, sensitivity labels, and

clearance labels. Human-readable labels consist of a

classification followed by a set of words. The words can

represent compartments: in information labels, sensitivity label,

clearances, and markings: information labels only. The word

“compartments” will be used throughout this paper for

Journal of Advances in Computer Networks, Vol. 11, No. 1, June 2023

4

consistency with other intelligence community documentation,

but conceptually means the same as “categories.” When two

pieces of data with separate information labels are merged or

combined, the system of [9] automatically determines the

combination of the two information labels, setting the single

information label that properly represents the merged data.

This process of adjudicating two information labels is also

called combining the labels or floating one label with the

second one. The values assigned to classifications and the

internal category, and marking bit representations assigned to

information label words determine how the MLS system will

adjudicate information labels [22].

TABLE III: SAMPLE INFORMATION LABELS FOR ENCODINGS FILE

CLASSIFICATIONS:

name= NOT; sname= N; value= 1;

name= LOW; sname= L; value= 4;

 initial compartments= 4-5 100-127;

 initial markings= 11 12 17 100-127;

name= MEDIUM; sname= M; value=5;

 initial compartments= 4-5 100-127;

 initial markings= 11 12 17 100-127;

name= HIGH; sname= H; value =6;

 initial compartments= 4-5 100-127;

 initial markings= 11 12 17 100-127;

INFORMATION LABELS:

name= GSTU; minclass= L;compartments= 1 3;markings= 7;

name= STU;minclass= L;compartments= 1; markings= 7;

name= PSTA; minclass= L;compartments= 0 2; markings= 7;

name= STA; minclass= L; compartments= 0; markings= 7;

name= D/E; minclass= L; markings= 16;

name= NOFORN; minclass= L; compartments= 4-5; markings=

11 13;

SENSITIVITY LABELS;

name= GSTU; minclass= L; compartments= 0;

name= STU; minclass= L; compartments= 1;

name= PSTA; minclass= L; compartments= 2;

name= STA; minclass= L; compartments= 3-5;

In SELinux systems, information labels track the flow of

information from objects, through subjects, and onto other

objects. An objects's IL reveals the current sensitivity level of

the information of the object, whereas an object's SL represents

the maximum limit of sensitivity level of information that can

ever be written onto the object. In the same way, a subject's IL

represents the current sensitivity level of the information in the

subject's address space, whereas a subject's SL represents the

maximum limit of the sensitivity level of information that can

ever be read by the subject. The IL of a subject or object shows

the high-water mark of the sensitivity of information processed

by them, respectively. Whenever information flows from one

entity to another, the information label of a subject or object

will be updated, which is called IL floating. The IL floating is

done by using the operation conjoin which is consisted of two

operations:

 (i) ClassificationNew = MAX(classificationIL1, classificationIL2)

 (ii) Other_bitsNew = Bitwise_OR (Other_bitsIL1, Other_bitIL2)

Assume that IL1 is the IL of the object and IL2 is the original

IL of the subject. When a subject reads information from an

object, the IL of the subject is floated to the conjoin of IL of

the object and the original IL of the subject; the IL of the object

is not changed. When a subject writes information onto an

object, then the IL of the object is raised to the conjoin of its

original IL and the IL of the subject. The IL of the subject is

not updated. This updating of the IL can be written:

(ILsubject, ILobject) ---read---> (Updated_ILsubject, ILobject)

(ILsubject, ILobject) ---write--> (ILsubject, Updated_ILobject)

To retrieve the previous IL of the current object, the IL of

the current subject and the IL of the current object are required.

The backtracking of the previous IL will be done by using the

operation de_conjoin which is also consisted of two operations.

In this paper the de_conjoin operations are defined as follows:

(i) ClassificationOld = MIN(classificationIL1, classificationIL2)

(ii) Other_bitsOld = Bitwise_XOR (Other_bitsIL1, Other_bitIL2)

The bitwise exclusive or (XOR) operation is performed to

the ILs of the current object and subject to retrieve the previous

IL of the current entity. The example of bitwise OR and XOR

operations for the compartment and marking bits is shown as

follows:

Subject

1 0 1 0

New

1 1 1 0

Object(OR)

0 1 0 0

Object(XOR)

0 1 0 0

New

1 1 1 0

Subject

1 0 1 0

The new IL will be the IL of the current subject if the read

operation has done, which will be IL of the current object if the

write operation has done. As shown above, the bitwise

exclusive or (XOR) is able to retrieve the previous

compartment and marking bits of the IL of the current entity.

This bitwise XOR is used to retrieve the previous ILs when the

compartment and marking bits are defined as non-hierarchical

words. However, when the compartment and marking bits are

defined as hierarchical words, there needs more attention.

The example of conjoin and de_conjoin operations is as

follows: A user with an information label (Low Stu) copies an

object with an information label (Low Sta), where the

classification value of Low is 4, and the compartment bits of

Stu is 0010 and Sta is 1100. What will be an information label

of the newly copied object? The conjoin operation of the given

information labels will be done to get an IL of the copied object

as follows:

(i) ClassificationNew_obj
 = MAX(classificationsub

 = 4,

classificationobj
 = 4) = 4

(ii) Other_bitsNew_obj
 = Bitwise_OR (Other_bitssub

 = 0010,

Other_bitobj
 = 1100) = 1110,

where classification 4 = Low, and Compartment 1110 = Stu Sta

The information label of the copied object by a user with an

information label (Low Stu) will be (Low Stu Sta). If the user

wants to know the history of the copied data such as source of

the data copied, then the de_conjoin operation will be

performed to retrieve the previous information of copied data.

(i) ClassificationOld_obj = MIN(classificationsub = 4,

classificationobj = 4) = 4

(ii) Other_bitsOld_obj = Bitwise_XOR (Other_bitssub = 0010,

Other_bitobj = 1110) = 1100,

 where classification 4 = Low, and Compartment 1100 = Sta

Now we know that the previous object has an information

label (Low Sta). The previous object (file) also will be retrieved

from the audit file of MLS system by using the IL (Low Sta).

Journal of Advances in Computer Networks, Vol. 11, No. 1, June 2023

5

A further study on the method of getting a previous object’s

information labels needs to be implemented on SELinux.

IV. INFORMATION RETRIEVAL ON SELINUX

A. MLS SELinux Using Fedora Linux

In order to implement the proposed framework, shell scripts

have been implemented on a computer running Fedora 35

enforcing SELinux MLS. However, at this time of developing

this framework Korn Shell Script (ksh) has been used – not

using a Linux default Born Again Shell (bash); this ksh script

demonstrates how user and resource labels are created to

enforce access control on resources on varying MLS labels and

categories. These shell scripts have been implemented after

setting up the /etc/selinux/config file with the options of

permissive and mls. In order to implement the SELIR script

properly, temporary text files were created for storing

information about user sensitivity labels and category labels.

These files allow the user to access and check if each user has

the proper right to access, and retrieve the sample data

containing a month of the corresponding budget amount from

the secure text files shown in Table II, which are stored under

/tmp/stc/2021/budget. For example, the user with sensitivity

level with =< s2 and category = c1 as seen in Table III is not

allowed to access january data in Table II, which carries the

information label of s2:c2 since the categories are not matched.

The following is strongly recommended for setting up SELinux

MLS on Fedora 35 to implement the proposed MLS

framework.

Set up root user

 sudo –i

 passwd

 logout (cntl + d)

#dnf install the following packages

 selinux-policy-targeted, selinux-policy, selinux-policy-mls,

 libselinux, libselinux-utils, policycoreutils, libselinux-python,

 policycoreutils-python, setroubleshoot,

 setroubleshoot-server, setroubleshoot-plugins

#Add SELinux users

 Useradd –Z staff_u nina

 Passwd nina

 Chcon –R –l s2:c3.c5 /home/nina

#Uncomment the last 3 lines of /etc/security/namespace.conf

This MLS security framework is vital because the layered

nature of cloud computing services is scattered across different

storage devices or servers that build the proper security policy

and category of an organization upon the user security as well

as the sensitivity of data or information. By implementing

MLS with sensitive and security levels, a business may also

insulate themselves from any malicious insider’s intent on

harming data or stealing it due to lack of clearance and log

monitor. At this time, the developed scripts only determine

whether the user or process can access the data based on the

security labels and category contexts on the subject and objects,

and it would not be hard to scale up its application towards

services, applications, ports and files. The following ksh script

shows how to extract user labels from user-id and information

labels from metadb of Table II. Comparing user labels with

information labels to allow or disallow monthly corresponding

budget files are shown in the following.

 # Retrieve Sensitivity and Category labels from user ID

 id -Z > idZ

 cut -f4 -d":" idZ > idRange

 cut -f5 -d":" idZ > idCategory

 rag1=$(cut -f1 -d"." idRange| tr -dc '0-9')

 rag2=$(cut -f2 -d"." idRange| tr -dc '0-9')

 cat1=$(cut -f1 -d"." idCategory| tr -dc '0-9')

 cat2=$(cut -f2 -d"." idCategory| tr -dc '0-9')

 # Retrieve information labels from metadb

 grep $i metadb > temp

 dbRag=$(cut -f6 -d":" temp | tr -dc '0-9')

 dbCat=$(cut -f7 -d":" temp | tr -dc '0-9')

 echo $dbCat $dbRag

 # Compare category labels and sensitivity labels of subject (user)

and object (data to access)

 if [[($dbCat -ge $cat1 && $dbCat -le $cat2) && \

 ($dbRag -ge $rag1 && $dbRag -le $rag2)]] #

Fig. 2. SELinux users with sensitivity and category labels

B. SELIR Implementation on SELinux

SELinux system enforces a Write Up/Read Down security

policy in which unprivileged subjects can write only to objects

at a higher or equal level and read only from objects at a lower

or equal level. A subject can read from an object only if the

sensitivity label of the subject dominates the sensitivity label of

the object (Read Down). A subject can write to an object only

if the sensitivity label of the object (Write Up) dominates the

sensitivity label of the subject.

The SELIR tool works fine and well if the user with its

sensitivity label is higher or equal to that of the sensitivity

labels of objects to retrieve. If not, SELIR tool will not be able

to retrieve the objects that the user requests. The information

retrieval tool only retrieves the objects with a lower-or-equal

sensitivity label than that of the subject. When the shell script

runs, it prompts the user to select one of the following three

options: numerical information, textual information, and exit.

As seen in Fig. 2, the user ahlee is staff_u with s0-s5:c1.c5;

luna is user_u with s0, and dali is staff_u with s4:c1, nina is

assigned to staff-u with s2:c3.c5. All the security labels and

category levels of each file to access are displayed on Table

II.

As seen in Fig. 3, the menu started with selecting numerical

or textual information. When selecting numerical

information, it displays the sensitivity and category levels of

the current user. In this example, the user ahlee has clearance

or sensitivity/security levels from s0 to s5, and category

Journal of Advances in Computer Networks, Vol. 11, No. 1, June 2023

6

contexts of c1 through c5. Now she can access all the files:

jan, mar, sep,…, dec in Table II that are being saved with

sensitivity levels s0−s4 and category contexts of c1-c5.

However, she accesses jan, mar, sep, oct, nov, dec at this time

without any restrictions since these files are stored with a

sensitivity level from s0 to s4 and categories from c1 to c5.

The sensitivity level and category context of each file are

displayed and compared with ahlee’s labels as seen in Fig. 3.

 1. Look for numerical information

 2. Look for textual information

 3. Exit

 Please select one of the above (1-3): 1

user sensitivity: 0 5 user category: 1 5

Enter attributes to look up: jan mar sep oct nov dec

data category: 1 data sensitivity:2

/tmp/stc/2021/budget/january

data category: 1 data sensitivity:2

/tmp/stc/2021/budget/march

data category: 4 data sensitivity:4

/tmp/stc/2021/budget/september

data category: 4 data sensitivity:4

/tmp/stc/2021/budget/october

data category: 5 data sensitivity:2

/tmp/stc/2021/budget/november

data category: 4 data sensitivity:4

/tmp/stc/2021/budget/december

 1. Look for data processing

 2. Look for data tracking

 3. Exit

 Please select one of the above (1-3): 1

 1. List data

 2. Statistics of data

 3. Exit

 Please select one of the above (1-3): 1

total budget is 5500000

Fig. 3. SELIR Implementation based on user ahlee

This example is to demonstrate that users can be isolated

based upon resources they may access; and that even though

they may maintain high levels of security, they still should

meet the category context of the objects. If not, the users with

higher-or-equal security labels cannot access all the data not

matching the category contexts of the users and data even

below sensitivity levels of the users. It demonstrates that even

though two users may have access to the same security level,

they may not have access to the same contextual/categorical

clearance, providing a means of separating higher critical

information from the lower within the same level of clearance.

As seen in Fig. 4, the user nina is assigned to staff-u with

s2:c3.c5. Hence, nina is not allowed to access the file jun with

s3:c4. Nina’s category matches with jun but nina’s sensitivity

level (s2) is lower than the file jun’s (s3). In the same way,

nina cannot access the files, oct and dec, which have the same

sensitivity level (s4) but category context (c4). However, the

root user who may access all the resources without

restrictions since the root user’s sensitivity level is from s0 to

s5 and category label is from c0 to c1023. If a user has the

proper authorization, then the authorized information of jan ...

dec are displayed for the user, otherwise the user is alerted for

that particular piece of information the user was restricted

either based upon the mismatch of their category context or

sensitivity level to data trying to access. This effectively

demonstrates how resources in a cloud system could properly

label MCS/MLS and restrict role or user specification to

ensure that data integrity is preserved.

 Please select one of the above (1-3): 1

user sensitivity: 2 2 user category: 3 5

1

Enter attributes to look up: apr may jun aug oct nov dec

data category: 3 data sensitivity:0

/tmp/stc/2021/budget/april

data category: 3 data sensitivity:0

/tmp/stc/2021/budget/may

data category: 3 data sensitivity:4 #user sensitivity level is 2

data category: 4 data sensitivity:2

/tmp/stc/2021/budget/august

data category: 4 data sensitivity:4 #user sensitivity level is 2

data category: 5 data sensitivity:2

/tmp/stc/2021/budget/november

data category: 4 data sensitivity:4 #user sensitivity level is 2

1100000 #april

800000 #may

500000 #august

400000 #november

total budget is 2800000

Fig. 4. SELIR Implementation based on user nina

An example of the main menu and submenus of the SELIR

tool is shown above briefly, executing the SELIR tool by

selecting options from each menu. This SELIR tool is a menu

driven system where users are only required to select the

options from the menu on their screen. This menu driven

system is easier to use than a command line system since users

do not need to know the commands as well as their sensitivity

levels and category contexts.

V. CONCLUSION

In this paper, we have represented a MLS framework for

information retrieval and data tracking in a Security

Enhanced Linux (SELinux) system using Fedora 35.

Information labels are used to track the flow of information

in SELinux systems as shown in section 3. As we mentioned

in the previous sections, information labels are applied to

retrieve the previous information label of the current data by

using the information labels of the current subject and object.

The previous immediate data or file can be retrieved by

accessing the audit file of a SELinux system by using the

information label just found. As shown in our previous

examples, the information label will be a good medium to

track or monitor activities of objects or files, even in

heterogeneous distributed multilevel secure environments.

We note that modification and upgrade of the proposed Korn

shell program are recommended to satisfy the secure use of

SELIR tool for more practical heterogeneous MLS cloud

systems. The SELIR on SELinux system with MLS worked

well using Korn Shell in this project. However, we could not

fully implement our proposed SELIR tool yet on cloud

environments. We expect to work more implementing SELIR

Journal of Advances in Computer Networks, Vol. 11, No. 1, June 2023

7

tool on real cloud systems in near future.

REFERENCES
[1] Google App Engine. Accessed: March 30, 2021. [Online]. Available:

http://appengine.google.com/
[2] Google Colaboratory, Accessed: March 5, 2020, [Online]. Available:

colab.research.google.com
[3] Amazon. AWS Security, “Amazon web services: Overview of security

process,” AWS SecurityWhite Paper, 2013.
[4] Amazon. Amazon S3. Accessed: March 30, 2021. [Online]. Available:

http://aws.amazon.com/s3/
[5] Windows Azure. Accessed: April 5, 2021. [Online]. Available:

http://www.microsoft.com/windowsazure/
[6] Apple iCloud. Accessed: April 5, 2021. [Online]. Available:

http://www.icloud.com/
[7] F. Liu, et al., “The NIST cloud computing reference architecture,”

National Institute of Standard and Technology, NIST SP 500-292, US
Department of Commerce, Gaithersburg, Md, USA, 2011.

[8] C. Lee, R. Bohn, and M. Michel “The NIST cloud federation reference
architecture,” National Institute of Standard and Technology, NIST SP
500-XXXX, US Department of Commerce, Gaithersburg, Md, USA,
2011.

[9] A. Gholami and E. Laure, “Security and privacy of sensitive data in
cloud computing: A survey of recent developments,” NETCOM, NCS,
WiMoNe, CSEIT, SPM-2015, pp. 131–150, 2015.

[10] S. Sharma, “Evolution of as-a-Server era in Cloud,” 2015,
arXiv:1507.00939. [Online]. Available:
https://arxiv.org/abs/1507.00939

[11] S. Subashini and V. Kavitha, “A survey on security issues in service
deliverymodels of cloud computing,” Journal of Network and
Computer Applications, vol. 34, no. 1, pp. 1–11, 2011.

[12] C. Coles and J. Yeoh, “Cloud adoption practices & priorities survey
report,” Tech. Rep., Cloud Security Alliance, 2015.

[13] S. Dorairaj and R. Kaliannan, “An adaptive multilevel security
framework for the data stored in cloud environment,” The Scientific
World Journal, vol. 2015, Article ID 601017.

[14] W. Zhang, “Analyzing the overhead of FileSystem protection using
Linux security modules,” in Proc. Conference’17, July 2017,
Washington, DC, USA.

[15] S. Sultan, et al., “Container security: Issues, challenges and the road
ahead,”DOI 10.1109/ IEEE ACCESS.2019.2911732, May 1, 2019.

[16] B. Im, et al., “An historical analysis of the SEAndroid policy evolution,”
arXiv:1812.00920. [Online]: https://arxiv.org/abs/1812.00920

[17] Y. Zhao, et al., “Secure and efficient product information retrieval in
cloud computing,” DOI 10.1109/IEEE ACCESS.2018.2816919, April
4, 2018.

[18] S. Hussain, et al., “Multilevel classification of security concerns in
cloud computing,” Applied Compuing and Informatics (2017) 13, 57-
65.

[19] S. Achleitner, et al., “MLSNet: A policy complying multilevel security
framework for software defined networking,” arXiv:2009.10021.
[Online]: https://arxiv.org/abs/2009.10021

[20] E. Zaghloul, et al., “P-MOD: Secure privilege-based multilevel
organizatioal data-sharing in cloud computing,” 2018,
arXiv:1801.02685. [Online]: https://arxiv.org/abs/1801.02685

[21] J. Beacon, et al., “Information flow control for secure cloud computing,”
IEEE Transactions on Network and Service Management, vol. 11, no.
1, March 2014.

[22] Oracle Technology Networks, “Comparmented Mode Workstation
Labeling: Encodings Format,” 2022, [Online]: Available:
https://docs.oracle.com/cd/E23824_01/html/821-1480/sec1-4.html .

[23] D. Leinenbach and T. Santen, “Verifying the Microsoft Hyper-V
hypervisor with VCC,” FM 2009: Formal Methods, Springer LNCS
5850, 2009, pp. 806–809.

[24] F. Mayer, K. MacMillan, and D. Caplan, “SELinux by example: Using
security enhanced Linux,” 2006, Pearson Education, Informit.

[25] B. McCarty, "SELinux: NSA's open source security enhanced Linux,"
O'Reilly Media, Inc. 2004.

[26] B. Hicks and S. Rueda, “A logical specication and analysis for SELinux
MLS policy,” ACM Transactions on Information and System Security,
vol. 13, no. 3, Article 26, Publication date: July 2010.

[27] McAfee Cloud Security, “What is cloud security architecture?”
[Online]. Available: https://www.mcafee.com/enterprise/en-
us/security-awareness/cloud/what-is-cloud-security-architecture.html

[28] D. E. Bell and L. J. LaPadula, “Secure computer systems: mathematical
foundations and model,” M74-244, MITRE Corp. , May, 1973.

[29] Department of Defense Trusted Computer System Evaluation Criteria,
Department of Defense Computer Security Center, Fort George G.
Meade, MD 20755, August, 1983.

[30] M. D. McIlroy and J. A. Reeds, “Design of IX, a multilevel secure
UNIX system,” CSTR #163, AT&T Bell Laboratories, December
1991.

[31] M. McIlroy and J. Reeds, “Multilevel security in the Uuix tradition,”
ACM DL: Software-Practice & Experience, August 1992.

[32] H. Kimm and J. Ortiz, “Multilevel security embedded information
retrieval and tracking on cloud environments,” in Proc. 2021 IEEE
Cloud Summit (Cloud Summit), 2021, pp. 25-28, doi: 10.1109/IEEE
Cloud Summit 52029.2021.00012.

Copyright © 2023

by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/

