

Abstract—In recent years, the traffic for live streaming on the

web has been increasing. The current live streaming methods

that use MPEG-DASH or HLS are simple and scale easily to

many clients using HTTP. However, they do not take into

account the communication between the distributor and the

viewer. As a result, latency between the distributor and the

viewer is relatively high. Therefore, in this paper, we propose a

low latency live streaming system on the web using WebRTC.

Since WebRTC uses UDP, it does not have a congestion control

mechanism. Depending on the network congestion, it is possible

to stream video with quality that exceeds the available

bandwidth. Therefore, we propose a system to change the video

quality based on the congestion status. The proposed system

increases or decreases the video transfer rate by changing the

quality of the streamed video depending on the network

conditions. We have evaluated the proposed system in a real

network environment. As a result, we showed that the delay of

the proposed system is smaller than that of the MPEG-DASH

system. We also showed that the proposed system can change

the quality of the video and switch the transmission rate

appropriately according to the network conditions.

Index Terms—Low latency video streaming, MPEG-DASH,

WebRTC.

I. INTRODUCTION

It is becoming more and more common to view video

media using a web browser. In video sharing services such as

YouTube and Video on Demand (VoD), the progressive

download method is commonly used to play video files while

downloading them over HTTP. MPEG Dynamic Adaptive

Streaming over HTTP (MPEG-DASH) [1] and HTTP Live

Streaming (HLS) [2] are video streaming protocols over

HTTP protocol. These protocols do not require special

servers such as Adobe Media Server but can realize adaptive

streaming where the quality of the video is changed according

to the network conditions using only an HTTP server. In

addition, they can use Content Delivery Network (CDN) to

deliver content over a streamlined network.

In addition to video streaming, “live” streaming of video

in real time is also becoming more common [3]. Live

streaming by users on the Internet is growing in scale and

demand. Web services such as YouTube Live and Twitch.tv,

as well as smartphone applications, are increasing the

opportunities for individuals to live stream. Unlike TV

programs or videos such as VoD, live streaming often

involves communicating with an unspecified number of

Manuscript received January 5, 2021; revised February 25, 2021.

Toya Kinoshita and Hiroyuki Hisamatsu are with the Graduate School of

Information Science and Arts Osaka Electro-Communication University,
1130-70 Kiyotaki, Shijonawate, Osaka, Japan (e-mail: mt20a003@oecu.jp,

hisamatu@osakac.ac.jp).

viewers in real time via chat or voice. MPEG-DASH and HLS

divide the video stream into segments of several seconds, and

the viewer reads these files according to the manifest file. The

length of each media segment is typically between 2 and 10

seconds. There is a delay for transcoding and for the segment

to be placed on the server or CDN. As a result, there is a delay

of about 10 seconds or more until it reaches the viewer.

MPEG-DASH and HLS are simple as protocols and easy to

scale, but they are likely to have high latency when used for

live streaming.

In general, a delay of 10 seconds or more makes

communication between the broadcaster and the viewer

difficult and prevents natural communication in live

streaming [4]. Using Flash Player, low-latency live streaming

is possible using Real-Time Messaging Protocol (RTMP) [5].

However, the developer of Flash Player announced in 2017

that it would no longer be supported, and it actually ended in

2020 [6]. Since it has become an obsolete technology, it is

practically impossible to use Flash Player in browsers and

smartphones.

Therefore, in this paper, we propose a system for realizing

low latency live streaming with WebRTC, which is the

current browser standard by utilizing the publishing method

of the media encoder currently in use. Specifically, the

proposed system uses the Real-time Transport Protocol

(RTP) [7], which is a protocol used to exchange video in the

media channel of WebRTC, to deliver video in real time

between the server and the viewer. By using RTP, the

proposed system can achieve a low latency media delivery

because the video is directly streamed in our system, unlike

segmented video delivery such as MPEG-DASH.

In addition, RTP uses UDP as its transport protocol. UDP

has no congestion control mechanism and is suitable for real-

time communication. When the network is congested,

communication using UDP can cause worsening congestion,

which can be a major problem. Furthermore, if a high quality

video that requires a lot of bandwidth is transferred when the

network is congested, a large number of information will be

lost during the transfer, and the viewer will not be able to play

it back, making such a transfer meaningless. In the proposed

system, congestion control is performed at the application

layer to solve this problem. Specifically, the system changes

the video quality according to the network congestion status

to achieve appropriate video quality transmission. In addition,

we will evaluate the proposed system in a real network

environment to show its effectiveness.

This paper is organized as follows. First, we describe

related works in Section II. Next, in Section III, we show the

problem of delay in MPEG-DASH. Then, in Section IV, we

describe the proposed system. Then, we evaluate the

proposed system in a real network in Section V. Finally, in

Low Latency Live Streaming System with Congestion

Control

Toya Kinoshita and Hiroyuki Hisamatsu

Journal of Advances in Computer Networks, Vol. 9, No. 1, June 2021

8doi: 10.18178/jacn.2021.9.1.280

Section VI, we summarize this paper and discuss future work.

II. RELATED RESEARCH

There are already several studies on WebRTC and MPEG-

DASH [8]-[12]. First, in [8], a low latency streaming method

using WebRTC for file transfer is proposed and evaluated by

simulation, while using the MPEG-DASH framework. In this

paper, the authors focus on the problems of TCP in file

transfer, and do not consider the problems of segmentation in

MPEG-DASH. In this paper, we eliminate the delay caused

by segmentation by directly streaming the video using a

media channel.

In [9], a UDP-based transmission system using the

WebRTC media channel is implemented and its Quality Of

Experience (QoE) is evaluated. The evaluation results show

that the QoE is better than that using MPEG-DASH in most

cases, but the QoE decreases when the network load is high.

The delay between the broadcaster and viewer, which is the

focus of this paper, is not considered, nor is congestion

control.

In [10], a framework for testing applications using

WebRTC is proposed. As an example, they show that it is

possible to evaluate the bandwidth and latency when the

number of clients increases when WebRTC is used for

delivery. It does not consider that WebRTC has no congestion

control.

In [11], streaming using MPEG-DASH, RTSP, and RTMP

in mobile and wireless networks is evaluated in the view of

QoE. The evaluation results show that RTSP has the shortest

time to start playback, but the QoE decreases when packet

rejection occurs. However, RTSP and RTMP are currently

not practical to use in browsers. In addition, MPEG-DASH

suffers from relatively large latency problems, which causes

problems for two-way communication in live streaming.

In [12], the authors evaluate the case of live streaming over

HTTP. The results of the evaluation show that in order to

reduce the delay in reaching the viewer from the publisher of

the live streaming, it is necessary to reduce the segment size,

and at the same time, if the playback time of the segment is

reduced to about 1 second, the resulting delay increases by

about 2 seconds. In this paper, unlike [12], we use WebRTC

to stream the video directly without segmentation.

In summary, previous studies have considered either

MPEG-DASH-based methods or RTMP/RTSP-based

methods that are not available in browsers. There are also

studies using WebRTC, but they do not evaluate the delay and

do not take congestion control into account. The method we

propose in this paper is very different in that it can be used

with a web browser, and it takes into account the video delay

and congestion control between the broadcaster and the

viewer.

III. DELAY OF STREAMING USING MPEG-DASH

MPEG-DASH is a streaming method compatible with the

current Internet browser standard HTML5 [13] and is used in

video services such as YouTube and Netflix [14]. MPEG-

DASH is currently the most used streaming method. In this

section, we show the delay and its cause in the adaptive

streaming method of MPEG-DASH over HTTP.

In general, low latency communication is needed when

communicating with someone in a remote location. An

existing protocol for real-time media transfer is RTMP, which

uses TCP to deliver media with low latency. Currently, it is

generally possible to deliver video from a broadcaster to a

server using RTMP. However, RTMP cannot be used for

transmission from the server to the viewer at present, and

MPEG-DASH is used in most cases. RTMP is a protocol that

is not supported by browsers themselves. Until now, viewers

have been able to use communication using RTMP from their

browsers by using Adobe Flash Player. However, since the

development of Flash Player has been terminated, continuing

to use Flash Player poses a security problem. Therefore, it can

be said that RTMP cannot be used in browsers at present.

Therefore, MPEG-DASH, which can be used based on

HTTP, has been used for streaming between servers and

viewers. Fig. 1 shows the workflow of streaming using

MPEG-DASH. The broadcaster uses video streaming

software to send the video to the server in RTMP, and the

server's encoder generates MPEG-DASH video segments. In

MPEG-DASH, the video stream is divided and stored into

video files called segments, and information such as bit rate,

resolution, segment time, and path are stored in an XML

format file called Media Presentation Description (MPD).

The MPD file is placed on an ordinary HTTP server, and the

viewer retrieves the MPD file. The viewer can then retrieve

the media according to the information in the MPD file.

Fig. 2 shows the delay for segment transmission using

MPEG-DASH. In the network, there are propagation delays

between the broadcaster and the server, and between the

server and the viewer, 𝑇𝑛1
 and 𝑇𝑛2

 , respectively. The

beginning of the media arrives at the server 𝑇𝑛1
 after the

broadcaster starts distribution. The server waits for the video

from the broadcaster to arrive for the specified time 𝑇𝑠 of the

segment, and then writes out the segment. The time taken to

write out the segment is 𝑇𝑤. In addition, the transmission of a

segment takes 𝑇𝜇. 𝑇𝜇 is determined by the segment size and

the bandwidth between the server and the viewer. To ensure

uninterrupted playback, the video data is buffered at the

viewer side, and there is a delay of 𝑇𝑏 from the time the

segment arrives at the viewer until it is played. The time T of

the delay until the start of playback is shown in the following

equation.

𝑇 = 𝑇𝑛1 + 𝑇𝑠 + 𝑇𝑤 + 𝑇𝑛2 + 𝑇𝜇 + 𝑇𝑏

Propagation delay 𝑇𝑛1
 and 𝑇𝑛2

 can be shortened by using

CDN. 𝑇𝑤 is very small, and 𝑇𝜇 is not a problem when the

network bandwidth is large. 𝑇𝑏 is a trade-off between

uninterrupted playback and delay. If small delay is important,

it can be reduced.

However, it is difficult to shorten the waiting time 𝑇𝑠 for

the arrival of the video data for one segment. It may be

thought that the delay can be reduced by reducing the

segment length, but this is not true. When the segment length

is reduced, the performance of transfer efficiency decreases

due to the increase in IO for file writing and the increase in

communication overhead such as headers due to the increase

in the number of requests in the HTTP network. As a result,

it may cause more delay [15], [16]. In current live streaming

Journal of Advances in Computer Networks, Vol. 9, No. 1, June 2021

9

systems that uses MPEG-DASH, it is difficult to reduce the

delay 𝑇𝑠 , and there is a limit to the reduction of the overall

system delay.

Fig. 1. Workflow of streaming using MPEG-DASH.

Fig. 2. Delay for segment transmission using MPEG-DASH.

IV. DESIGN OF SYSTEM

In this section, we describe the streaming mechanism and

the congestion control mechanism of our proposed system.

A. Streaming Mechanism

Fig. 3 shows an overview of the proposed system. The

broadcaster sends the video generated by the broadcaster to

the server using RTMP, and the server delivers the video to

the viewer via WebRTC. The broadcaster encodes the video

using an encoder and publishes the stream to the server using

RTMP for live streaming. RMTP is the standard posting

protocol for live streaming and is supported by major

software such as FFmpeg [17] and Open Broadcaster

Software (OBS) [18] and is used by services such as

YouTube and Twitch.tv for posting video stream from

broadcasters.

WebRTC is a method of real-time communication using a

web browser. In our proposed system, WebRTC is used to

send video from the server to the viewer with low latency. Fig.

4 shows the flow of starting a connection between the server

and the viewer in WebRTC. The Session Description

Protocol (SDP) data required for the WebRTC connection

between the server and the browser, as well as the channel

data for the stream to be viewed, is exchanged between the

two parties using WebSocket. The two-way connection can

be used to communicate video information in addition to the

connection, and we use this for congestion control.

Fig. 3. Outline of proposed system.

Fig. 4. WebRTC connection.

B. Congestion Control Mechanism

When the network connection of the viewer of the live

streaming is slow or the network condition is unstable, the

original stream becomes unstable and cannot be viewed

because the video stops playing. In the proposed method, the

server transcodes the live video received from the broadcaster

to multiple lower quality channels, which are different from

the original. Depending on the reception status of the stream

at the viewer's side, the channel is changed to the appropriate

one. The delay caused by transcoding is smaller than that of

a method that writes to segments because the video is

streamed without being written to a file.

Between the server and the viewer, streaming is performed

using WebRTC, but its transport layer protocol is UDP,

which does not have a congestion control mechanism.

Therefore, there is no congestion control between the server

and the viewer, which can make congestion even worse when

network is congested. From the perspective of all network

users, congestion control is necessary for streaming. In

addition, when the network is congested, even if high quality

video is transmitted in excess of the available bandwidth, the

many parts of video stream will be rejected by the network

and the viewer will not be able to play them.

When the proposed system determines that the network is

congested, it reduces the transmission rate by switching to a

lower bit rate video. When the system judges that there is

enough available bandwidth in the network, it switches to a

higher bit rate video. Specifically, the frame rate of the

received video and the estimated TCP throughput are used to

determine the network congestion status and control the

transfer rate from the server to the viewer. If the frame rate of

the video being played by the viewer is lower than a certain

value, the proposed system considers that congestion is

occurring and reduces the transmission rate. If the frame rate

is higher than a certain value and the bit rate of the higher

quality video is higher than the current estimated value of

TCP throughput, the network bandwidth is considered to be

sufficient and the transfer rate is increased.

From the perspective of QoE, uninterrupted playback is

considered to be the most important aspect of live streaming.

For this reason, the proposed system quickly responds to

network congestion that may cause interruptions in playback.

On the other hand, if the network congestion is resolved, the

response, switching to a higher quality stream, will take a

relatively long time.

The operation of the proposed system is described as a

discrete-time system with unit time Δ. The proposed system

judges the network congestion status every Δ. First, if the

frame rate 𝑓𝑐 of the video currently being played by the

viewer is less than the default rate 𝐹𝑡 the system considers

that the network is congested and requests a lower level video

stream from the server. If 𝑓𝑐 is greater equal than 𝐹𝑡 and if

ServerBroadcaster
RTMP

Divide into
segments ⁝

HTTP

Viewer

MPD

2

1

Create a
MPD file

3

HTTP
⁝

HTTP
Segment1

Segment2

ServerBroadcaster Viewer
WebRTCRTMP

Offer SDP

Answer SDP

WebSocket

WebRTCServer

Request channel

Video stream

Viewer

Journal of Advances in Computer Networks, Vol. 9, No. 1, June 2021

10

𝑓𝑐 ≥ 𝐹𝑡 for more than 𝑁𝑢𝑝 consecutive times in this judgment,

the estimated TCP transfer rate λ is compared with the bit rate

of the higher level video. If λ is not smaller, the network

bandwidth is considered to be sufficient to stream the higher-

level video, and a request for the higher-level video stream is

made to the server. The estimated value of the TCP transfer

rate λ is given by the following equation [19].

𝜆 =
𝑠

𝑅 (√2p
3

+ 12√3𝑝
8

𝑝(1 + 32𝑝2))

where 𝑅 is the round-trip time, p is the packet loss

probability, and s is the packet size.

Fig. 5 shows the workflow for changing the channel. When

a change in the network state is detected, the viewer requests

another channel from the server over WebSocket. When the

server receives the request for a lower channel, it switches to

the lower channel, if it exists. If it has already sent the lowest

channel, it does not do anything. When a higher level channel

request is received, as with the lower level channel request, if

a higher level channel exists, it is switched to, otherwise

nothing is done. We summarize the definitions of the symbols

used in Table I.

Fig. 5. Workflow for switching the channel.

TABLE I: DEFINITION OF SYMBOLS

𝑓𝑐 Frame rate of the video that the viewer is playing.

𝐹𝑡 Frame rate threshold

𝑁𝑢𝑝 Threshold for number of consecutive for 𝑓𝑐 ≥ 𝐹𝑡

λ Estimated TCP transfer rate.

V. EVALUATION OF THE PROPOSED SYSTEM

In this section, we implement the proposed system and

evaluate it in a real network. Specifically, we evaluate the

delay between the broadcaster and the viewer of the proposed

system, and its behavior when the network condition changes.

A. Stream Delays

Fig. 6 shows the network environment used for the delay

evaluation. The broadcaster, server, and viewer exist in the

network, and the broadcaster and viewer are in the same host.

The server is located on the Internet, making it a real Internet

delivery environment. The average round-trip time between

the local host and server was 23.744 ms, and the bandwidth

from the server to the localhost server was 33.9 Mbits/s.

We used h264 as the codec for the video stream, which is

the most supported by browsers, and x264 as the encoder. For

the encoder options, we used the zerolatency tune for low

latency delivery and set the keyframe to 1. For the encoder

used for transcoding in the server, we used the superfast

profile to reduce the overhead of transcoding. This can be

changed when real-time encoding is possible, even if image

quality is important, depending on the calculation speed of

the server performing transcoding.

Fig. 6. Network environment used for the delay evaluation.

In this evaluation, the original stream and the lower

streams, 720p and 480p, will be transcoded and provided. The

other streamable channels are 1080p, 360p and 160p. We

summarize the stream channels of the proposed system in

Table II.

TABLE II: OFFERED CHANNEL

Channel Name Resolution Bit rate

live - -

1080p 1920 x 1080 3000 kbps

720p 1280 x 720 2000 kbps

480p 888 x 480 1200 kbps

360p 640 x 360 560 kbps

160p 284 x 160 180 kbps

The broadcaster publishes the stream to the server using

OBS with the bit rate set to 2500 kbps CBR and the frame

rate set to 30 fps. For transcoding, GStreamer [20] is used.

The segment length for MPEG-DASH is set to the default

value of 10 seconds.

First, we measure the delay in the delivery of the video

from the broadcaster to the viewer. This is done by

calculating the difference between the frame number output

by OBS and the frame number displayed on the client. Fig. 7

shows an example of the displayed frame number. The screen

on the left side of the figure shows the video being transmitted

by the broadcaster, and the one on the right side shows the

video being viewed by the client. The numbers displayed on

each screen are counters that are incremented for each frame;

a difference of 30 frames indicates a delay of 1 second. In the

case of Fig. 7, there is a difference of 39 frames between the

broadcaster and the viewer, indicating the delay of 1300ms.

We measure the latency for one minute from 5 minutes

after the start of transferring. We measure the delay in two

channel, “live” and “480p”. We also conduct the evaluation

of the delay when MPEG-DASH is used in the part of

transferring from the server to the viewer. Fig. 8 shows the

distribution of the delays for the proposed system and video

streaming by using MPEG-DASH.

From this figure, we can see that the delay of MPEG-

DASH is large and that the delay of the proposed method is

Offer SDP

Answer SDP

WebSocket

WebRTC
Broadcaster

Request lower/upper channel

Video stream ViewerChannel requested
by viewer

WebRTC

Video stream
Current Channel

Detect the change
of the network status

Internet

Local Host

Broadcaster
(OBS)

Viewer
(Browser)

Server

Journal of Advances in Computer Networks, Vol. 9, No. 1, June 2021

11

very small. This is because MPEG-DASH has a large delay

due to the segmentation in the server. On the other hand, the

proposed method can transfer the video as a stream between

the server and the broadcaster without segmentation by using

WebRTC. As a result, this low latency can be achieved. Also,

the delay between the lower channel and the original channel

is about one second, which is caused by transcoding.

Fig. 7. Screens of the broadcaster and the viewer.

Fig. 8. Delay between the broadcaster and the viewer.

B. Response to Changes in the State of the Network

In a real network, we evaluate the behavior of the proposed

system to changes in network congestion. Fig. 9 shows the

network environment used for the evaluation. The network

contains a broadcaster, a server, and viewers, as well as an

HTTP server and clients to load the bandwidth between

Router 1 and Router 2. 180 second experiments are conducted,

and live streaming is performed from the beginning to the end

of the experiment. From 60 seconds to 120 seconds after the

start of the experiment, we load the bandwidth between

Router 1 and Router 2 with HTTP traffic. Specifically, after

60 seconds, 10 HTTP file transfers are started, and after 120

seconds, all HTTP file transfers are terminated. In the

evaluation, we set the parameters of the proposed systemΔ to

1s, the frame rate of the video streamed by the server to the

viewer to 30fps, 𝐹𝑡 to 24fps, 𝑁𝑢𝑝 to 5 and s to 1460Kbyte.

Fig. 10 shows the frame rate of the video played by the

viewer and the receive rate of the video when the available

bandwidth of the network changes during the experiment.

The frame rate and receive rate are stable until 60 seconds

after the start of the experiment. From 60 seconds after the

start of the experiment, when the network bandwidth is

overloaded by HTTP traffic, the frame cannot be decoded and

the frame rate drops. Immediately, the proposed system

judged that the network was unstable and changed the

channel from live (bit rate: 6Mbit/s) to 720p (bit rate:

2Mbit/s). As a result, the bit rate of the video is reduced and

the reception speed of the video is reduced. As a result of

lowering the video bit rate, the data necessary for playback

can be received, and the frame rate has returned to 30 fps.

Fig. 9. Network environment used for the behavior evaluation of the

response to changes in network congestion.

Fig. 10. Frame rate of the video being played back and receive rate at the

viewer.

In addition, 120 seconds after the start of the experiment,

the network load disappears, and another 5 seconds

(5=Δ×Nup=1×5) after, the system judges that there is room in

the network bandwidth, and the channel is changed from

720p to live, resulting in a higher video receive rate. As a

result, we can confirm that the proposed system is working

properly according to the network condition.

VI. CONCLUSION AND FUTURE WORK

In this paper, we explain that the existing streaming

method using MPEG-DASH has a large delay between the

broadcaster and the viewer, making communication difficult,

and propose a method to solve this problem. The proposed

method achieves low latency by using WebRTC for the

communication between the server and the viewer. In

addition, the proposed method uses the frame rate of the video

being played and the estimated TCP transfer rate to determine

the network congestion and change the stream quality.

We implemented the proposed system and conducted

evaluation experiments in a real network. As a result, we

found that the delay between the broadcaster and the viewer

of the proposed system is small, and that the delay due to

transcoding is about one second. In addition, we showed that

the proposed system can play back video of appropriate

quality depending on the network status by judging the

network congestion status using the frame rate of the playing

video and the estimated TCP transfer rate.

In the future, we would like to evaluate the QoE of the

proposed system and also evaluate it in a mobile network

environment. In addition, we would like to compare the

0

1

2

3

4

39

40

0 10 20 30 40 50 60

D
e
la

y
 (

s)

Time (s)

Live

480p

MPEG-DASH

Broadcaster Router 1Server Viewer

AWS

HTTP
Server

HTTP
Client

Router 2

0

1

2

3

4

5

6

7

8

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

R
ec

ei
v
ed

 r
at

e
(M

b
it

/s
)

F
ra

m
e

ra
te

 (
fp

s)

Time (s)

Frame rate Recived rate

Journal of Advances in Computer Networks, Vol. 9, No. 1, June 2021

12

proposed system with MPEG-DASH streaming when using

CDN.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

HH designed research; TK performed research; TK wrote

the initial paper; HH reviewed and edited the paper; all

authors had approved the final version.

REFERENCES

[1] MPEG-DASH. [Online]. Available:

https://mpeg.chiariglione.org/standards/mpeg-dash
[2] R. Pantos and W. May, “HTTP live streaming,” Request for Comments

(RFC) 8216, 2011.

[3] Iab. (2018). Live video streaming: A global perspective. [Online].
Available: https://www.iab.com/insights/ live-video-streaming-2018

[4] P. Cluff. (2019). The community gave us low-latency live streaming.

then apple took it away. [Online]. Available: https://mux.
com/blog/the-community-gave-us-low-latency-live-streaming-then-

apple-took-it-away/

[5] H. S. Parmar and M. C. Thornburgh. (2012). Adobe’s real time
messaging protocol. [Online]. Available: https://wwwimages2.

adobe.com/content/dam/acom/en/devnet/rtmp/pdf/rtmp_specification

_1.0. pdf
[6] Adobe. (2017). Flash & the future of interactive content. [Online].

Available: https://theblog.adobe.com/ adobe-flash-update/

[7] H. Schulzrinne, S. L. Casner, R. Frederick, and V. Jacobson, “RTP: A
transport protocol for real-time applications,” RFC 3550, July 2003.

[8] S. Zhao, Z. Li, and D. Medhi, “Low delay MPEG DASH streaming

over the WebRTC data channel,” in Proc. 2016 IEEE International
Conference on Multimedia Expo Workshops (ICMEW), 2016, pp. 1-6.

[9] Y. Maehara and T. Nunome, “Webrtc-based multi-view video and

audio transmission and its qoe,” in Proc. 2019 International Conf. on
Information Networking (ICOIN), 2019, pp. 181-186.

[10] B. Garcia, L. Lopez-Fernandez, F. Gortazar, and M. Gallego, “Analysis

of video quality and end-to-end latency in WebRTC,” in Proc. 2016
IEEE Globecom Workshops (GC Wkshps), 2016, pp. 1-6.

[11] A. Aloman, A. I. Ispas, P. Ciotirnae, R. Sanchez-Iborra, and M. D.
Cano, “Performance evaluation of video streaming using MPEG

DASH, RTSP, and RTMP in mobile networks,” in Proc. 2015 8th IFIP

Wireless and Mobile Networking Conference (WMNC), 2015, pp. 144-
151.

[12] T. Lohmar, T. Einarsson, P. Fröjdh, F. Gabin, and M. Kampmann,

“Dynamic adaptive http streaming of live content,” in Proc. 2011 IEEE
International Symposium on a World of Wireless, Mobile and

Multimedia Networks, 2011, pp. 1-8.

[13] WHATWG. (May 2020). Html standard. [Online]. Available:
https://html.spec.whatwg.org/multipage/

[14] C. Müller, D. Renzi, S. Lederer, S. Battista, and C. Timmerer, “Using

scalable video coding for dynamic adaptive streaming over http in
mobile environments,” in Proc. 2012 the 20th European Signal

Processing Conference (EUSIPCO), 2012, pp. 2208-2212.

[15] A. Sideris, E. Markakis, N. Zotos, E. Pallis, and C. Skianis, “MPEG-
DASH users’ QoE: The segment du- ration effect,” in Proc. 2015

Seventh International Workshop on Quality of Multimedia Experience

(QoMEX), 2015, pp. 1-6.
[16] N. Bouzakaria, C. Concolato, and J. Le Feuvre, “Overhead and

performance of low latency live streaming using MPEG-DASH,” in

Proc. the 5th International Conference on Information, Intelligence,
Systems and Applications (IISA 2014), 2014, pp. 92-97.

[17] FFmpeg. [Online]. Available: https://ffmpeg.org/

[18] OBS studio. [Online]. Available: https://obsproject.com/

[19] M. J. Handley, J. Padhye, S. Floyd, and J. Widmer, “TCP friendly rate

control (TFRC): Protocol specifica- tion,” Request for Comments (RFC)

5348, 2008.
[20] GStreamer. Open source multimedia framework. [Online]. Available:

https://gstreamer.freedesktop. org

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

Toya Kinoshita received the B.E degrees from Osaka
Electro-Communication University, Japan, in 2019.

He is currently a master’s student at the Graduate

School of Computer Science and Arts, Osaka Electro-
Communication University. His research interests

include network performance evaluation, TCP

protocol design and evaluation. He is a student

member of IEICE.

Hiroyuki Hisamatsu received M.E. and Ph.D.

degrees from Osaka University, Japan, in 2003 and
2006, respectively. He is currently an associate

professor of the Department of Computer Science,

Osaka Electro-Communication University. His
research work is in the area of performance

evaluation of TCP/IP networks. He is a member of

IEICE.

Journal of Advances in Computer Networks, Vol. 9, No. 1, June 2021

13

https://creativecommons.org/licenses/by/4.0/

