
  

  

Abstract—Network traffic classification methods based on 

network flow characteristics and machine learning classifiers 

have received extensive attention in academia. However, in 

actual industrial applications, the current mainstream flow 

identification engines, especially commercial engines, still 

mainly adopt port-based and deep packet inspection 

(DPI)-based network traffic dentification methods, deep flow 

inspection (DFI) has not been officially promoted yet. In 

addition to the fact that causal reasoning of general machine 

learning classifiers is difficult to analyze, another big reason is 

that the machine learning classifiers in most of the current 

research results are difficult to work well in different Internet 

network situations after training on a training set. Through 

experiments, we found that the basic QoS parameters of the 

network, such as packet loss rate, transmission delay, 

throughput rate and network jitter, in addition to being able to 

describe the performance state of the current network, will 

further affect some DFI features of the network flow. In this 

paper, we do not try to come up with completely new traffic 

classification features or completely new classifiers, but rather 

try to make some small improvements on the existing DFI 

methods so that the DFI classifiers can work precisely and 

robustly under different network topologies and network QoS 

parameters. Experimental results in different network 

environments show that these additional QoS parameters can 

significantly improve the robustness of the existing DFI 

machine learning classifiers. 

 
Index Terms—Network traffic classification, network QoS 

metrics, deep flow inspection.  

 

I. INTRODUCTION 

Due to the rapid development of Internet technology and 

the increasing requirements of network security, trend 

analysis and user experience promotion, network traffic 

identification has been an important and attractive issue in 

recent years. With network traffic classification technique, 

network servers/administrators can obtain the current 

network status, especially the critical applications, services 

and user behaviors such like daily usage, anomaly behaviors 

[1]. Therefore, quality of service (QoS) can be achieved 

through traffic classification, which is the one of the most 

concerned issues for content providers and network 

administrators. 

Network traffic identification technology has gone through 

three stages of development, namely, port-based methods, 
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deep packet inspection (DPI) based methods and deep flow 

inspection (DFI) based methods. Port-based technology is the 

earliest and simplest approach for researchers and engineers 

to identify the network flows, i.e. by directly detecting the 

ports from the packet header which taking into account the 

fact that most traditional applications use IANA to allocate 

standard ports. However, since about 2002, more and more 

applications adopted dynamic ports for network 

communication to avoid the problem of port occupation. It 

led to the failure of classic port-detection based method [2]. 

Under this situation, DPI-based methods were proposed. Just 

as the name indicates, DPI methods need to inspect the 

payload of every packet to identify network traffic. Although 

the DPI-based methods are still widely used in various 

applications, their drawbacks are also obvious, i.e. (1) they 

require plenty of continuous human efforts to build and 

update the feature library, which is highly costly; (2) these 

methods are not capable to detect the encrypted network 

traffic; and (3) these methods violate users’ privacy due to the 

need of detecting the payload of the packets. 

In recent years, Deep flow inspection (DFI) has been 

considered as a promising and effective method, and it seems 

to be capable to address the aforementioned problems. In the 

DFI-based network traffic identification tasks, various port 

independent and payload-independent packet or flow level 

statistical characteristics (features) are generally extracted for 

different classifier models in research and application works, 

such as packet number related, packet size related, and inter 

packet time related characteristics. To handle these large 

feature sets, machine learning algorithms, such as artificial 

neural networks (ANNs) [3]-[5], support vector machines 

(SVMs), decision tree [6], random forest (RF) [7] have been 

widely employed. Although there are many works 

demonstrate that the machine learning algorithms have 

achieved high accuracy in terms of network traffic 

classification, it still needs to be pointed out that in most 

works, the machine learning models are trained and tested in 

the same and relative stable network conditions. Under such 

conditions, for a certain type of network traffic flow, the 

impact of the network itself on the data packet flow is 

approximately the same. Thus, the difference of the flow 

behaviors is largely due to the essential attributes of different 

flow types. However, in practical applications, the 

performance of the communication network carrying the data 

itself may fluctuate greatly, or when we try to apply a 

machine learning model of unified training to different 

network nodes, because their network performance is 

different, even for the same kind of traffic flow, the behavior 

under different network parameters will behave differently. 

In this case, the classification accuracy of the machine 

learning model will be greatly reduced. In the test, we found 
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that some network QoS parameters can effectively describe 

the current network performance. Adding these QoS 

parameters to the DFI feature set can make the machine 

learning model better adapt to different network performance 

and different network nodes. 

The rest of this paper is organized as follows: Section II 

reviews related works of network traffic classification. In 

section III, we will discuss the impacts of QoS parameters to 

network performance. The experiments details will be given 

in section IV. We will summarize the whole paper in section 

V, and give the conclusions. 

 

II. RELATED WORKS 

Feature selection is a very important task prior to building 

classifier models, and the quality of feature set has a huge 

impact on the classification accuracy. In general, irrelevant 

and redundant features will cause the “dimensional disaster” 

problem for classifiers (especially the machine learning 

algorithm based classifiers), which may have a great negative 

influence on the accuracy. So, in most DFI-based network 

traffic classification works, researchers and engineers always 

tending to find the smallest but still effective feature set for 

their own methods. 

In [8]-[10], Zhang et al. proposed a series of 

semi-supervised methods to obtain effective network traffic 

classifiers and tackle the problem of unknown applications 

just with a small labeled training dataset. [11] adopted the 

training method and clustering algorithm to detect unknown 

applications and extend labeled flows from a few labeled and 

many unlabeled flows. It was demonstrated that all the 

above-mentioned works had achieved the state-of-the-art 

classification performance in terms of accuracy and 

robustness. And what should be pointed out is that in the flow 

statistical features used in [8]-[11] are all the same as Table I 

shows. 

 
TABLE I: NETWORK FLOW STATISTICAL FEATURES OF [8–11] 

Category of 

features 

Description of feature Number 

of feature 

Packets 
Number of packets transferred in 

bi-direction 
2 

Bytes 
Volume of bytes transferred in 

bi-direction 
2 

Packets Size Min, Max, Mean and Standard 

deviation of packets size in the 

unidirection 

8 

Inter-Packet 

Time 

Min, Max, Mean and Standard 

deviation of inter packet time in 

unidirection 

8 

 Total 20 

 

[12] proposed an improved random forest model by setting 

the variable selection probability according to the importance 

of the corresponding variable. And their experimental results 

showed that their method performed better classification 

accuracy and took less time to build the classifier model. The 

features used in [12] are presented as Table II.  

In [13], Fan et al. measured the worth of 248 features by 

evaluating the information gain with respect to the traffic 

categories, and each feature was extracted from the traffic 

flow behavior. Eventually, they selected 30 features as the 

most suitable subset for their machine learning classifiers. 

The most valuable 30 features are listed in Table III.  

 
TABLE II: NETWORK FLOW STATISTICAL FEATURES OF [12] 

Category of 

features 

Description of feature Number of 

feature 

Tuples 
IP address and protocol version, 

TCP ports in bi-direction 
5 

Flags TCP flags 3 

Packets Related Max, Mean and Variance of 

packets, and others 
12 

Bytes Related Number of bytes, and others 2 

TTL Related 
Mean, Variance of TTL, and 

others 
4 

Inter-Packet 

Time 

Max, Mean and Variance of inter 

packet time 
3 

 Total 29 

 
TABLE III: NETWORK FLOW STATISTICAL FEATURES OF [13] 

Category of 

features 

Description of feature Number of 

feature 

Tuples 
IP address and protocol version, 

TCP ports in bi-direction 
2 

Packets Related Num of packets 3 

Bytes Related Min, Max, Mean of segment size  15 

Segment Size 

Related 

Min, Mean of window 

advertisement size 
5 

Window Size 
Max, Mean and Variance of inter 

packet time 
3 

Time Related 
round-trip and packet 

inter-arrival time 
2 

 Total 30 

 

Ref. [14] used only the first 20 packets exchanged in a flow 

lifetime, and six selected features were extracted from the 

packets’ header, thus, a feature matrix of 20×6 dimension is 

generated to be the input of LSTM (Long Short-Term 

Memory Neural Network)and CNN (Convolutional Neural 

Network) combined deep learning classifier. It was also 

reported that the proposed model provided better detection 

results than alternative algorithms without any feature 

engineering. And the 6 selected features of each packet are 

presented in Table IV.  

 
TABLE IV: NETWORK FLOW STATISTICAL FEATURES OF [14] 

Category of 

features 

Description of feature Number of 

feature 

Tuples TCP ports in bi-direction 2 

Bytes Related Num of payload bytes 1 

Window Size TCP window size 1 

Time Related 
inter-arrival time and direction 

(0/1) 
2 

 Total 6 

 

For identifying the traffic types of VPNs (virtual private 

networks), Zeng et al. used 12 features which extracted from 

flow context, behavior of source-side hosts on flow and DNS 

(Domain Name System) behavior of source-side host on 

DNS respectively to construct the detection model [15]. 

There are also plenty of other works have been done on the 

DFI-based network traffic classification. Considering that 

identifying individual application is of high importance, [16] 

concerned to identify the popular end-user applications. The 

authors reduced the number of features to only 12, while still 

maintained high classification accuracy. Although it is 
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widely reported that DFI-based approach to network traffic 

identification can achieve state-of-the-art accuracy only 

using the flow behavior pattern, we find there exists a serious 

problem when applying the DFI-based approach to practical 

engineering, that is, the accuracy of traffic identification will 

fluctuate greatly under different network environments. 

Obviously, network parameters have an impact on the final 

accuracy. 

 
TABLE V: NETWORK FLOW STATISTICAL FEATURES OF [15] 

Category of 

features 

Description of feature Number of 

feature 

Flow Context 
The number of flows having flow 

correlation with the flow. 
5 

Host Behavior 

on Flow 

The max, sum of Flow Burst 

length, etc. 
5 

Host Behavior 

on DNS 

The number of sensitive, 

unassociated domain names 

requested by the source-side host 

of the flow. 

2 

 Total 12 

 

A. Robustness to Network Conditions 

Network conditions, such as congestion, fragmentation, 

delay, retransmissions, duplications and packet losses are 

inherently different among different communication 

networks. [17] considered that the Application Protocol Data 

Units (APDUs) are vulnerable by the network’s side effects, 

as well as the fact that the zero-length packets are frequent 

(approximately, zero-length packets comprise 33% of the 

TCP packets in count, while only comprise 2-3% in volume 

of bytes), therefore, the extracted TCP flow attributes are 

only sampled from zero-length packets, i.e., the packets 

contain control bits, but do not contain any payload (e.g., 

SYN,ACK, etc.). 

 

III. NETWORK METRIC PARAMETERS ANALYSIS 

In this section, we conducted a series of experiments to 

analysis the impacts of four main network QoS parameters, 

namely, packet delay, packet loss rate, throughput and packet 

delay variation/jitter, on the traffic flow characteristics. We 

tried to verify whether the changes in these QoS parameters 

would affect network traffic behaviors, or even cause the 

behaviors fundamentally change. 

A. Packet Delay 

Packet delay is also called the end-to-end delay that refers 

to the time taken for packets to be transmitted across a 

network from source to destination. The exact time delay 

between two points A and B of an IP network can be 

measured by using the synchronized clock: A records a 

timestamp on a packet and then send it to B, B obtains the 

timestamp when receiving the packet and calculates the 

difference to current timestamp. Packet delay mainly 

includes transmission delay, propagation delay, process 

delay and queueing delay. 

B. Packet Loss Rate 

Packet loss is measured as a percentage of packets lost 

with respect to packets sent. It occurs when one or more 

packets of data travelling across a network but fail to reach 

their destination. Packet loss is either caused by errors in data 

transmission [18], typically across wireless networks or 

network congestion. Network congestion affects all types of 

networks. When content arrives for a sustained period at a 

given router or network segment at a rate greater than it is 

possible to send through, there is no option than to drop 

packets. If a single router or link is constraining the capacity 

of the complete travel path or of network travel in general, it 

is known as a bottleneck. In some cases, packets are 

intentionally dropped by routing routines. Packet loss can 

also be caused by a packet drop attack. The Transmission 

Control Protocol (TCP) detects packet loss and performs 

retransmissions to ensure reliable messaging. Packet loss in a 

TCP connection is also used to avoid congestion and thus 

produces an intentionally reduced throughput for the 

connection. In streaming media and online game applications, 

packet loss can affect a user’s quality of experience (QoE). 

C. Throughput 

In general terms, throughput is the maximum rate of 

production or the maximum rate at which something can be 

processed. When used in the context of communication 

networks, throughput or network throughput is the rate of 

successful message delivery over a communication channel. 

The data these messages belong to may be delivered over a 

physical or logical link, or it can pass through a certain 

network node. Throughput is usually measured in bits per 

second (bit/s or bps), and sometimes in data packets per 

second (p/s or pps) or data packets per time slot. The system 

throughput or aggregate throughput is the sum of the data 

rates that are delivered to all terminals in a network, which is 

essentially synonymous to digital bandwidth consumption; it 

can be analyzed mathematically by applying the queueing 

theory, where the load in packets per time unit is denoted as 

the arrival rate (l), and the throughput, where the drop in 

packets per time unit, is denoted as the departure rate (m) 

[19]. 

D. Packet Delay Variation/Jitter 

In computer networking, packet delay variation (PDV) is 

the difference in end-to-end-way delay between selected 

packets in a flow with any lost packets being ignored [20]. 

The effect is sometimes referred to as jitter, although the 

definition is an imprecise fit. Internet protocol services 

performance is strongly influenced by the values assumed by 

the Packet Delay Variation.   

 

IV. RESULTS 

The detail analysis in Section III demonstrated that QoS 

metrics can significantly affect the behavior of network flows, 

which may disturb the accuracy of DFI-based network traffic 

identification model. In order to obtain a robust ma- chine 

learning model that works well under various network 

conditions, the QoS metrics are also considered to be part of 

input features of machine learning model. 

To illustrate the effectiveness of additional machine 

learning features consisting of QoS metrics, we compare the 

traffic classification accuracy of models before and after 

adding these additional features. 

A. Effects of QoS Metric to Classification Accuracy
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Fig. 1. Flow behavior changes of different network traffics with transmission delay varying. 

 

 
Fig. 2. Flow behavior changes of different network traffics with loss rate varying.  

 

 
Fig. 3. Flow behavior changes of different network traffics with throughput rate varying. 
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Fig. 4. Flow behavior changes of different network traffics with jitter varying. 

 

 

Fig. 5. The traffic classification accuracies of the four network data collection points (marked as S1, S2, S3, and S4) vary with 

the fluctuation of the network performance. 

 

From Fig. 1 to Fig. 4, we can visually see that different 

traffic flow behaviors will change differently when the 

network performance changes. Correspondingly, in Fig. 5, 

we test the classification accuracy of network traffics of 

which data is mixed with different network performance 

metrics (i.e., transmission delay, loss rate, throughput rate, 

and network jitter). In order to more reliably verify the impact 

of network performance jitter on traffic classification 

accuracy, we selected four popular machine learning models 

as the classifiers, including artificial neural network (ANN), 

random forest, support vector machine (SVM) and K-nearest 

neighbor (KNN). It should be pointed out that the 
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classification strategies of these four machine learning 

models are also representative, where ANN uses the 

connectionism between the nodes among the previous and 

latter layers, random forest adopts the idea of ensemble 

learning and uses in- formation entropy to construct subtree 

as the basic classifier- s, SVM uses the high-dimensional 

plane to perform hyper- plane division on the 

multi-dimensional feature data, while KNN uses the distance 

between samples to classify. 

Fig. 5 clearly shows that at all the four data collection 

points (S1, S2, S3 and S4), the classification accuracy will be 

reduced due to network performance fluctuation (or 

inconsistent transmission performance of the network data 

stream), and the greater the range of network performance 

fluctuation, the more the classification accuracy is reduced. 

This indicates that network performance fluctuation can 

cause a greater degree of damage to the accuracy of traffic 

classification based on the DFI method, which also confirms 

our concern. 

B. Accuracy Comparison  

In Section II, we introduced the different selections of 

DFI-based feature sets in some other works. Here, we 

compared the traffic classification accuracy of these feature 

sets with QoS metrics (transmission delay, loss rate, 

throughput rate, and network jitter) added in the 

communication networks with performance fluctuations. 

Similarly, we also selected ANN, SVM and random forest 

(RF) as the basic classification models. The measurement 

ranges of transmission delay, loss rate, throughput rate and 

network jitter are de- signed as [0, 500ms], [0, 1], [0, 

500Kbps] and [0, 500ms], respectively. When the actual 

value of these QoS features exceeds the upper bound of the 

corresponding measurement range, it is directly set to the 

upper bound value. Then, the values of these additional QoS 

features are normalized to between 0 and 1. 

Table VI shows the classification accuracy of the original 

proposed features of network traffic flows that proposed by 

[8]-[15] and the QoS parameter features added to the ANN, 

SVM and RF models, respectively. We can see that under 

normal network conditions, the various QoS parameters of 

the network do not change too much, and the overall 

performance indexes tend to be stable. Adding additional 

QoS parameters as classification features at this condition 

does not improve the classification accuracy obviously. 

However, under poor network conditions, the QoS 

performance parameters of the network fluctuate greatly, 

then the additional QoS parameter features can significantly 

improve the classification accuracy. 

 

V. CONCLUSIONS 

In this paper, we took a deep insight into the changes of 

network dataflow behavior under different network QoS 

metrics, and it was found that network QoS metrics 

significantly change the dataflow pattern, which have a large 

influence on the output of DFI-based network traffic 

classification methods. Our studies demonstrated a regretful 

result that many existing DFI-based classification methods 

may fail for a changed network of QoS metrics, which caused 

by the inconsistence of the training dataset and test dataset 

that collected under different network performance. To 

address this problem, we added some network key 

performance indexes (KPIs) including transmission delay, 

packet loss rate, flow throughput and jitter, as additional 

input features of machine learning model, experiment results 

showed that comparing with the “pure” DFI-based 

classification method that considering no network KPIs as a 

part of the machine learning model input features, our 

approach can significantly improve the classification 

robustness under unstable network situation. Future work can 

be focused on the inherent correlation between the dataflow 

behavior of retransmission packets and network KPIs, and 

use the flow behavior of retransmission packets instead of 

network KPIs as the additional input features of machine 

learning model. 

 
TABLE VI: WE COMPARED THE CLASSIFICATION ACCURACY DIFFERENCE BETWEEN THE FEATURES PROPOSED IN [8–15] AND THE ADDITIONAL NETWORK 

QOS FEATURES ADDED UNDER BOTH NORMAL NETWORK CONDITIONS AND POOR NETWORK CONDITIONS. THE LEGENDS “ANN”,“SVM” AND “RF” MEAN 

THAT USING THE ORIGINAL PROPOSED FEATURES OF THOSE REFERENCES TO THE MODELS OF ARTIFICIAL NEURAL NETWORK, SUPPORT VECTOR MACHINE 

AND RANDOM FOREST, WHILE “ANN-QOS”, “SVM-QOS” AND “RF-QOS” MEAN ADDING ADDITIONAL FOUR QOS PARAMETERS (TIME DELAY, LOSS RATE, 

THROUGHPUT AND NETWORK JITTER) TO THE FEATURE SETS

Main features from Normal network conditions poor network conditions 

[8]-[11] 

  
[12] 
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[13] 

  

[14] 

  

[21] 
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