

Abstract—Word embeddings is a natural language

processing modelling technique used to map semantically

related words and phrases in proximity vectors. Such

embeddings generally reflect semantic similarities between

words taken from natural contexts in large corpora.

Nonetheless, most natural contexts tend to also have numerous

words which do not bear any particular close relationship with

regard to their meaning. This results in a lot of noisy data,

which also makes the training of word embedding models much

more expensive. In this paper, we show that fine-tuning

semantic information provide additional benefits for training

optimized neural word embeddings. In particular, we use

explicit semantic extractions of the Internet of Things patterns

attributes as our input data into the model. We propose

extracting specific sentences from a large number of the

IoT-related documents. These sentences describe the attributes

for different IoT patterns. To make our corpora semantically

rich, we further extract synonymous words from a thesaurus

for some individual words taken from the extracted sentences.

This also makes the context of the data more natural. We then

embed several IoT pattern names in vector spaces and surround

each pattern name with core word units taken from its

attributes. In this way, each IoT pattern is classified in close

vector spaces with words that represent its core attributes.

Furthermore, the IoT patterns belonging in the same family are

also classified in close vector spaces based on their attributes.

The word vectors obtained from such strict supervised training

show improved results on intelligent classification tasks,

suggesting that they can be useful in machine learning efforts

for building applications used in the categorization of items into

both distinct and indistinct classes.

Index Terms—Internet of things, word embeddings,

classification, neural networks, patterns.

I. INTRODUCTION

In recent years, there has been a growing interest in text

processing models, particularly, those using artificial neural

networks. One of the most popular neural probabilistic

language models is word embeddings which embed words in

vector spaces based on contexts. As a result, words taken

from similar contexts end up having numerical vectors which

are in close proximity [1]. More often than not, words trained

using word embeddings techniques such as word2Vec and

Glove tend to have a semantic relationship [2]. In theory,

word vectors with such semantic relationships can be

leveraged to enhance many natural language processing tasks

such as information retrieval, machine translation and

Manuscript received July 12, 2019; revised May 2, 2020.

The authors are with the Department of Computer Science, University of
Pretoria, South Africa, Pretoria, South Africa (e-mail:

u04409477@tuks.co.za, Lmarshall@cs.up.ac.za).

developing question answering applications, etc [3].

However, at the moment, there is a limited number of studies

published in the literature that document the usefulness of

word embeddings to solve real-life problems. In this paper,

the aim is to show the practicality of using word embeddings

to solve a real-life problem – to classify the Internet of Things

Patterns.

A known challenge in word embeddings is that some

contexts in natural language are ineffectual [4]. In other

words, some contexts play a very important role in meaning

acquisition, while other contexts are less helpful in

establishing semantic and syntactic relationships between

neighboring words. In addition, even for those contexts in

which semantic relationships between words is largely

noticeable, some associations on a word-level segmentation

still do not bear any semantic relationship with other words in

the same context. For instance, consider this statement taken

from Wikipedia:

“The Seventh-day Adventist Church is the largest of

several Adventist groups which arose from the Millerite

movement of the 1840s in upstate New York, a phase of the

Second Great Awakening.” (Wikipedia [5])

In the above expression, words such as `Adventist',

`Church', `Millerite', `1840s', `Seventh-day' and `Movement'

share certain commonalities with regard to the historical

background of adventism. Nonetheless, some of the words in

the expression cannot be semantically associated with these

words, e.g. `arose', `phase', `largest', `second', etc. In this

paper, we propose injecting fine-tuned semantic information

into the word embedding model. That is, instead of using

semantic information taken from general contexts, we extract

certain information that have stronger semantic connections.

In particular, we investigate using extracted IoT pattern

attributes as our context information and then train the word

embedding model using the major parts of speech1 extracted

further from those attributes.

II. PROBLEM STATEMENT

Training a large corpus of text based on generic language

context is a very expensive and time consuming task. In

computational linguistics and machine learning, this is

known as generic context embedding. Generic context

embedding is particularly expensive because it is based on

sentential contexts which are composed of plain and

unstandardized word units. In this paper, sentential contexts

refers to the allocation of vector representations to each word

1 Vector representations of words are only assigned to Nouns, Adjectives,

Adverbs and Verbs.

Fine-Tuning Semantic Information for Optimized

Classification of the Internet of Things Patterns Using

Neural Word Embeddings

Vusi Sithole and Linda Marshall

Journal of Advances in Computer Networks, Vol. 8, No. 1, June 2020

26doi: 10.18178/jacn.2020.8.1.276

mailto:u04409477@tuks.co.za

in a sentence. Thus, the number of neighboring words taken

into consideration around the target word becomes the

window size. Due to the complexity of language, words in

sentential contexts are sometimes remotely removed from

each other both syntactically and semantically. For this

reason, generic word embeddings are known to produce

rather poor word vector representations. We also note that

such generic word embedddings cause a problem of word

sense disambiguation. To counteract these challenges

associated with using large plain text corpora taken from

generic contexs, we propose using specific extracted

information which is of a limited size. While we are are fully

aware that the main purpose of building a word embedding

model is to use it on unrestricted and unsupervised data,

particularly on a large corpus, we argue that using a small

corpus consisting of fine-tuned information as a baseline for

classifying objects can facilitate better and improved

unsupervised embedding.

III. RELATED WORK

Human vocabulary always comes in the form of free text.

However, in order to make a machine learning model

understand and process the natural language, we need to

transform the free-text words into numeric values [6]. One of

the simplest transformation techniques to do this is known as

one-hot encoding2.

Word embedding is a dense representation of words in the

form of numeric vectors based on one-hot encoding. Word

embeddings are a very popular and active research area in

deep learning and Natural Language Processing. However,

Word embeddings are commonly considered a to be a

`shallow' technique of deep learning. Word embeddings, such

as those created by the word2vec family of algorithms

identified in Mikolov et al. are the current state-of-the-art for

modeling lexical semantics in Computational Linguistics.

Historically, word embeddings can be traced back to the

works of John Firth, Zellig Harris, and Ludwig Wittgenstein

in the early 1950's. In the earlier days, the quantification of

semantic relations between objects was manually done using

handcrafted features. An example of this is found in the work

of Osgood carried out in 1964 on semantic differentials. In

Computational Linguistics, Word embeddings are related to

other distributional semantic models or distributional

representations such as Latent Semantic Analysis and Explicit

Semantic Analysis, Principal Component Analysis, Topic

Models, Compound Term Processing, etc. Generally, word

embeddings refer to numerical representations of texts. More

formally, word embeddings are the numerical representations

of words usually in a shape of a vector in distributed

representation Rd. In practice, word embeddings are

unsupervisedly learned word representation vectors whose

relative similarities correlate with semantic similarity.

The recent results by Mikolov et al. who used

neural-network based word embeddings constructed in a

non-supervised fashion have contributed significantly to

natural language processing and the word embedding

2 One hot encoding is a binary representation of categorical data in which

only a single value takes an integer value of 1 at a time (i.e. the `hot' value in
the list), and the other corresponding values takes integer values of zeroes

(i.e. the `cold' values in the list).

algorithm. In this experiments, neural networks feed on huge

amounts of text and produce real-valued word vectors. Thus,

the input of the algorithm is a large corpus of text, which are

converted into random vector values, and then summarised in

a n × n matrix M that encodes the relationships between n

unique words. Generally, M (i, j) records semantical

relationships between the target word and the context word,

such as the occurence in the same context window between

wordi and wordj. Subsequently, M is factorized and the

coordinates (i.e. N-dimensional vector space) in the d ≪ n

most significant components define the vector representation

of words.

There are some recent interesting works in word

embeddings that are moving beyond representations for

words. These are variations of the traditional word

embeddings models discussed above. Some of these works

extend word embeddings to cover phrases and sentences

using different statistical models. Examples of these include

Doc2Vec [7] and CompValEvac [8]. A somewhat similar

model to what we propose in this paper is discussed in Chen

and de Melo in which the authors extract information in the

form of definitions, synonyms and lists. However, the model

presented in this paper is significantly different since it is

based on document analysis.

The shortcoming of word embeddings, however, is that

words with opposite meanings (i.e. antonyms) also tend to

appear in similar contexts, while these words, by definition,

have opposite meanings. Therefore, word embeddings

trained only with neighboring contexts tend to place words

improperly in vector spaces. For instance, even though

antonyms (e.g. true and false) are semantically opposite in

meaning, their contexts are similar in most cases, which

makes them share close vectors in vector spaces. This is

evident in Mikolov et al. where it was found that the cosine

similarity score of the (long, short) and (accept, reject) pairs

is 0.71 and 0.73 respectively. Schwartz et al. [9] uses a

symmetric based approach to resolve the antonyms problem

in word embeddings. Symmetric patterns are a special type of

patterns that contain exactly two wildcards that are

instantiated by wildcard pairs such that each member of the

pair can take the X or Y position. For instance, the symmetry

of the pattern X or Y is illustrated by the semantically

plausible expressions "cats or dogs" and "dogs or cats". In

this study, the findings revealed that these two patterns are

particularly indicative of antonyms: "from X to Y and "either

X or Y.

IV. METHODOLOGY AND FINE-TUNING SEMANTIC

INFORMATION

The methodology adopted in this study is pragmatic

research philosophy. We make use of design science research

to simulate a word embedding model for intelligent

classification of the IoT patterns. The study also makes use of

document analysis and corpus linguistics for data

normalization.

A. Information Extraction Techniques

We have examined 109 IoT patterns, taken from both

published articles and informal web pages. Of this total, 76

were peer reviewed published articles and 33 were taken

Journal of Advances in Computer Networks, Vol. 8, No. 1, June 2020

27

from informal web pages. First, we developed an attribute

extraction system which extract the most important sentences

in a document which describe the essence of each pattern.

The discussion of this attributes extraction system is beyond

the scope of this paper. In this paper, we only use the

extracted attributes as an input to our word embedding model.

Secondly, we used a Merriam-Webster thesaurus to extract

synonymous words for each major part of speech word found

in the extracted attributes. Finally, we harvest data from

mid-sections of all the 109 documents sampled in the study.

This approach is based on a hypothesis that the purpose or

functions of patterns in a document are, generally, discussed

in the middle section of the document. This helps to exclude

superfluous data under such headings as Introduction,

Acknowledgments, Conclusion, etc. which generally will

not contain useful information with regard to describing the

essence of a pattern.

B. Data Injected into the Word Embedding Model

As stated above, our word embedding model is injected

with data from three main sources: (i) contextualized data in

the form of extracted IoT attributes, (ii) enriching data taken

from other secondary sources such as a thesaurus of

synonyms, and (iii) data taken from generic contexts in the

sampled IoT documents. Regarding the use of contexualized

data which describe the IoT pattern attributes, the aim is to

capture the relevant information in the context since we know

that not all the information in a document or generic context

describes the essence of the pattern. Data taken from

secondary sources serves to enrich the extracted atrributes of

the patterns. For instance, we know that due to the richness of

language, different authors will express the same attribute

using different word choices. This requires us to have

multiple sentences expressing the same attribute which can

be aligned using any technique for sentence similarity

quantification. To counteract this problem, instead of

adopting a sentence similarity quantification method which

can be arbitrary, we opted to harvest synonymous word units

from a thesaurus for each word found in the contextualized

sentences (i.e. extracted attributes). In the selected thesaurus,

these words are indexed by the <syn> tags. In our case,

generic contexts refer to data taken from the mid-section of

each document sampled in our study. The consideration of

these generic contexts justifies the use of the CBOW model

since it would make no sense to build a word embedding

model on very restricted textual data. Nonetheless, the impact

of the vocabulary taken from these generic contexts have

little to no impact on the identification of a given pattern.

Instead, such surrounding words give the `connotation' of the

pattern.

V. VECTOR SPACE MODEL

Our vector space model aims to maximize the probability

pθ(c|wp) of the target word wp given its context words. In this

model, the context words c are supervised trained words

which represents the attributes of the given pattern. The

target word wp is the pattern name manually extracted from

the document and injected into the word embedding model

with its respective attributes. The essence of this vector space

model is this: extract the pattern name from each document

(e.g. `Proxy'), extract the words from the document that

describe the pattern's core attributes c ∽ pθ (c|wp) (e.g.

`communication', `server', `gateway', etc.), extract

synonymous words for these attributes from a thesaurus (e.g.

`message', `agent', `intermediary' etc.), and finally draw

connotation words from generic contexts (e.g. `internet',

`protocol', `cookies') . The vector space model is based on the

Word2vec CBOW model, and predicts the pattern name

given a set of attributes words, or connotation words for the

attributes words. The power of this word embedding model

lies in its capability to make a distinction between the words

that describe the core essence of a given pattern and

connotation words. Intuitively, this vector space model can

be formalized with the below function, in which each trained

context word targets the pattern name as its neighbour

embedding:

 ()
1

1
log |

p

V

t p

v w

p w w
V

=

 (1)

In this function, V is the vocabulary size, and wt is any

trained context word that is semantically related to another

word (i.e. pattern name) wp, either equivocally or

unequivocally. In principle, the model also aims to compute

the probabilities pij that are proportional to the similarity of

words wi and wj in a set of N high-dimensional words

w1,...,wN as follows:

()2 2

2 2

exp || || /2
,

exp(|| || /2)

i j i

ij

i k ik i

w w
p

w w

− −
=

− −
 (2)

Specifically, similar words that describe the same pattern

are modelled by nearby points and dissimilar words are

modelled by distant points with high probability. As stated

above, the model draws from three contexts, semantically

significant contexts (i.e. extracted attributes) denoted by pθ

(wa|wp), synonymous words contexts pθ(ws|wp), and generic

contexts pθ(wg|wp), in which w ∈ N|wa = ws = wg.

Intuitively, the model aims to maximize the log-likelihood

which sums up all three contexts, one per each window as

defined by equation 3.

1

log (|) log (|) (|) (|) (|)
C

p j a p s p g p

j

p c w p c w p w w p w w p w w dw

=

= (3)

In function 3, pθ (cj |w) represents the artificial neural

network while cj is a context word for the target word w. In

this function, C is the size of the context window3 and θ is a

model parameter. Due to the complexity of training neural

networks, computing integration over the latent space

becomes intractable. We therefore rely on objective training

for the different contexts.

For each word pair, the loss is minimized using a

maximum likelihood estimation technique in the form of

cross-entropy. The loss function to train our neural network is

thus defined as

3 The size of the context window determines how many words before and

after the target word are considered as context words.

Journal of Advances in Computer Networks, Vol. 8, No. 1, June 2020

28

1

(|) log
N

j

L w w w w
=

= − (4)

In this function, N is the number of classes, and w sums up

the outputs for the words in the class while w is the softmax

probability value of the target word which must be

maximized. Intuitively, that is

(|) maxMaxp w w w= (5)

 maxlog w= (6)

Our approach to computing the loss function as outlined

above is very similar to the original Word2Vec CBOW

model.

A. Training Setup

1) Corpus

The training dataset contains more than 1000 000 word

tokens collected from a list of diversified sources.

Specifically, these sources are documents addressing the

various IoT patterns from published articles and other

informal sources such as Wikipedia. Although this is a

relatively small corpus, we deem it adequate for this study to

demonstrate the proof of concept for our vector model.

Indeed, using a larger corpus in our case will be immaterial

and would not yield different results. The use of a large

corpus is still, however, recommended to avoid cases of

overfitting.

2) Preprocessing

The training begins with text normalization as a necessary

step for data preparation. This is a data cleansing process

which involves a pre-processing procedure that converts

scholarly documents to sequences of text blocks at a sentence

level. The IoT patterns in our dataset were mostly available as

HTML files or schorlary PDF articles. Both the HTML web

pages and the schorlary PDF files were generally not

standardized for ready processing as they did not contain

block level elements or IDs. In addition, document

formatting was inconsistent across the majority of the

documents. For instance, other documents contained images,

and others used italics or bold text to emphasize important

points and themes. To address these challenges, manual

preprocessing was performed on the documents. This

included converting each HTML and PDF document into

XML format that recognizes all the line breaks and white

spaces from the original documents. In addition,

preprocessing included removing images and tagging each

sentence with a unique ID or vector representation. This was

done without compromising the experimental results.

According to Saldanha's [10] view of corpus linguistics as a

methodology, data altering for the purposes of fitting the

experimental setup is an acceptable practice so long as it does

not affect the authenticity or natural occurrence of the text.

3) Parameter configuration

A multi-threaded architecture is used to separately train

words from specific contexts and generic contexts. In this

case, words from both threads jointly and asynchronously

update the output word embeddings and determine the final

word vectors. In both threads, we set the symmetric context

window size to 10 (i.e. 5 words to the right and 5 words to the

left of the target word). We use differential learning to

manipulate and control each thread's contribution to the final

word embeddings. Specifically, we control the output of the

final word embeddings by controlling the behavior of the

stochastic gradient descent function

(): .j j

j

J

 = −

 (7)

We set a small learning rate, α = 0.01, in specific contexts

to effect better contributions from these contexts. To

marginalize the contribution of generic contexts, we set a

higher learning rate, α = 0.5, to reduce optimization of the

thread to converge to good local minima [11]. Intuitively, this

results in less contribution from the generic contexts.

VI. SIMULATION RESULTS

In this section, we present the evaluation results to

demonstrate the performance of our vector space model.

Since this paper presents a case study exploring new insights

regarding the use of word embeddings in a specific domain,

i.e. the Internet of Things, using pre-trained datasets or

generic datasets such as Wikipedia, MEN, and Wordsim-353

would not fit the experimental setup. Instead, we compare the

performance of three variations of the CBOW model. The

intuition behind our experimental approach is the following:

to prove our hypothesis that certain contexts exhibit more

semantically related information than others, we feed these

models with three variations of our dataset: (a) first, we feed

the vanilla version of the CBOW model without fine-tuning

the information, (b) secondly, we feed the CBOW model with

fine-tuned information but without the use of differential

learning, and (c) finally, we feed the differential learning

CBOW model with fine-tuned information.

TABLE I: AVERAGE COSINE SIMILARITIES BETWEEN WORDS FOR THE

CBOW MODEL VARIATION

Average Cosine Similarity Values

Vector Model cossim(wp|wa) cossim(wp|ws) cossim(wp|wg)
aCBOW - - 0.47

bCBOW 0.84 0.83 0.81

cCBOW 0.84 0.83 0.68

a
Vanilla version.

b
Fine-tuned information without differential learning.

c
Fine-tuned information with differential learning.

Table I presents similarity results based on the average

word vectors across the three CBOW variations. First, we

observe that the CBOW model which uses both fine-tuned

information and differential learning has a significant edge in

performance compared to the other CBOW models. In fact,

the CBOW baseline model (i.e. vanilla version) is

considerably weaker and provides no value-add in addressing

the problem statement. The CBOW variation model which

uses only fine-tuned semantic information have the highest

cosine similarities for cossim(wp|wg) (0.47 vs. 0.81 vs. 0.68).

However, this shows the model is ineffective in

differentiating semantic properties of words in specific and

generic contexts. The CBOW model containing fine-tuned

Journal of Advances in Computer Networks, Vol. 8, No. 1, June 2020

29

information and using differential learning outperforms the

other models, and possesses the capability to differentiate the

pattern attributes from its generic connotation information.

Figure 1 provides an example of a pattern in which the data

sourced from specific contexts (attributes and synonymous

words) appears relatively close to the pattern name (i.e.

Proxy). The use of connotation words in our model also

resolves the challenge of word sense disambiguation.

VII. CONCLUSION

We have presented an intelligent classification method to

categorize the IoT patterns using neural word embeddings.

The vector space model proposed in this paper draws from

the idea that certain contexts exhibit more syntactic and

semantically related information than others. Specifically, we

proved the hypothesis that certain extracted information from

documents allow us to mine better semantic relationships

between words. In contrast, generic contexts provide coarse

relationships between words, and also contain a lot a noisy

data which makes training the vector space model more

expensive. Unlike previous vector space models that tend to

use generic data, our paper focused on using data generated

for a specific domain to show the usefulness of word

embeddings to solve a real-world problem. Our case study to

classify the IoT patterns in vector spaces suggest the benefits

of word embeddings in similar settings. Future work will

focus on dimensional embeddings of common words found

in both specific and generic contexts.

*Note: The data in the t-SNE visualization plot presented here has been

trimmed for visibility and better presentation of the model performance
results.

Fig. 1. A sample CBOW embedding visualization for the proxy pattern.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Vusi Sithole performed the experiments, organized the

layout for the paper, and wrote the manuscript.

Linda Marshall reviewed and edited the original draft,

provided supervision for the work and verified the results of

the experiments.

ACKNOWLEDGEMENTS

The authors would like to send a sincere word of thanks

and appreciation to the anonymous reviewers for their

thoughtful insights into this work.

REFERENCES

[1] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient Estimation of
Word Representations in Vector Space, arXiv preprint

arXiv:1301.3781, 2013.

[2] X. X. Chen et al., “Joint learning of character and word embeddings,”
presented at Twenty-Fourth International Joint Conference on

Artificial Intelligence, 2015.
[3] A. Mandelbaum and A. Shalev, “Word embeddings and their use in

sentence classification tasks,” arXiv preprint arXiv:1610.08229, 2016.

[4] T. Scheepers, E. Gavves, and E. Kanoulas, “Analyzing the
compositional properties of word embeddings,” Univ Amst, 2017.

[5] Wikipedia, Seventh-Day Adventist Church.
[6] N. Tandon and G. Melo, “Information extraction from web-scale

n-gram data,” Web N-gram Workshop, vol. 7, 2010.

[7] I. Markov, G. A. Helena et al., “Author profiling with doc2vec neural
network-based document embeddings,” presented at Mexican

International Conference on Artificial Intelligence, pp. 117–131,
Springer, 2016.

[8] R. Collobert et al., “Natural language processing (almost) from

scratch,” Journal of Machine Learning Research, pp. 2493-2537,
2011.

[9] R. Schwartz, R. Reichart, and A. Rappoport, “Symmetric pattern based
word embeddings for improved word similarity prediction,” in Proc.

the Nineteenth Conference on Computational Natural Language

Learning, 2015, pp. 258-267.
[10] G. Saldanha, “Principles of corpus linguistics and their application to

translation studies research,” Tradumàtica: traducció i tecnologies de
la informació i la comunicació, no. 7, 2009.

[11] V. Veeriah, N. Zhuang, and G. J. Qi, “Differential recurrent neural

networks for action recognition,” in Proc. the IEEE International
Conference on Computer Vision, 2015, pp. 4041–4049.

Copyright © 2020 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Vusi Sithole is a Ph.D candidate at the University of

Pretoria, Department of Computer Science with a
master of information technology from the same

University in 2016. He obtained a bachelor's degree in

information sciences from the same institution in 2009.
His research interests are in fields of software design

patterns, internet of things, machine learning, graph
theory, and computational linguistics. The focus of his

PhD thesis is on establishing a multifaceted approach for organising patterns

for the Internet of Things. His research interest include subjects such as
attributes extraction, building concept hierarchies for the IoT patterns,

definition formation for the patterns, and engineering a pattern locator
technique for the known patterns. He has published several peer-reviewed

papers in his areas of research, and continues to do ground-breaking research

to advance humanity.

Linda Marshall is a senior lecturer at the University of

Pretoria, Department of Computer Science. She is the

head of the Computer Science Education (SCEDAR)
research group at the Computer Science Department,

University of Pretoria. She has been the director of the
ACM ICPC South African Regional contest since

2001. Her research interests are in the areas of generic

programming, graph comparison, software engineering
and more particularly computer science education. She has published

extensively in these areas, and continues to supervise numerous students
undertaking research projects in many of these areas and other emerging

fields such as artificial intelligence and machine learning.

Journal of Advances in Computer Networks, Vol. 8, No. 1, June 2020

30

https://creativecommons.org/licenses/by/4.0/

