
  

  

Abstract—Word embeddings is a natural language 

processing modelling technique used to map semantically 

related words and phrases in proximity vectors. Such 

embeddings generally reflect semantic similarities between 

words taken from natural contexts in large corpora. 

Nonetheless, most natural contexts tend to also have numerous 

words which do not bear any particular close relationship with 

regard to their meaning. This results in a lot of noisy data, 

which also makes the training of word embedding models much 

more expensive. In this paper, we show that fine-tuning 

semantic information provide additional benefits for training 

optimized neural word embeddings. In particular, we use 

explicit semantic extractions of the Internet of Things patterns 

attributes as our input data into the model. We propose 

extracting specific sentences from a large number of the 

IoT-related documents. These sentences describe the attributes 

for different IoT patterns. To make our corpora semantically 

rich, we further extract synonymous words from a thesaurus 

for some individual words taken from the extracted sentences. 

This also makes the context of the data more natural. We then 

embed several IoT pattern names in vector spaces and surround 

each pattern name with core word units taken from its 

attributes. In this way, each IoT pattern is classified in close 

vector spaces with words that represent its core attributes. 

Furthermore, the IoT patterns belonging in the same family are 

also classified in close vector spaces based on their attributes. 

The word vectors obtained from such strict supervised training 

show improved results on intelligent classification tasks, 

suggesting that they can be useful in machine learning efforts 

for building applications used in the categorization of items into 

both distinct and indistinct classes. 

 
Index Terms—Internet of things, word embeddings, 

classification, neural networks, patterns. 

 

I. INTRODUCTION 

In recent years, there has been a growing interest in text 

processing models, particularly, those using artificial neural 

networks. One of the most popular neural probabilistic 

language models is word embeddings which embed words in 

vector spaces based on contexts. As a result, words taken 

from similar contexts end up having numerical vectors which 

are in close proximity [1]. More often than not, words trained 

using word embeddings techniques such as word2Vec and 

Glove tend to have a semantic relationship [2]. In theory, 

word vectors with such semantic relationships can be 

leveraged to enhance many natural language processing tasks 

such as information retrieval, machine translation and 
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developing question answering applications, etc [3]. 

However, at the moment, there is a limited number of studies 

published in the literature that document the usefulness of 

word embeddings to solve real-life problems. In this paper, 

the aim is to show the practicality of using word embeddings 

to solve a real-life problem – to classify the Internet of Things 

Patterns. 

A known challenge in word embeddings is that some 

contexts in natural language are ineffectual [4]. In other 

words, some contexts play a very important role in meaning 

acquisition, while other contexts are less helpful in 

establishing semantic and syntactic relationships between 

neighboring words. In addition, even for those contexts in 

which semantic relationships between words is largely 

noticeable, some associations on a word-level segmentation 

still do not bear any semantic relationship with other words in 

the same context. For instance, consider this statement taken 

from Wikipedia: 

“The Seventh-day Adventist Church is the largest of 

several Adventist groups which arose from the Millerite 

movement of the 1840s in upstate New York, a phase of the 

Second Great Awakening.” (Wikipedia [5]) 

In the above expression, words such as `Adventist', 

`Church', `Millerite', `1840s', `Seventh-day' and `Movement' 

share certain commonalities with regard to the historical 

background of adventism. Nonetheless, some of the words in 

the expression cannot be semantically associated with these 

words, e.g. `arose', `phase', `largest', `second', etc. In this 

paper, we propose injecting fine-tuned semantic information 

into the word embedding model. That is, instead of using 

semantic information taken from general contexts, we extract 

certain information that have stronger semantic connections. 

In particular, we investigate using extracted IoT pattern 

attributes as our context information and then train the word 

embedding model using the major parts of speech1 extracted 

further from those attributes. 

 

II. PROBLEM STATEMENT 

Training a large corpus of text based on generic language 

context is a very expensive and time consuming task. In 

computational linguistics and machine learning, this is 

known as generic context embedding. Generic context 

embedding is particularly expensive because it is based on 

sentential contexts which are composed of plain and 

unstandardized word units. In this paper, sentential contexts 

refers to the allocation of vector representations to each word 

 
1 Vector representations of words are only assigned to Nouns, Adjectives, 

Adverbs and Verbs. 
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in a sentence. Thus, the number of neighboring words taken 

into consideration around the target word becomes the 

window size. Due to the complexity of language, words in 

sentential contexts are sometimes remotely removed from 

each other both syntactically and semantically. For this 

reason, generic word embeddings are known to produce 

rather poor word vector representations. We also note that 

such generic word embedddings cause a problem of word 

sense disambiguation. To counteract these challenges 

associated with using large plain text corpora taken from 

generic contexs, we propose using specific extracted 

information which is of a limited size. While we are are fully 

aware that the main purpose of building a word embedding 

model is to use it on unrestricted and unsupervised data, 

particularly on a large corpus, we argue that using a small 

corpus consisting of fine-tuned information as a baseline for 

classifying objects can facilitate better and improved 

unsupervised embedding. 

 

III. RELATED WORK 

Human vocabulary always comes in the form of free text. 

However, in order to make a machine learning model 

understand and process the natural language, we need to 

transform the free-text words into numeric values [6]. One of 

the simplest transformation techniques to do this is known as 

one-hot encoding2. 

Word embedding is a dense representation of words in the 

form of numeric vectors based on one-hot encoding. Word 

embeddings are a very popular and active research area in 

deep learning and Natural Language Processing. However, 

Word embeddings are commonly considered a to be a 

`shallow' technique of deep learning. Word embeddings, such 

as those created by the word2vec family of algorithms 

identified in Mikolov et al. are the current state-of-the-art for 

modeling lexical semantics in Computational Linguistics. 

Historically, word embeddings can be traced back to the 

works of John Firth, Zellig Harris, and Ludwig Wittgenstein 

in the early 1950's. In the earlier days, the quantification of 

semantic relations between objects was manually done using 

handcrafted features. An example of this is found in the work 

of Osgood carried out in 1964 on semantic differentials. In 

Computational Linguistics, Word embeddings are related to 

other distributional semantic models or distributional 

representations such as Latent Semantic Analysis and Explicit 

Semantic Analysis, Principal Component Analysis, Topic 

Models, Compound Term Processing, etc. Generally, word 

embeddings refer to numerical representations of texts. More 

formally, word embeddings are the numerical representations 

of words usually in a shape of a vector in distributed 

representation Rd. In practice, word embeddings are 

unsupervisedly learned word representation vectors whose 

relative similarities correlate with semantic similarity. 

The recent results by Mikolov et al. who used 

neural-network based word embeddings constructed in a 

non-supervised fashion have contributed significantly to 

natural language processing and the word embedding 

 
2 One hot encoding is a binary representation of categorical data in which 

only a single value takes an integer value of 1 at a time (i.e. the `hot' value in 
the list), and the other corresponding values takes integer values of zeroes 

(i.e. the `cold' values in the list). 

algorithm. In this experiments, neural networks feed on huge 

amounts of text and produce real-valued word vectors. Thus, 

the input of the algorithm is a large corpus of text, which are 

converted into random vector values, and then summarised in 

a n × n matrix M that encodes the relationships between n 

unique words. Generally, M (i, j) records semantical 

relationships between the target word and the context word, 

such as the occurence in the same context window between 

wordi and wordj. Subsequently, M is factorized and the 

coordinates (i.e. N-dimensional vector space) in the d ≪ n 

most significant components define the vector representation 

of words. 

There are some recent interesting works in word 

embeddings that are moving beyond representations for 

words. These are variations of the traditional word 

embeddings models discussed above. Some of these works 

extend word embeddings to cover phrases and sentences 

using different statistical models. Examples of these include 

Doc2Vec [7] and CompValEvac [8]. A somewhat similar 

model to what we propose in this paper is discussed in Chen 

and de Melo in which the authors extract information in the 

form of definitions, synonyms and lists. However, the model 

presented in this paper is significantly different since it is 

based on document analysis. 

The shortcoming of word embeddings, however, is that 

words with opposite meanings (i.e. antonyms) also tend to 

appear in similar contexts, while these words, by definition, 

have opposite meanings. Therefore, word embeddings 

trained only with neighboring contexts tend to place words 

improperly in vector spaces. For instance, even though 

antonyms (e.g. true and false) are semantically opposite in 

meaning, their contexts are similar in most cases, which 

makes them share close vectors in vector spaces. This is 

evident in Mikolov et al. where it was found that the cosine 

similarity score of the (long, short) and (accept, reject) pairs 

is 0.71 and 0.73 respectively. Schwartz et al. [9] uses a 

symmetric based approach to resolve the antonyms problem 

in word embeddings. Symmetric patterns are a special type of 

patterns that contain exactly two wildcards that are 

instantiated by wildcard pairs such that each member of the 

pair can take the X or Y position. For instance, the symmetry 

of the pattern X or Y is illustrated by the semantically 

plausible expressions "cats or dogs" and "dogs or cats". In 

this study, the findings revealed that these two patterns are 

particularly indicative of antonyms: "from X to Y and "either 

X or Y. 

 

IV. METHODOLOGY AND FINE-TUNING SEMANTIC 

INFORMATION 

The methodology adopted in this study is pragmatic 

research philosophy. We make use of design science research 

to simulate a word embedding model for intelligent 

classification of the IoT patterns. The study also makes use of 

document analysis and corpus linguistics for data 

normalization. 

A. Information Extraction Techniques 

We have examined 109 IoT patterns, taken from both 

published articles and informal web pages. Of this total, 76 

were peer reviewed published articles and 33 were taken 

Journal of Advances in Computer Networks, Vol. 8, No. 1, June 2020

27



  

from informal web pages. First, we developed an attribute 

extraction system which extract the most important sentences 

in a document which describe the essence of each pattern. 

The discussion of this attributes extraction system is beyond 

the scope of this paper. In this paper, we only use the 

extracted attributes as an input to our word embedding model. 

Secondly, we used a Merriam-Webster thesaurus to extract 

synonymous words for each major part of speech word found 

in the extracted attributes. Finally, we harvest data from 

mid-sections of all the 109 documents sampled in the study. 

This approach is based on a hypothesis that the purpose or 

functions of patterns in a document are, generally, discussed 

in the middle section of the document. This helps to exclude 

superfluous data under such headings as Introduction, 

Acknowledgments, Conclusion, etc. which generally will 

not contain useful information with regard to describing the 

essence of a pattern. 

B. Data Injected into the Word Embedding Model 

As stated above, our word embedding model is injected 

with data from three main sources: (i) contextualized data in 

the form of extracted IoT attributes, (ii) enriching data taken 

from other secondary sources such as a thesaurus of 

synonyms, and (iii) data taken from generic contexts in the 

sampled IoT documents. Regarding the use of contexualized 

data which describe the IoT pattern attributes, the aim is to 

capture the relevant information in the context since we know 

that not all the information in a document or generic context 

describes the essence of the pattern. Data taken from 

secondary sources serves to enrich the extracted atrributes of 

the patterns. For instance, we know that due to the richness of 

language, different authors will express the same attribute 

using different word choices. This requires us to have 

multiple sentences expressing the same attribute which can 

be aligned using any technique for sentence similarity 

quantification. To counteract this problem, instead of 

adopting a sentence similarity quantification method which 

can be arbitrary, we opted to harvest synonymous word units 

from a thesaurus for each word found in the contextualized 

sentences (i.e. extracted attributes). In the selected thesaurus, 

these words are indexed by the <syn> tags. In our case, 

generic contexts refer to data taken from the mid-section of 

each document sampled in our study. The consideration of 

these generic contexts justifies the use of the CBOW model 

since it would make no sense to build a word embedding 

model on very restricted textual data. Nonetheless, the impact 

of the vocabulary taken from these generic contexts have 

little to no impact on the identification of a given pattern. 

Instead, such surrounding words give the `connotation' of the 

pattern. 

 

V. VECTOR SPACE MODEL 

Our vector space model aims to maximize the probability 

pθ(c|wp) of the target word wp given its context words. In this 

model, the context words c are supervised trained words 

which represents the attributes of the given pattern. The 

target word wp is the pattern name manually extracted from 

the document and injected into the word embedding model 

with its respective attributes. The essence of this vector space 

model is this: extract the pattern name from each document 

(e.g. `Proxy'), extract the words from the document that 

describe the pattern's core attributes c ∽  pθ (c|wp) (e.g. 

`communication', `server', `gateway', etc.), extract 

synonymous words for these attributes from a thesaurus (e.g. 

`message', `agent', `intermediary' etc.), and finally draw 

connotation words from generic contexts (e.g. `internet', 

`protocol', `cookies') . The vector space model is based on the 

Word2vec CBOW model, and predicts the pattern name 

given a set of attributes words, or connotation words for the 

attributes words. The power of this word embedding model 

lies in its capability to make a distinction between the words 

that describe the core essence of a given pattern and 

connotation words. Intuitively, this vector space model can 

be formalized with the below function, in which each trained 

context word targets the pattern name as its neighbour 

embedding:  
 

   ( )
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log |
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In this function, V is the vocabulary size, and wt is any 

trained context word that is semantically related to another 

word (i.e. pattern name) wp, either equivocally or 

unequivocally. In principle, the model also aims to compute 

the probabilities pij that are proportional to the similarity of 

words wi and wj in a set of N high-dimensional words 

w1,...,wN as follows: 
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Specifically, similar words that describe the same pattern 

are modelled by nearby points and dissimilar words are 

modelled by distant points with high probability. As stated 

above, the model draws from three contexts, semantically 

significant contexts (i.e. extracted attributes) denoted by pθ 

(wa|wp), synonymous words contexts pθ(ws|wp), and generic 

contexts pθ(wg|wp), in which w ∈  N|wa = ws = wg. 

Intuitively, the model aims to maximize the log-likelihood 

which sums up all three contexts, one per each window as 

defined by equation 3. 

1

log ( | ) log ( | ) ( | ) ( | ) ( | )
C

p j a p s p g p

j

p c w p c w p w w p w w p w w dw    

=

=   (3) 

In function 3, pθ (cj |w) represents the artificial neural 

network while cj is a context word for the target word w. In 

this function, C is the size of the context window3 and θ is a 

model parameter. Due to the complexity of training neural 

networks, computing integration over the latent space 

becomes intractable. We therefore rely on objective training 

for the different contexts. 

For each word pair, the loss is minimized using a 

maximum likelihood estimation technique in the form of 

cross-entropy. The loss function to train our neural network is 

thus defined as 

 
3 The size of the context window determines how many words before and 

after the target word are considered as context words. 
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In this function, N is the number of classes, and w sums up 

the outputs for the words in the class while w  is the softmax 

probability value of the target word which must be 

maximized. Intuitively, that is 

( | ) maxMaxp w w w=                        (5) 

                          maxlog w=                                         (6) 

Our approach to computing the loss function as outlined 

above is very similar to the original Word2Vec CBOW 

model. 

A. Training Setup 

1)  Corpus 

The training dataset contains more than 1000 000 word 

tokens collected from a list of diversified sources. 

Specifically, these sources are documents addressing the 

various IoT patterns from published articles and other 

informal sources such as Wikipedia. Although this is a 

relatively small corpus, we deem it adequate for this study to 

demonstrate the proof of concept for our vector model. 

Indeed, using a larger corpus in our case will be immaterial 

and would not yield different results. The use of a large 

corpus is still, however, recommended to avoid cases of 

overfitting.  

2)  Preprocessing 

The training begins with text normalization as a necessary 

step for data preparation. This is a data cleansing process 

which involves a pre-processing procedure that converts 

scholarly documents to sequences of text blocks at a sentence 

level. The IoT patterns in our dataset were mostly available as 

HTML files or schorlary PDF articles. Both the HTML web 

pages and the schorlary PDF files were generally not 

standardized for ready processing as they did not contain 

block level elements or IDs. In addition, document 

formatting was inconsistent across the majority of the 

documents. For instance, other documents contained images, 

and others used italics or bold text to emphasize important 

points and themes. To address these challenges, manual 

preprocessing was performed on the documents. This 

included converting each HTML and PDF document into 

XML format that recognizes all the line breaks and white 

spaces from the original documents. In addition, 

preprocessing included removing images and tagging each 

sentence with a unique ID or vector representation. This was 

done without compromising the experimental results. 

According to Saldanha's [10] view of corpus linguistics as a 

methodology, data altering for the purposes of fitting the 

experimental setup is an acceptable practice so long as it does 

not affect the authenticity or natural occurrence of the text. 

3)  Parameter configuration 

A multi-threaded architecture is used to separately train 

words from specific contexts and generic contexts. In this 

case, words from both threads jointly and asynchronously 

update the output word embeddings and determine the final 

word vectors. In both threads, we set the symmetric context 

window size to 10 (i.e. 5 words to the right and 5 words to the 

left of the target word). We use differential learning to 

manipulate and control each thread's contribution to the final 

word embeddings. Specifically, we control the output of the 

final word embeddings by controlling the behavior of the 

stochastic gradient descent function 

( ): .j j

j

J   



 = −


                     (7) 

We set a small learning rate, α = 0.01, in specific contexts 

to effect better contributions from these contexts. To 

marginalize the contribution of generic contexts, we set a 

higher learning rate, α = 0.5, to reduce optimization of the 

thread to converge to good local minima [11]. Intuitively, this 

results in less contribution from the generic contexts. 

 

VI. SIMULATION RESULTS 

In this section, we present the evaluation results to 

demonstrate the performance of our vector space model. 

Since this paper presents a case study exploring new insights 

regarding the use of word embeddings in a specific domain, 

i.e. the Internet of Things, using pre-trained datasets or 

generic datasets such as Wikipedia, MEN, and Wordsim-353 

would not fit the experimental setup. Instead, we compare the 

performance of three variations of the CBOW model. The 

intuition behind our experimental approach is the following: 

to prove our hypothesis that certain contexts exhibit more 

semantically related information than others, we feed these 

models with three variations of our dataset: (a) first, we feed 

the vanilla version of the CBOW model without fine-tuning 

the information, (b) secondly, we feed the CBOW model with 

fine-tuned information but without the use of differential 

learning, and (c) finally, we feed the differential learning 

CBOW model with fine-tuned information. 
 

TABLE I: AVERAGE COSINE SIMILARITIES BETWEEN WORDS FOR THE 

CBOW MODEL VARIATION 

Average Cosine Similarity Values 

Vector Model cossim(wp|wa) cossim(wp|ws) cossim(wp|wg) 
aCBOW  - - 0.47 

bCBOW  0.84 0.83 0.81 

cCBOW  0.84 0.83 0.68 

 

a
Vanilla version. 

b
Fine-tuned information without differential learning. 

c
Fine-tuned information with differential learning. 

 

Table I presents similarity results based on the average 

word vectors across the three CBOW variations. First, we 

observe that the CBOW model which uses both fine-tuned 

information and differential learning has a significant edge in 

performance compared to the other CBOW models. In fact, 

the CBOW baseline model (i.e. vanilla version) is 

considerably weaker and provides no value-add in addressing 

the problem statement. The CBOW variation model which 

uses only fine-tuned semantic information have the highest 

cosine similarities for cossim(wp|wg) (0.47 vs. 0.81 vs. 0.68). 

However, this shows the model is ineffective in 

differentiating semantic properties of words in specific and 

generic contexts. The CBOW model containing fine-tuned 
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information and using differential learning outperforms the 

other models, and possesses the capability to differentiate the 

pattern attributes from its generic connotation information. 

Figure 1 provides an example of a pattern in which the data 

sourced from specific contexts (attributes and synonymous 

words) appears relatively close to the pattern name (i.e. 

Proxy). The use of connotation words in our model also 

resolves the challenge of word sense disambiguation. 

 

VII. CONCLUSION 

We have presented an intelligent classification method to 

categorize the IoT patterns using neural word embeddings. 

The vector space model proposed in this paper draws from 

the idea that certain contexts exhibit more syntactic and 

semantically related information than others. Specifically, we 

proved the hypothesis that certain extracted information from 

documents allow us to mine better semantic relationships 

between words. In contrast, generic contexts provide coarse 

relationships between words, and also contain a lot a noisy 

data which makes training the vector space model more 

expensive. Unlike previous vector space models that tend to 

use generic data, our paper focused on using data generated 

for a specific domain to show the usefulness of word 

embeddings to solve a real-world problem. Our case study to 

classify the IoT patterns in vector spaces suggest the benefits 

of word embeddings in similar settings. Future work will 

focus on dimensional embeddings of common words found 

in both specific and generic contexts.  
 

 
*Note: The data in the t-SNE visualization plot presented here has been 

trimmed for visibility and better presentation of the model performance 
results.  

Fig. 1. A sample CBOW embedding visualization for the proxy pattern. 
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