

Abstract—IEEE 802.11i is the important security standard

for wireless local area network, and it includes three security

functions, which are WEP, TKIP, and CCMP, to provide the

data confidentiality. In this paper, the effective cipher

architecture of IEEE 802.11i is developed to achieve the

low-latency application. For the cryptography processing

functions, the cipher core of WEP and TKIP is the RC4

algorithm, and that of the CCMP is the AES algorithm. For a

ciphered packet by WEP and TKIP, the RC4 operations need a

constant latency, which generates the excessively low

throughput when the packet length is too short. For the

low-latency design, the 16-bit packed memory algorithm is

applied to reduce the constant latency in the RC4 computations.

To reduce the hardware cost of CCMP for the byte-wise data

transmission in IEEE 802.11, the 32-bit AES architecture is

used in place of the conventional 128-bit AES design. For VLSI

implementation, the proposed low-latency IEEE 802.11i

cryptography processing architecture is synthesized by

Synopsys Design Compiler with TSMC 0.18um technology.

Excluding the cost of memory module, the proposed design for

cipher computations requires about 44,300 gate counts, and the

maximum operational frequency is 51MHz. Besides, the power

consumption of the processing unit at 50MHz is 12.61mW.

Index Terms—IEEE 802.11i, cryptography, low latency,

VLSI implementation.

I. INTRODUCTION

IEEE 802.11i is the security standard and specification of

wireless local area network, and it defines three algorithms

which are related to the data confidentiality, that is, WEP,

TKIP, and CCMP. The cipher core of the WEP and TKIP is

the RC4 algorithm, and that of the CCMP is the AES

algorithm. Both of the RC4 and AES algorithms are the

symmetric ciphers, whose feature is that the transmitter and

the receiver must share one same secret key to achieve the

data confidentiality. Fig. 1 depicts the simplified model of

conventional symmetric encryption in [1]. IEEE 802.11 [2] is

a standard for Wireless Local Area Network (WLAN), and it

defines a medium access control (MAC) layer and a physical

(PHY) layer. Since the data transmission of wireless local

area network is through the air, the transmitted data is easily

eavesdropped. Thus, IEEE 802.11 defines a data security

Manuscript received August 19, 2019; revised May 13, 2020. This work

was financially supported in part by the Ministry of Science and Technology

(MOST) under Grant No. MOST 108-2634-F-005-002 and by the

“Innovation and Development Center of Sustainable Agriculture” from The
Featured Areas Research Center Program within the framework of the

Higher Education Sprout Project by the Ministry of Education (MOE) in
Taiwan.

Jun-Dian Li and Chih-Peng Fan are with the Department of Electrical

Engineering, National Chung Hsing University, 145 Xingda Rd., South Dist.,
Taichung City 402, Taiwan (e-mail: jundian@gmail.com,

cpfan@dragon.nchu.edu.tw).

mechanism, i.e. Wired Equivalent Privacy (WEP), which

aims to provide an equivalent data transmission security,

which is also provided by traditional wired networks.

However, in recent years, many cryptanalysts have found that

WEP has many weaknesses. Therefore, in 2004, IEEE

802.11i [3] emerged to enhance the security of wireless local

area networks.

Fig. 1. Simplified model of conventional encryption [1].

The IEEE 802.11i network defines two types of security

algorithms, which are the RSNA (Robust Security Network

Association) algorithm and the Pre-RSNA algorithm. The

Pre-RSNA security mechanism includes two algorithms, i.e.

WEP and IEEE 802.11 entity authentication. On the other

hand, the RSNA security mechanism includes the following

algorithms, which are (1) Temporal Key Integrity Protocol

(TKIP), (2) CTR with CBC-MAC Protocol (CCMP) [4], (3)

RSNA establishment and termination procedures including

the use of IEEE 802.1X acknowledgments, and (4) key

management procedures. In addition to the open system

authentication, all Pre-RSNA security mechanisms are not

suggested because they do not meet the expected security

goals. Although the new implementations need to support the

Pre-RSNA approach, the use of Pre-RSNA just helps to

migrate the system to the RSNA method. In the RSNA

security mechanism, TKIP and CCMP are main protocols

and functions for data confidentiality and integrity. In all

IEEE 802.11 devices that claim to comply with RSNA, the

implementation of CCMP is mandatory, and TKIP is not

necessary because the confidentiality and integrity of TKIP

are not as strong as those of CCMP. In the previous works [5],

and [6], the efficient hardware of the RC4 stream cipher were

implemented for low-latency applications. To realize the

CCMP mode in IEEE 802.11i, the effective AES-based

ciphering architectures were designed in [7]-[9]. For the

low-power and high-throughput implementation of the IEEE

802.11i security functions, the performance analysis, the

hardware-software co-design, or the FPGA/VLSI-based

design were revealed in [10]-[14].

In this paper, the proposed hardware design implements

the related data encryption and decryption functions, i.e.

WEP, TKIP and CCMP. TKIP is mainly used as a short-term

mechanism to improve the deficiency of WEP. For the

system that only supports WEP, the data security can be

Design and VLSI Implementation of Low Latency IEEE

802.11i Cryptography Processing Unit

Jun-Dian Li and Chih-Peng Fan

Journal of Advances in Computer Networks, Vol. 8, No. 1, June 2020

14doi: 10.18178/jacn.2020.8.1.274

enhanced through the firmware update on hardware. CCMP

is a new security mechanism proposed by IEEE 802.11i,

which serves as a security mechanism for long-term wireless

local area networks. The well-known Advanced Encryption

Standard (AES), adopted by the encryption and decryption

core of CCMP, is the popular-used and efficient symmetric

block cipher scheme [1], [15]. The rest of the paper is

described as follows. In Section II, the previous IEEE 802.11i

hardware-based design is briefly reviewed. In Section III, the

low-latency design of the proposed IEEE 802.11i

cryptography processing unit is discussed. The VLSI

implementation results and discussions are described in

Section IV. Finally, a conclusion is stated.

II. BRIEF REVIEW OF PREVIOUS IEEE 802.11i HARDWARE

DESIGN

The functions of data encryption and decryption are

achieved through WEP, TKIP, or AES-CCM. However, the

computational cost of these algorithms is too high, and it is

difficult to achieve sufficient data throughput by the

implementation with embedded software. Therefore, in [10],

the hardware-based IEEE 802.11i encryption with low-cost

and low-power consumption is designed, and the ciphering

data can achieve the maximum transmission rate for the

application of IEEE 802.11a/g.

To achieve the maximum transmission rate of IEEE

802.11a/g when the data encryption and decryption is active,

the computations of WEP, TKIP, and AES-CCM need at

least 220MHz, 440MHz and 3.5GHz clock frequency for the

ARM9 processor, respectively [10]. However, the maximum

operational frequency of the ARM9 processor is 250MHz.

Obviously, it is very difficult that only pure software-based

implementation is utilized for the real-time IEEE 802.11i

encryptions and decryptions in the IEEE 802.11a/g wireless

network. Besides, at the WEP and TKIP modes, when the

packet data is shorter, the computational cost becomes higher.

The reason is that because the shuffling process of the cored

RC4 algorithm performs initialization for each packet key,

and it takes up most of the processing cycles of encryptions,

as shown in Table I. According to the analysis in [10], the

hardware based architecture design for the IEEE 802.11i

encryption algorithms are needed.

TABLE I: COMPUTATIONAL COST (MCYCLES/SEC) OF WEP [10]

packet data

length (Byte)

computational cost（Mcycles/sec） required clock

freq.（MHz）
shuffling substitution others

100 583 54.1 13.5 651

500 218 109 27.4 354

1,000 126 120 30.0 276

2,000 68.4 126 32.4 227

Since RC4 is a stream encryption method, the unit of

processing data is 1 byte, and the RC4 key is used for the

shuffling process and substitution. However, as mentioned

above, for shorter packet data lengths, the RC4 shuffling

process occupies most of the encryption cycles. Thus, the

designers in [10] proposed a way to reduce the encryption

cycles of RC4 shuffling operations. Reducing the shuffling

cycles of RC4 means that the system reduces the number of

accesses to the memory. However, the data dependence

makes the parallel processing impossible. In [10], a 16-bit

based memory access method is developed to complete the

shuffling process, which reduces the number of memory

accesses while avoiding the dependency of intermediate data.

In Table II, the 32-bit memory access scheme is only 20%

less than the 16-bit memory access scheme does; however,

the 32-bit based memory access design requires more

complex control, and it results in more hardware cost,

compared with the 16-bit memory access scheme. Therefore,

the 16-bit packed memory access method is adopted in [10],

and its memory access number is 30% less than the number

of the 8-bit memory access scheme.

TABLE II: COMPARISON OF MEMORY ACCESS NUMBERS [10]

Bus width Memory access numbers

8 bits 1,282

16 bits 896

32 bits 704

On the other hand, for the encryption and decryption

process of AES-CCM in [4], [10], [15], and [16], two AES

processing hardware are required, where one is as the

processing of the CBC-MAC mode, and the other is as the

processing of the counter mode. To achieve higher data

throughput, the overlapped pipelined processing for the

CBC-MAC and counter modes is used in [10]. The AES

processing unit in [10] is based on the 32-bit data-path and

multi-cycle byte-by-byte shifters, and it can support the

maximum data throughput of IEEE 802.11a/g at the 40 MHz

clock frequency. Finally, the WEP/TKIP and AES-CCM

operations require 2,048 bits of memory to store the

expanded key and the round key. Since the IEEE 802.11i

encryption algorithm is used alternately, the WEP/TKIP and

AES-CCM operations shares a single 128×16-bit memory.

III. PROPOSED ARCHITECTURE DESIGN FOR LOW LATENCY

IEEE 802.11i PROCESSING UNIT

Fig. 2 illustrates the architecture design of the proposed

IEEE 802.11i processing unit (i.e. core11i). For the

low-latency 802.11i cryptography processing circuit, firstly

the overall architecture is described. Next, the architecture

design of the WEP/TKIP modes is introduced. Finally, the

applied CCMP architecture CCMP is discussed. Table III

lists the input/output signal descriptions of the proposed

core11i module.

clk

rst

start

crypt_mode

ed_crypt

din

din_valid

dout

ready
2

8

8

encryptedDin

icv_error

mic_error

read_din

d
in

P
ro

ce
ss

o
u
tM

u
x

tkip

ccm

SPram128x16

finish

Fig. 2. Architecture design of the proposed IEEE 802.11i processing unit

(core11i).

In Fig. 2, the “dinProcess” module is the input data

processing unit, and the “tkip” module is the WEP/TKIP

encryption and decryption unit, and then the “SPram128x16”

module is a single-port 128×16-bit memory. Moreover, the

Journal of Advances in Computer Networks, Vol. 8, No. 1, June 2020

15

“ccm” module is designed for the CCMP encryption and

decryption unit, and the “outMux” module is designed for the

output multiplexer between the modules. The “dinProcess”

module determines which module the data should be sent to

and generates the corresponding control signals based on the

order of the input data. Table IV defines the operational

modes and order of input data for the encryption and

decryption of the WEP, TKIP, and CCMP modes.

TABLE III: INPUT / OUTPUT SIGNAL DESCRIPTIONS OF THE PROPOSED

CORE11I MODULE
Name Type Descriptions

clk Input System clock signal (positive edge trigger)

rst Input System reset signal (synchronous reset)

crypt_mode[1:0] Input 0: Chip Disable, 1: WEP, 2: TKIP, 3: CCMP

ed_crypt Input 0: encryption, 1: decryption

start Input This signal is 1 to start to process the input data

din[7:0] Input Input data

din_valid Input If this signal is 1, there is a valid data on the

input

encryptedDin Input This signal is 1 for the input data as the

encrypted MIC value and the encrypted ICV

value. This signal is only used in the WEP and

TKIP decryptions

dout[7:0] Output Output data

ready Output This signal is 1 when the output data is valid.

read_din Output Read request for Input data

finish Output This signal is 1 means that all data has been

processed.

icv_error Output If this signal is 1, the ICV check result is

different for decrypting. The signal is only used

in the WEP and TKIP decryptions

mic_error Output If this signal is 1, the MIC check result is

different for decrypting. This signal is only used

in the TKIP and CCMP decryptions

TABLE IV: OPERATIONAL MODES AND ORDER OF INPUT DATA OF THE

PROPOSED IEEE 802.11I PROCESSING UNIT

In the proposed hardware architecture, the encryption and

decryption functions of TKIP and WEP are integrated into a

single module. In Fig. 3, the “michael”, “mic2crc” and

“micCpr” modules are only used in the TKIP mode. The

“mic2crc” and “p2s” modules are used for the WEP and

TKIP encryptions, while the “micCpr” and “icvCpr” modules

are used for the WEP and TKIP decryptions. Except the

above mentioned modules, all of the rest modules will be

used whether the WEP or TKIP mode is active or not. Fig. 4

shows the applied architecture for the RC4 operations, and it

is based on the architecture design in [10]. The design goal of

the RC4 ciphering module is to generate an 8-bit key stream

by using a single-port 128×16-bit memory. The RC4 stream

encryption is a core encryption and decryption method in the

WEP and TKIP modes, and it is one of symmetric encryption

methodologies. Although RC4 is a symmetric encryption

method, the key it uses does not directly encrypt or decrypt

data as AES does. The key used by RC4 is simply used to

shuffle a 256-byte data. Once the shuffling process is

completed, the key is no longer used. A 1-byte key stream is

systematically selected from the 256-byte shuffled array to

encrypt or decrypt the data.

The most important process of the RC4 algorithm is to

continuously shuffle the memory. In our design, the 16-bit

packed memory method is applied to design the RC4 pseudo

random number generator (PRNG) by using a single-port

128×16-bit memory. In Fig. 4, the “rc4_key” is the lowest 8

bits from the 128-bit keyReg. The address values of the

memory, i.e. “addr”, are assigned from three address

generation sources, and the input data values of the memory,

i.e. “data”, are allocated from five data sources. The output

data, i.e. “q_out”, is loaded into the register “q_outReg”

before it is transferred to different target registers. Fig. 5, 6,

and 7 show the architecture designs of the TKIP Michael,

CRC-32, and Cipher functions with surrounding circuits,

respectively. In addition, Fig. 8 also depicts the block

diagram of the ICV and MIC check circuits.

key
8 128

rc4core

8

rc4seed

keystream

michael
64

MIC

8
mic_din0

crc

8

8

32

ICV

mic2crc

cipher8
8

8

p2s

64

8
cip_dout

Eight 1-byte MIC

(Eight 1-byte MIC &)

four 1-byte ICV

rc4keygen

icvCpr

micCpr

32

8

8

64
8

8

q_out addr data

cip_din0

crc_din0

mic_din1

mic_din

8

16 167

crc_din

TKIP
encryption

decryption

Fig. 3. Internal Structure of TKIP.

Fig. 4. The architecture of the RC4 PRNG module with a single-port

128×16-bit memory.

The developed RC4 PRNG module has three operational

phases, which are described as follows:

A. The Memory Initialization Phase

The value of the write address is from “i_cnt”, and it will

be increased from 0 to 127. The data value is in the “data0”

counter, and the initial value is 0x0001, and then each

increment is set to 0x0202. Finally, its value is 0xFEFF. In

this phase, the operations are completed in 128 cycles.

B. The Memory Shuffling Phase

(1) The data is read from the address i (i.e., i_cnt), and it is

stored in Si_HiReg and Si_LoReg. The address j/2 is

calculated from the value of Si_HiReg.

(2) Read the data from the address j/2, and store it in

Sj_HiReg and Sj_LoReg.

(3) Write Si_HiReg to the appropriate location of the

address j/2.

Journal of Advances in Computer Networks, Vol. 8, No. 1, June 2020

16

(4) Calculate the address j/2 based on the value of

Si_LoReg. The data is read from the address j/2, and

stored in Sj_HiReg and Sj_LoReg. If the address j/2

equals the address i, the high-order portion of the read

data is in Si_HiReg.

(5) Write the value in Si_LoReg to the appropriate location

of the address j/2. If the location written to the address

j/2 exactly equals the high-order part of the address i,

the system updates the value stored in Si_HiReg.

(6) Write the data stored in Si_HiReg back to the address i.

(7) Repeat Step (1) to Step (6), and the value of i_cnt is

increased from 0 to 127.

C. The Key Stream Generation Phase

The processing steps are listed as follows:

(1L) Read the data from the address I, and store it in

Si_HiReg and Si_LoReg. The address j/2 is calculated from

the value of Si_LoReg.

(2L) Read the data from the address j/2, and store it in

Sj_HiReg and Sj_LoReg.

(3L) After writing Si_LoReg to the position of the address

j/2, the value of Si_LoReg is added to the value of

Sj_HiReg (or Sj_LoReg) to calculate the address t/2, where

the key stream is located.

(4L) Write Sj_HiReg or Sj_LoReg back to the lower byte

part of the address i.

(5L) Read the data from the address t/2, and select the

appropriate partial output, which is the key stream.

(6L) Determine if the value of“din_valid” is 1. If it is 1,

continue to generate the key stream, go to Step (1H), and

the value of i_cnt is increased by one; if it is 0, stop to

generate the key stream until the value of “din_valid” is

1, and then continue to generate the key stream.

(1H) Read the data from the address I, and store it in

Si_HiReg and Si_LoReg. The address j/2 is calculated from

the value of Si_HiReg.

(2H) Read the data from the address j/2, and store it in

Sj_HiReg and Sj_LoReg.

(3H) After writing Si_HiReg to the position of the address

j/2, the value of Si_HiReg is added to the value of

Sj_HiReg (or Sj_LoReg) to calculate the address t/2, where

the key stream is located.

(4H) Write Sj_HiReg or Sj_LoReg back to the higher byte

part of the address i.

(5H) Read the data from the address t/2, and select the

appropriate partial output, which is the key stream.

(6H) Determine if the value of “din_valid” is 1. If it is 1,

continue to generate the key stream, go to Step (1L); if it is

0, stop to generate the key stream until the value of

“din_valid” is 1, and continue to generate the key stream.

In Step (1L) to Step (6L), the procedures of low-byte

portion processing are revealed, and the procedures of the

high-byte portion processing are indicated in Step (1H) to

Step (6H). In our design, the AES hardware used in CCMP is

based on the 32-bit architecture, and the applied S-Box part is

implemented by referring the low-cost S-Box architecture in

[16]. The AES function defined in CCMP uses a 128-bit

encryption key and processes 128-bit data. In the proposed

design, the designed AES hardware is based on 32-bit

architecture, so the key, data input, and data output need to be

processed in 32-bit units. Fig. 9 depicts the internal block

diagram of the ccm module. In Fig. 9, the “CCMcore”

module is the main control circuit, which controls the AES

modules to encrypt and decrypt data and calculate the MIC

value. Two AES hardware is implemented in our design, and

their module names are “aes4cbc” and “aes4ctr”. The

“aes4cbc” module is designed for the CBC-MAC mode, and

calculates the MIC value of the plaintext. The “aes4ctr”

module performs the CTR mode to encrypt or decrypt the

data. Besides, the entire “ccm” module is active only when

the “crypt_mode” signal is set to the value, i.e. 2.

Fig. 5. TKIP Michael with surrounding circuits.

Fig. 6. CRC-32 with surrounding circuits.

Fig. 7. Cipher circuit with surrounding circuits.

Fig. 8. ICV and MIC check circuits.

clk

rst

crypt_mode

ed_crypt

2

ccm_din

ccm_dinValid

8

A4_exist

CCMcore

ccm_dout

ccm_doutReady

ccm_read

ccm_micErr

clk

rst

kld

key

text_in

text_out

done

8

32

32

32

AES4cbc

clk

rst

kld

key

text_in

text_out

done
32

32

32

AES4ctr

aes4cbc_kld

aes4cbc_key

aes4cbc_din

aes4cbc_done

aes4cbc_dout

aes4ctr_kld

aes4ctr_key

aes4ctr_din

aes4ctr_done

aes4ctr_dout

ccm_finish

Fig. 9. Architecture diagram of the “ccm” module.

Journal of Advances in Computer Networks, Vol. 8, No. 1, June 2020

17

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In experiments, firstly the functional model of IEEE

802.11i is built with the C/C++ codes, and then the hardware

model is constructed by the synthesizable Verilog HDL. Next,

the cell-based design flow is used for the following VLSI

implementation. The “ModelSim” HDL simulator is used for

functional simulation and verification, and then the

hardware-based Verilog HDL model is synthesized by

TSMC 0.18um process through Synopsys Design Compiler.

Besides, the Artisan Standard Library SRAM Generator [17]

is applied to generate the single-port 128×16-bit memory. To

compare between two different RC4 PRNG hardware

architectures, but do not include the memory cost, only the

core control logic is considered, where the “rc4core” module

is illustrated in Fig. 3. Table V lists the comparison of the

“rc4core” module by using different memories after logic

syntheses.

TABLE V: COMPARISON OF THE “RC4CORE” MODULE BY DIFFERENT

MEMORIES
Applied

memory types
Gate counts
excluding
memory

Maximum
operational
frequency

Power
consumption

Single port

256×8-bit

2,315 117.65MHz 1.1661mW

Single port

128×16-bit
2,969 85.76MHz 1.3716mW

By referring to the specification in [17], when the

“rc4core” module accesses the memory, it takes 2 cycles to

read the data, and only 1 cycle is required to write the data. In

Table VI, the initialization phase only performs the write

operations, and the number of required cycles is not changed.

The shuffling phase includes the read and write operations,

and then the number of required cycles is increased. Our

design goal is to improve the data throughput of the IEEE

802.11i encryption and decryption processing unit by

reducing the latency delay. According to the analysis in Table

VI, the proposed design uses a single-port 128 × 16-bit

memory to design the “rc4core” module.

TABLE VI: THE REQUIRED MEMORY ACCESS CYCLES FOR THE “RC4CORE”

MODULE BY USING DIFFERENT MEMORIES

Memory types Cycles for
initialization

Cycles for
shuffling process

Single port

256×8-bit

256 256 × 6 = 1,536

Dual port

256×8-bit

128 256 × 5 = 1,280

Single port

128×16-bit

128 128 × 9 = 1,152

By VLSI implementation, the cipher computational

functions of the low-latency IEEE 802.11i cryptography

architecture need 44,300 gate counts, and the maximum

operational frequency is 51MHz. At 50MHz operational

frequency, the power consumption of the processing unit is

12.61mW. Table VII describes the VLSI implementation

comparison between two different IEEE 802.11i hardware

architectures, where the gate counts excludes the cost of the

single-port 128x16-bit memory module. Table VIII also lists

the gate counts of each module for the proposed VLSI design.

TABLE VII: VLSI IMPLEMENTATION COMPARISON BETWEEN TWO IEEE

802.11I HARDWARE ARCHITECTURES

 Proposed

(core11i)

Design in [10]

Gate counts 44,275 17,832

Memory size 2K bits 2K bits

Maximum

frequency

50.99MHz 72MHz

Power
consumption

12.61mW@50MHz 14.5mW@60MHz

Supporting

ciphering
functions

Full functions Full functions*

* Some functions may be not completely supported in [10].

TABLE VIII: THE GATE COUNTS OF EACH MODULE FOR THE PROPOSED

VLSI DESIGN

Module name Gate counts

dinProcess 901

tkip 16,486

ccm 26,845

outMux 43

Total 44,275

The comparisons between the proposed VLSI design and

the previous design in [10] are discussed as follows:

⚫ The function of the key mixing unit in [10] is equivalent

to that of the proposed “rc4keygen” module in Fig. 3,

which is designed to generate the RC4 key. However, for

the TKIP hybrid function phase, the required S-box

seems not be implemented in [10], and it causes that the

calculated RC4 key does not meet the expected value. In

our design, the hardware includes the S-box, which

requires about 2,000 gate counts.

⚫ After calculating the MIC value, TKIP will attach the

MIC to the plaintext, and will send it to the WEP

encryption for processes. The MIC value calculated by

TKIP must be sent to CRC-32 to calculate the ICV value.

However, in [8], such the data path seems to be lost,

which may cause the incorrect ICV value. In the

proposed hardware, the “mic2crc” module handles the

data path, and the required number of gate counts for this

module is about 790.

⚫ In [10], only one AES hardware is used, but the proposed

design needs two AES hardware for pipeline processing.

The hardware cost of the applied AES hardware requires

6,160 gate counts. Since the proposed hardware uses a

synchronous design, all of the module outputs are

register-based outputs, which result in the additional

hardware cost of output registers.

⚫ Compared with the design in [10], the proposed

hardware needs a lower maximum operating frequency.

In the proposed design, the critical path is existed during

the operation of the “rc4keygen” module, and the

processing time of the critical path is the sum of delay

time of the 16-bit XOR operation, the lookup table

process of S-box, and the 16-bit addition. In the

proposed architecture, the critical path is processed in

one cycle for low latency design.

The data throughputs of the proposed hardware design are

discussed with the WEP, TKIP and CCMP modes as follows:

In the WEP operational mode, the “dinProcess” module

has one latency cycle, and the “rc4keygen” module has nine

latency cycles. The “rc4core” module has three operational

phases. The delay period in the memory initialization phase is

128 cycles, and the delay period in the memory shuffling

Journal of Advances in Computer Networks, Vol. 8, No. 1, June 2020

18

phase is 1,152 cycles. In the keystream generation phase for

generating 1-byte key stream, the delay period for operations

needs 9 cycles. For encrypting the N-byte plaintext, the delay

period of the phase is 9N. If both the plaintext and the key

stream are ready, the cipher module can complete the

encryption in only one cycle, and the encryption is performed

during generating the next key stream by the “rc4core”

module. Therefore, the required duty cycles in the WEP

mode are (1 + 9 + 128 + 1,152) + (9N), where N is the total

number of bytes in plaintext. Table IX shows the required

duty cycles of the WEP mode at different plaintext lengths,

where the data throughput is calculated when the clock

frequency is set to 50MHz.

TABLE IX: THROUGHPUT OF WEP FOR THE PROPOSED DESIGN

Data length

(N)
Clock cycles Throughput

(@50MHz)

100-byte 2,190 18.26Mbps

500-byte 5,790 34.54Mbps

1,000-byte 10,290 38.87Mbps

2,000-byte 19,290 41.47Mbps

When the processing unit operates in the TKIP mode, the

delay period of the “dinProcess” module is 23 cycles, and the

delay period of the “rc4keygen” module is 84 cycles. The

delay period of the “rc4core” module is the same as that in the

WEP mode. Therefore, the required duty cycles in the TKIP

mode is (23 + 84 + 128 + 1,152) + (9N), where N is the total

number of bytes in plaintext. Table X lists the required duty

cycles of the TKIP mode at different plaintext lengths. In

Table X, the data throughput is also calculated at the 50MHz

operational frequency.

TABLE X: THROUGHPUT OF TKIP FOR THE PROPOSED DESIGN

Data length

(N)
Clock cycles Throughput

(@50MHz)

100-byte 2,287 17.49Mbps

500-byte 5,887 33.97Mbps

1,000-byte 10,387 38.51Mbps

2,000-byte 19,387 41.26Mbps

TABLE XI: THROUGHPUT OF CCMP FOR THE PROPOSED DESIGN

Data length

(N)
Clock cycles Throughput

(@50MHz)

100-byte 524 82.44Mbps

500-byte 1,699 119.60Mbps

1,000-byte 3,156 127.76Mbps

2,000-byte 6,070 132.32Mbps

WEP

TKIP

CCMP

Packet Data Length (Byte)

C
lo

c
k

 F
re

q
u

e
n

c
y
 (

M
H

z
)

Fig. 10. Required clock frequency to achieve the transmission rate of

54Mbps for the proposed design.

Table XI reveals the required duty cycles of the CCMP

mode at different plaintext lengths. The data throughput is

also estimated when the operational frequency is set to

50MHz. Fig. 10 illustrates the required clock frequency to

achieve the transmission rate of 54Mbps for the proposed

architecture design at the WEP, TKIP, and CCMP modes,

respectively.

V. CONCLUSION

IEEE 802.11i has three security mechanisms, which

include WEP, TKIP and CCMP. In this paper, the three

major security functions are implemented with hardware

design due to their enormous amount of computational costs.

The 16-bit packed memory algorithm in [10], the

non-pipelined 32-bit AES architecture, and the TKIP mixing

function are applied to achieve the goal of low latency. By

VLSI implementation with TSMC 0.18um technology, the

cipher computational functions of the low-latency IEEE

802.11i cryptography architecture need 44,300 gate counts,

and the maximum operational frequency is 51MHz. At

50MHz operational frequency, the power consumption of the

processing unit is 12.61mW. In future works, the low-latency

IEEE 802.11i security processing circuit will be efficiently

developed to support higher throughput for the

next-generation IEEE 802.11 communications, e.g. IEEE

802.11n/ac.

CONFLICT OF INTEREST

To the best of our knowledge, the named authors have no

conflict of interest, financial or otherwise.

AUTHOR CONTRIBUTIONS

Jun-Dian Li conducted the architecture research and VLSI

design; Chih-Peng Fan wrote the paper; all authors had

approved the final version.

ACKNOWLEDGMENT

This work was financially supported in part by the

Ministry of Science and Technology (MOST) under Grant

No. MOST 108-2634-F-005-002 and by the “Innovation and

Development Center of Sustainable Agriculture” from The

Featured Areas Research Center Program within the

framework of the Higher Education Sprout Project by the

Ministry of Education (MOE) in Taiwan (R.O.C.). The

authors would like to thank Taiwan Semiconductor Research

Institute (Former National Chip Implementation Center) in

Taiwan for EDA supports.

REFERENCES

[1] W. Stallings, Cryptography and Network Security, Principles and

Practices, 3rd ed. Prentice Hall, 2003.

[2] Information technology — Telecommunications and information

exchange between systems— Local and metropolitan area networks—

Specific requirements— Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications, ANSI/IEEE
Std. 802.11, 1999 Edition (R2003).

[3] IEEE Standard for Information technology— Telecommunications and

information exchange between systems— Local and metropolitan area

networks— Specific requirements Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) specifications

Journal of Advances in Computer Networks, Vol. 8, No. 1, June 2020

19

Amendment 6: Medium Access Control (MAC) Security

Enhancements, IEEE Std. 802.11i, 2004.
[4] IETF RFC 3610, Counter with CBC-MAC (CCM), 2003.

[5] P. Kitsos, G. Kostopoulos, N. Sklavos, and O. Koufopavlou,

“Hardware implementation of the RC4 stream cipher,” in Proc. 46th

IEEE Midwest Symposium on Circuits & Systems, Cairo, Egypt, 2003.

[6] J. D. Lee and C. P. Fan, “Efficient low-latency RC4 architecture C.
sivakumar and A. velmurugan, “High speed VLSI design CCMP AES

cipher for WLAN (IEEE 802.11i),” in Proc. 2007 International Conf.
on Signal Processing, Communications and Networking, Chennai,

India, Feb. 2007.

[7] C. Sivakumar and A. Velmurugan, “High speed VLSI design CCMP
AES Cipher for WLAN (IEEE 802.11i),” in Proc. 2007 International

Conf. on Signal Processing, Communications and Networking,
Chennai, India, Feb. 2007.

[8] I. Algredo-Badillo, C. Feregrino-Uribe, R. Cumplido, and M.

Morales-Sandoval, “FPGA implementation and performance
evaluation of AES-CCM cores for wireless networks,” in Proc.

International Conference on Reconfigurable Computing and FPGAs,
2008, pp. 421-426.

[9] S. A. Hoseini, B. Khodabandeloo, M. J. Mamaghani, P. Teymoorim,

and N. Yazdani, “High throughput low power CCMP architecture for
very high speed wireless LANs,” in Proc. 15th CSI International

Symposium on Computer Architecture and Digital Systems, Tehran,
Iran, 2010.

[10] Y. Mitsuyama, M. Kimura, T. Onoye, and I. Shirakawa, “Architecture

of IEEE802.11i cipher algorithms for embedded systems,” IEICE
Trans. on Fundamentals, vol. E88-A, no. 4, pp. 899-905, April 2005.

[11] O. Song and J. Kim, “Hardware-software co-design of secure WLAN
system for high throughput, 2nd IFIP Wireless Days (WD), Paris,

France, 2009.

[12] Y. Li, J. Han, S. Wang, J. Liu, and X. Zeng, “A NoC-based multi-core
architecture for IEEE 802.lli CCMP,” in Proc. 9th IEEE International

Conf. on ASIC, Xiamen, China, 2011.
[13] A. Kumar and P. Paul, “Security analysis and implementation of a

simple method for prevention and detection against evil twin attack in

IEEE 802.11 wireless LAN,” in Proc. International Conf. on
Computational Techniques in Information and Communication

Technologies (ICCTICT), New Delhi, India, 2016.
[14] T. Hayajneh, S. Ullah, B. J. Mohd, and K. S. Balagani, “An enhanced

WLAN security system With FPGA implementation for multimedia

applications,” IEEE Systems Journal, vol. 11, no. 4, pp. 2536-2545,
2017.

[15] National Institute of Standards and Technology (NIST): Advanced
Encryption Standard (AES). Federal Information Processing

Standards (FIPS) Publication 197, November 2001.

[16] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact

Rijndael hardware architecture with S-Box optimization,” in Proc. the
7th International Conf. on the Theory and Application of Cryptology

and Information Security: Advances in Cryptology, Lecture Notes In
Computer Science, 2001, vol. 2248, pp. 239-254.

[17] Artisan Standard Library SRAM Generator User Manual,

ug_2004q1v0 and ug_2003q2v0, Artisan Components, Inc., 2003.

Copyright © 2020 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Jun-Dian Lee was born in Taoyuan, Taiwan in

1982. He received his B.S. degree in computer and

communication engineering from National
Kaohsiung University of Science and Technology,

Kaohsiung, Taiwan, in 2005, and the M.S. degree
in electrical engineering from National Chung

Hsing University, Taichung, Taiwan, in 2007. His

research interests include internet encryption and
VLSI designs.

Chih-Peng Fan was born in Miaoli, Taiwan in

1969. He received the B.S., M.S., and Ph.D degrees
in electrical engineering from the National Cheng

Kung University, Taiwan in 1991, 1993 and 1998,
respectively. From October 1998 to January 2003,

he was a design engineer with N100, Computer and

Communications Research Laboratories (CCL),
Industrial Technology Research Institute (ITRI),

Hsinchu, Taiwan. In 2003, he joined the faculty of
the Department of Electrical Engineering, National

Chung Hsing University, Taichung city, Taiwan, where he is currently a full

professor. He has more than 100 publications, which include technical
journals, book chapters, conference papers, and technical reports. His

teaching and research interests include digital image processing and pattern
recognition, digital video processing, baseband transceiver design, and VLSI

design/FPGA prototype of DSP systems.

Journal of Advances in Computer Networks, Vol. 8, No. 1, June 2020

20

https://creativecommons.org/licenses/by/4.0/

