
  

  

Abstract—IEEE 802.11i is the important security standard 

for wireless local area network, and it includes three security 

functions, which are WEP, TKIP, and CCMP, to provide the 

data confidentiality. In this paper, the effective cipher 

architecture of IEEE 802.11i is developed to achieve the 

low-latency application. For the cryptography processing 

functions, the cipher core of WEP and TKIP is the RC4 

algorithm, and that of the CCMP is the AES algorithm.  For a 

ciphered packet by WEP and TKIP, the RC4 operations need a 

constant latency, which generates the excessively low 

throughput when the packet length is too short. For the 

low-latency design, the 16-bit packed memory algorithm is 

applied to reduce the constant latency in the RC4 computations. 

To reduce the hardware cost of CCMP for the byte-wise data 

transmission in IEEE 802.11, the 32-bit AES architecture is 

used in place of the conventional 128-bit AES design.  For VLSI 

implementation, the proposed low-latency IEEE 802.11i 

cryptography processing architecture is synthesized by 

Synopsys Design Compiler with TSMC 0.18um technology.  

Excluding the cost of memory module, the proposed design for 

cipher computations requires about 44,300 gate counts, and the 

maximum operational frequency is 51MHz.  Besides, the power 

consumption of the processing unit at 50MHz is 12.61mW. 

 
Index Terms—IEEE 802.11i, cryptography, low latency, 

VLSI implementation. 

 

I. INTRODUCTION 

IEEE 802.11i is the security standard and specification of 

wireless local area network, and it defines three algorithms 

which are related to the data confidentiality, that is, WEP, 

TKIP, and CCMP. The cipher core of the WEP and TKIP is 

the RC4 algorithm, and that of the CCMP is the AES 

algorithm. Both of the RC4 and AES algorithms are the 

symmetric ciphers, whose feature is that the transmitter and 

the receiver must share one same secret key to achieve the 

data confidentiality. Fig. 1 depicts the simplified model of 

conventional symmetric encryption in [1]. IEEE 802.11 [2] is 

a standard for Wireless Local Area Network (WLAN), and it 

defines a medium access control (MAC) layer and a physical 

(PHY) layer. Since the data transmission of wireless local 

area network is through the air, the transmitted data is easily 

eavesdropped. Thus, IEEE 802.11 defines a data security 
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mechanism, i.e. Wired Equivalent Privacy (WEP), which 

aims to provide an equivalent data transmission security, 

which is also provided by traditional wired networks.  

However, in recent years, many cryptanalysts have found that 

WEP has many weaknesses. Therefore, in 2004, IEEE 

802.11i [3] emerged to enhance the security of wireless local 

area networks. 

 

 
Fig. 1. Simplified model of conventional encryption [1]. 

 

The IEEE 802.11i network defines two types of security 

algorithms, which are the RSNA (Robust Security Network 

Association) algorithm and the Pre-RSNA algorithm. The 

Pre-RSNA security mechanism includes two algorithms, i.e. 

WEP and IEEE 802.11 entity authentication.  On the other 

hand, the RSNA security mechanism includes the following 

algorithms, which are (1) Temporal Key Integrity Protocol 

(TKIP), (2) CTR with CBC-MAC Protocol (CCMP) [4], (3) 

RSNA establishment and termination procedures including 

the use of IEEE 802.1X acknowledgments, and (4) key 

management procedures. In addition to the open system 

authentication, all Pre-RSNA security mechanisms are not 

suggested because they do not meet the expected security 

goals. Although the new implementations need to support the 

Pre-RSNA approach, the use of Pre-RSNA just helps to 

migrate the system to the RSNA method. In the RSNA 

security mechanism, TKIP and CCMP are main protocols 

and functions for data confidentiality and integrity.  In all 

IEEE 802.11 devices that claim to comply with RSNA, the 

implementation of CCMP is mandatory, and TKIP is not 

necessary because the confidentiality and integrity of TKIP 

are not as strong as those of CCMP. In the previous works [5], 

and [6], the efficient hardware of the RC4 stream cipher were 

implemented for low-latency applications. To realize the 

CCMP mode in IEEE 802.11i, the effective AES-based 

ciphering architectures were designed in [7]-[9]. For the 

low-power and high-throughput implementation of the IEEE 

802.11i security functions, the performance analysis, the 

hardware-software co-design, or the FPGA/VLSI-based 

design were revealed in [10]-[14].  

In this paper, the proposed hardware design implements 

the related data encryption and decryption functions, i.e. 

WEP, TKIP and CCMP. TKIP is mainly used as a short-term 

mechanism to improve the deficiency of WEP. For the 

system that only supports WEP, the data security can be 
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enhanced through the firmware update on hardware.  CCMP 

is a new security mechanism proposed by IEEE 802.11i, 

which serves as a security mechanism for long-term wireless 

local area networks. The well-known Advanced Encryption 

Standard (AES), adopted by the encryption and decryption 

core of CCMP, is the popular-used and efficient symmetric 

block cipher scheme [1], [15]. The rest of the paper is 

described as follows. In Section II, the previous IEEE 802.11i 

hardware-based design is briefly reviewed.  In Section III, the 

low-latency design of the proposed IEEE 802.11i 

cryptography processing unit is discussed. The VLSI 

implementation results and discussions are described in 

Section IV.  Finally, a conclusion is stated. 

 

II. BRIEF REVIEW OF PREVIOUS IEEE 802.11i HARDWARE 

DESIGN 

The functions of data encryption and decryption are 

achieved through WEP, TKIP, or AES-CCM.  However, the 

computational cost of these algorithms is too high, and it is 

difficult to achieve sufficient data throughput by the 

implementation with embedded software. Therefore, in [10], 

the hardware-based IEEE 802.11i encryption with low-cost 

and low-power consumption is designed, and the ciphering 

data can achieve the maximum transmission rate for the 

application of IEEE 802.11a/g. 

To achieve the maximum transmission rate of IEEE 

802.11a/g when the data encryption and decryption is active, 

the computations of WEP, TKIP, and AES-CCM need at 

least 220MHz, 440MHz and 3.5GHz clock frequency for the 

ARM9 processor, respectively [10].  However, the maximum 

operational frequency of the ARM9 processor is 250MHz. 

Obviously, it is very difficult that only pure software-based 

implementation is utilized for the real-time IEEE 802.11i 

encryptions and decryptions in the IEEE 802.11a/g wireless 

network.  Besides, at the WEP and TKIP modes, when the 

packet data is shorter, the computational cost becomes higher. 

The reason is that because the shuffling process of the cored 

RC4 algorithm performs initialization for each packet key, 

and it takes up most of the processing cycles of encryptions, 

as shown in Table I. According to the analysis in [10], the 

hardware based architecture design for the IEEE 802.11i 

encryption algorithms are needed. 

 
TABLE I: COMPUTATIONAL COST (MCYCLES/SEC) OF WEP  [10] 

packet data

length (Byte)

computational cost（Mcycles/sec） required clock 

freq.（MHz）
shuffling substitution others

100 583 54.1 13.5 651

500 218 109 27.4 354

1,000 126 120 30.0 276

2,000 68.4 126 32.4 227
 

 

Since RC4 is a stream encryption method, the unit of 

processing data is 1 byte, and the RC4 key is used for the 

shuffling process and substitution. However, as mentioned 

above, for shorter packet data lengths, the RC4 shuffling 

process occupies most of the encryption cycles. Thus, the 

designers in [10] proposed a way to reduce the encryption 

cycles of RC4 shuffling operations.  Reducing the shuffling 

cycles of RC4 means that the system reduces the number of 

accesses to the memory. However, the data dependence 

makes the parallel processing impossible. In [10], a 16-bit 

based memory access method is developed to complete the 

shuffling process, which reduces the number of memory 

accesses while avoiding the dependency of intermediate data.  

In Table II, the 32-bit memory access scheme is only 20% 

less than the 16-bit memory access scheme does; however, 

the 32-bit based memory access design requires more 

complex control, and it results in more hardware cost, 

compared with the 16-bit memory access scheme. Therefore, 

the 16-bit packed memory access method is adopted in [10], 

and its memory access number is 30% less than the number 

of the 8-bit memory access scheme. 

 
TABLE II: COMPARISON OF MEMORY ACCESS NUMBERS [10] 

Bus width Memory access numbers 

8 bits 1,282 

16 bits 896 

32 bits 704 

 

On the other hand, for the encryption and decryption 

process of AES-CCM in [4], [10], [15], and [16], two AES 

processing hardware are required, where one is as the 

processing of the CBC-MAC mode, and the other is as the 

processing of the counter mode. To achieve higher data 

throughput, the overlapped pipelined processing for the 

CBC-MAC and counter modes is used in [10]. The AES 

processing unit in [10] is based on the 32-bit data-path and 

multi-cycle byte-by-byte shifters, and it can support the 

maximum data throughput of IEEE 802.11a/g at the 40 MHz 

clock frequency. Finally, the WEP/TKIP and AES-CCM 

operations require 2,048 bits of memory to store the 

expanded key and the round key. Since the IEEE 802.11i 

encryption algorithm is used alternately, the WEP/TKIP and 

AES-CCM operations shares a single 128×16-bit memory. 

 

III. PROPOSED ARCHITECTURE DESIGN FOR LOW LATENCY 

IEEE 802.11i PROCESSING UNIT 

Fig. 2 illustrates the architecture design of the proposed 

IEEE 802.11i processing unit (i.e. core11i). For the 

low-latency 802.11i cryptography processing circuit, firstly 

the overall architecture is described. Next, the architecture 

design of the WEP/TKIP modes is introduced. Finally, the 

applied CCMP architecture CCMP is discussed. Table III 

lists the input/output signal descriptions of the proposed 

core11i module. 
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Fig. 2. Architecture design of the proposed IEEE 802.11i processing unit 

(core11i). 

 

In Fig. 2, the “dinProcess” module is the input data 

processing unit, and the “tkip” module is the WEP/TKIP 

encryption and decryption unit, and then the “SPram128x16” 

module is a single-port 128×16-bit memory.  Moreover, the 
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“ccm” module is designed for the CCMP encryption and 

decryption unit, and the “outMux” module is designed for the 

output multiplexer between the modules. The “dinProcess” 

module determines which module the data should be sent to 

and generates the corresponding control signals based on the 

order of the input data. Table IV defines the operational 

modes and order of input data for the encryption and 

decryption of the WEP, TKIP, and CCMP modes. 

 
TABLE III: INPUT / OUTPUT SIGNAL DESCRIPTIONS OF THE PROPOSED 

CORE11I MODULE 
Name Type Descriptions 

clk Input System clock signal (positive edge trigger) 

rst Input System reset signal (synchronous reset) 

crypt_mode[1:0] Input 0: Chip Disable, 1: WEP, 2: TKIP, 3: CCMP 

ed_crypt Input 0: encryption, 1: decryption 

start Input This signal is 1 to start to process the input data 

din[7:0] Input Input data 

din_valid Input If this signal is 1, there is a valid data on the 

input 

encryptedDin Input This signal is 1 for the input data as the 

encrypted MIC value and the encrypted ICV 

value.  This signal is only used in the WEP and 

TKIP decryptions 

dout[7:0] Output  Output data 

ready Output This signal is 1 when the output data is valid. 

read_din Output Read request for Input data 

finish Output This signal is 1 means that all data has been 

processed. 

icv_error Output If this signal is 1, the ICV check result is 

different for decrypting.  The signal is only used 

in the WEP and TKIP decryptions 

mic_error Output If this signal is 1, the MIC check result is 

different for decrypting. This signal is only used 

in the TKIP and CCMP decryptions 

 
TABLE IV: OPERATIONAL MODES AND ORDER OF INPUT DATA OF THE 

PROPOSED IEEE 802.11I PROCESSING UNIT 

 

 

In the proposed hardware architecture, the encryption and 

decryption functions of TKIP and WEP are integrated into a 

single module. In Fig. 3, the “michael”, “mic2crc” and 

“micCpr” modules are only used in the TKIP mode. The 

“mic2crc” and “p2s” modules are used for the WEP and 

TKIP encryptions, while the “micCpr” and “icvCpr” modules 

are used for the WEP and TKIP decryptions.  Except the 

above mentioned modules, all of the rest modules will be 

used whether the WEP or TKIP mode is active or not. Fig. 4 

shows the applied architecture for the RC4 operations, and it 

is based on the architecture design in [10]. The design goal of 

the RC4 ciphering module is to generate an 8-bit key stream 

by using a single-port 128×16-bit memory. The RC4 stream 

encryption is a core encryption and decryption method in the 

WEP and TKIP modes, and it is one of symmetric encryption 

methodologies. Although RC4 is a symmetric encryption 

method, the key it uses does not directly encrypt or decrypt 

data as AES does.  The key used by RC4 is simply used to 

shuffle a 256-byte data. Once the shuffling process is 

completed, the key is no longer used. A 1-byte key stream is 

systematically selected from the 256-byte shuffled array to 

encrypt or decrypt the data. 

The most important process of the RC4 algorithm is to 

continuously shuffle the memory. In our design, the 16-bit 

packed memory method is applied to design the RC4 pseudo 

random number generator (PRNG) by using a single-port 

128×16-bit memory. In Fig. 4, the “rc4_key” is the lowest 8 

bits from the 128-bit keyReg. The address values of the 

memory, i.e. “addr”, are assigned from three address 

generation sources, and the input data values of the memory, 

i.e. “data”, are allocated from five data sources. The output 

data, i.e. “q_out”, is loaded into the register “q_outReg” 

before it is transferred to different target registers. Fig. 5, 6, 

and 7 show the architecture designs of the TKIP Michael, 

CRC-32, and Cipher functions with surrounding circuits, 

respectively. In addition, Fig. 8 also depicts the block 

diagram of the ICV and MIC check circuits. 
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Fig. 3. Internal Structure of TKIP. 

 

 
Fig. 4. The architecture of the RC4 PRNG module with a single-port 

128×16-bit memory. 
 

The developed RC4 PRNG module has three operational 

phases, which are described as follows: 

A. The Memory Initialization Phase 

The value of the write address is from “i_cnt”, and it will 

be increased from 0 to 127. The data value is in the “data0” 

counter, and the initial value is 0x0001, and then each 

increment is set to 0x0202. Finally, its value is 0xFEFF. In 

this phase, the operations are completed in 128 cycles. 

B. The Memory Shuffling Phase 

(1) The data is read from the address i (i.e., i_cnt), and it is 

stored in Si_HiReg and Si_LoReg. The address j/2 is 

calculated from the value of Si_HiReg. 

(2) Read the data from the address j/2, and store it in 

Sj_HiReg and Sj_LoReg. 

(3) Write Si_HiReg to the appropriate location of the 

address j/2.  
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(4) Calculate the address j/2 based on the value of 

Si_LoReg. The data is read from the address j/2, and 

stored in Sj_HiReg and Sj_LoReg.  If the address j/2 

equals the address i, the high-order portion of the read 

data is in Si_HiReg. 

(5) Write the value in Si_LoReg to the appropriate location 

of the address j/2.  If the location written to the address 

j/2 exactly equals the high-order part of the address i, 

the system updates the value stored in Si_HiReg. 

(6) Write the data stored in Si_HiReg back to the address i. 

(7) Repeat Step (1) to Step (6), and the value of i_cnt is 

increased from 0 to 127. 

C. The Key Stream Generation Phase 

The processing steps are listed as follows: 

(1L) Read the data from the address I, and store it in 

Si_HiReg and Si_LoReg. The address j/2 is calculated from 

the value of Si_LoReg. 

(2L) Read the data from the address j/2, and store it in 

Sj_HiReg and Sj_LoReg. 

(3L) After writing Si_LoReg to the position of the address 

j/2, the value of Si_LoReg is added to the value of 

Sj_HiReg (or Sj_LoReg) to calculate the address t/2, where 

the key stream is located. 

(4L) Write Sj_HiReg or Sj_LoReg back to the lower byte 

part of the address i. 

(5L) Read the data from the address t/2, and select the 

appropriate partial output, which is the key stream. 

(6L) Determine if the value of“din_valid” is 1.  If it is 1, 

continue to generate the key stream, go to Step (1H), and 

the value of i_cnt is increased by one; if it is 0, stop to 

generate the key stream until the value of “din_valid” is 

1, and then continue to generate the key stream. 

(1H) Read the data from the address I, and store it in 

Si_HiReg and Si_LoReg. The address j/2 is calculated from 

the value of Si_HiReg. 

(2H) Read the data from the address j/2, and store it in 

Sj_HiReg and Sj_LoReg. 

(3H) After writing Si_HiReg to the position of the address 

j/2, the value of Si_HiReg is added to the value of 

Sj_HiReg (or Sj_LoReg) to calculate the address t/2, where 

the key stream is located. 

(4H) Write Sj_HiReg or Sj_LoReg back to the higher byte 

part of the address i. 

(5H) Read the data from the address t/2, and select the 

appropriate partial output, which is the key stream. 

(6H) Determine if the value of “din_valid” is 1.  If it is 1, 

continue to generate the key stream, go to Step (1L); if it is 

0, stop to generate the key stream until the value of 

“din_valid” is 1, and continue to generate the key stream. 

In Step (1L) to Step (6L), the procedures of low-byte 

portion processing are revealed, and the procedures of the 

high-byte portion processing are indicated in Step (1H) to 

Step (6H). In our design, the AES hardware used in CCMP is 

based on the 32-bit architecture, and the applied S-Box part is 

implemented by referring the low-cost S-Box architecture in 

[16]. The AES function defined in CCMP uses a 128-bit 

encryption key and processes 128-bit data.  In the proposed 

design, the designed AES hardware is based on 32-bit 

architecture, so the key, data input, and data output need to be 

processed in 32-bit units. Fig. 9 depicts the internal block 

diagram of the ccm module. In Fig. 9, the “CCMcore” 

module is the main control circuit, which controls the AES 

modules to encrypt and decrypt data and calculate the MIC 

value. Two AES hardware is implemented in our design, and 

their module names are “aes4cbc” and “aes4ctr”. The 

“aes4cbc” module is designed for the CBC-MAC mode, and 

calculates the MIC value of the plaintext. The “aes4ctr” 

module performs the CTR mode to encrypt or decrypt the 

data. Besides, the entire “ccm” module is active only when 

the “crypt_mode” signal is set to the value, i.e. 2. 

 

 
Fig. 5. TKIP Michael with surrounding circuits. 

 

 
Fig. 6. CRC-32 with surrounding circuits. 

 

 
Fig. 7. Cipher circuit with surrounding circuits. 

 

 
Fig. 8. ICV and MIC check circuits. 
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Fig. 9. Architecture diagram of the “ccm” module. 
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IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In experiments, firstly the functional model of IEEE 

802.11i is built with the C/C++ codes, and then the hardware 

model is constructed by the synthesizable Verilog HDL. Next, 

the cell-based design flow is used for the following VLSI 

implementation. The “ModelSim” HDL simulator is used for 

functional simulation and verification, and then the 

hardware-based Verilog HDL model is synthesized by 

TSMC 0.18um process through Synopsys Design Compiler. 

Besides, the Artisan Standard Library SRAM Generator [17] 

is applied to generate the single-port 128×16-bit memory. To 

compare between two different RC4 PRNG hardware 

architectures, but do not include the memory cost, only the 

core control logic is considered, where the “rc4core” module 

is illustrated in Fig. 3. Table V lists the comparison of the 

“rc4core” module by using different memories after logic 

syntheses. 

 
TABLE V: COMPARISON OF THE “RC4CORE” MODULE BY DIFFERENT 

MEMORIES 
Applied  

memory types 
Gate counts 
excluding 
memory 

Maximum 
operational 
frequency 

Power 
consumption 

Single port 

256×8-bit 

2,315 117.65MHz 1.1661mW 

Single port 

128×16-bit 
2,969 85.76MHz 1.3716mW 

 

By referring to the specification in [17], when the 

“rc4core” module accesses the memory, it takes 2 cycles to 

read the data, and only 1 cycle is required to write the data.  In 

Table VI, the initialization phase only performs the write 

operations, and the number of required cycles is not changed. 

The shuffling phase includes the read and write operations, 

and then the number of required cycles is increased.  Our 

design goal is to improve the data throughput of the IEEE 

802.11i encryption and decryption processing unit by 

reducing the latency delay. According to the analysis in Table 

VI, the proposed design uses a single-port 128 × 16-bit 

memory to design the “rc4core” module.   

 
TABLE VI: THE REQUIRED MEMORY ACCESS CYCLES FOR THE “RC4CORE” 

MODULE BY USING DIFFERENT MEMORIES 

Memory types Cycles for 
initialization  

Cycles for 
shuffling process 

Single port 

256×8-bit 

256 256 × 6 = 1,536 

Dual port 

256×8-bit 

128 256 × 5 = 1,280 

Single port 

128×16-bit 

128 128 × 9 = 1,152 

 

By VLSI implementation, the cipher computational 

functions of the low-latency IEEE 802.11i cryptography 

architecture need 44,300 gate counts, and the maximum 

operational frequency is 51MHz. At 50MHz operational 

frequency, the power consumption of the processing unit is 

12.61mW. Table VII describes the VLSI implementation 

comparison between two different IEEE 802.11i hardware 

architectures, where the gate counts excludes the cost of the 

single-port 128x16-bit memory module. Table VIII also lists 

the gate counts of each module for the proposed VLSI design. 

TABLE VII:  VLSI IMPLEMENTATION COMPARISON BETWEEN TWO IEEE 

802.11I HARDWARE ARCHITECTURES 

 Proposed 

(core11i) 

Design in [10] 

Gate counts 44,275 17,832 

Memory size 2K bits 2K bits 

Maximum 

frequency 

50.99MHz 72MHz 

Power 
consumption 

12.61mW@50MHz 14.5mW@60MHz 

Supporting 

ciphering 
functions 

Full functions Full functions* 

* Some functions may be not completely supported in [10]. 

 

TABLE VIII: THE GATE COUNTS OF EACH MODULE FOR THE PROPOSED 

VLSI DESIGN 

Module name Gate counts 

dinProcess 901 

tkip 16,486 

ccm 26,845 

outMux 43 

Total 44,275 

 

The comparisons between the proposed VLSI design and 

the previous design in [10] are discussed as follows:  

⚫ The function of the key mixing unit in [10] is equivalent 

to that of the proposed “rc4keygen” module in Fig. 3, 

which is designed to generate the RC4 key. However, for 

the TKIP hybrid function phase, the required S-box 

seems not be implemented in [10], and it causes that the 

calculated RC4 key does not meet the expected value.  In 

our design, the hardware includes the S-box, which 

requires about 2,000 gate counts. 

⚫ After calculating the MIC value, TKIP will attach the 

MIC to the plaintext, and will send it to the WEP 

encryption for processes. The MIC value calculated by 

TKIP must be sent to CRC-32 to calculate the ICV value. 

However, in [8], such the data path seems to be lost, 

which may cause the incorrect ICV value. In the 

proposed hardware, the “mic2crc” module handles the 

data path, and the required number of gate counts for this 

module is about 790. 

⚫ In [10], only one AES hardware is used, but the proposed 

design needs two AES hardware for pipeline processing. 

The hardware cost of the applied AES hardware requires 

6,160 gate counts. Since the proposed hardware uses a 

synchronous design, all of the module outputs are 

register-based outputs, which result in the additional 

hardware cost of output registers.  

⚫ Compared with the design in [10], the proposed 

hardware needs a lower maximum operating frequency. 

In the proposed design, the critical path is existed during 

the operation of the “rc4keygen” module, and the 

processing time of the critical path is the sum of delay 

time of the 16-bit XOR operation, the lookup table 

process of S-box, and the 16-bit addition.  In the 

proposed architecture, the critical path is processed in 

one cycle for low latency design.  

The data throughputs of the proposed hardware design are 

discussed with the WEP, TKIP and CCMP modes as follows: 

In the WEP operational mode, the “dinProcess” module 

has one latency cycle, and the “rc4keygen” module has nine 

latency cycles. The “rc4core” module has three operational 

phases. The delay period in the memory initialization phase is 

128 cycles, and the delay period in the memory shuffling 
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phase is 1,152 cycles. In the keystream generation phase for 

generating 1-byte key stream, the delay period for operations 

needs 9 cycles. For encrypting the N-byte plaintext, the delay 

period of the phase is 9N. If both the plaintext and the key 

stream are ready, the cipher module can complete the 

encryption in only one cycle, and the encryption is performed 

during generating the next key stream by the “rc4core” 

module. Therefore, the required duty cycles in the WEP 

mode are (1 + 9 + 128 + 1,152) + (9N), where N is the total 

number of bytes in plaintext. Table IX shows the required 

duty cycles of the WEP mode at different plaintext lengths, 

where the data throughput is calculated when the clock 

frequency is set to 50MHz. 

 
TABLE IX: THROUGHPUT OF WEP FOR THE PROPOSED DESIGN 

Data length

(N)
# Clock cycles Throughput

(@50MHz)

100-byte 2,190 18.26Mbps

500-byte 5,790 34.54Mbps

1,000-byte 10,290 38.87Mbps

2,000-byte 19,290 41.47Mbps
 

 

When the processing unit operates in the TKIP mode, the 

delay period of the “dinProcess” module is 23 cycles, and the 

delay period of the “rc4keygen” module is 84 cycles.  The 

delay period of the “rc4core” module is the same as that in the 

WEP mode. Therefore, the required duty cycles in the TKIP 

mode is (23 + 84 + 128 + 1,152) + (9N), where N is the total 

number of bytes in plaintext. Table X lists the required duty 

cycles of the TKIP mode at different plaintext lengths. In 

Table X, the data throughput is also calculated at the 50MHz 

operational frequency. 

 
TABLE X:  THROUGHPUT OF TKIP FOR THE PROPOSED DESIGN 

Data length

(N)
# Clock cycles Throughput

(@50MHz)

100-byte 2,287 17.49Mbps

500-byte 5,887 33.97Mbps

1,000-byte 10,387 38.51Mbps

2,000-byte 19,387 41.26Mbps
 

 
TABLE XI: THROUGHPUT OF CCMP FOR THE PROPOSED DESIGN 

Data length

(N)
# Clock cycles Throughput

(@50MHz)

100-byte 524 82.44Mbps

500-byte 1,699 119.60Mbps

1,000-byte 3,156 127.76Mbps

2,000-byte 6,070 132.32Mbps
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Fig. 10. Required clock frequency to achieve the transmission rate of 

54Mbps for the proposed design. 

Table XI reveals the required duty cycles of the CCMP 

mode at different plaintext lengths. The data throughput is 

also estimated when the operational frequency is set to 

50MHz. Fig. 10 illustrates the required clock frequency to 

achieve the transmission rate of 54Mbps for the proposed 

architecture design at the WEP, TKIP, and CCMP modes, 

respectively. 

 

V. CONCLUSION 

IEEE 802.11i has three security mechanisms, which 

include WEP, TKIP and CCMP.  In this paper, the three 

major security functions are implemented with hardware 

design due to their enormous amount of computational costs. 

The 16-bit packed memory algorithm in [10], the 

non-pipelined 32-bit AES architecture, and the TKIP mixing 

function are applied to achieve the goal of low latency.  By 

VLSI implementation with TSMC 0.18um technology, the 

cipher computational functions of the low-latency IEEE 

802.11i cryptography architecture need 44,300 gate counts, 

and the maximum operational frequency is 51MHz. At 

50MHz operational frequency, the power consumption of the 

processing unit is 12.61mW. In future works, the low-latency 

IEEE 802.11i security processing circuit will be efficiently 

developed to support higher throughput for the 

next-generation IEEE 802.11 communications, e.g. IEEE 

802.11n/ac. 
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