

Abstract—Query autocompletion (QAC) is the feature to

provide the intended possible candidate completions given some

initial prefixes from users. By applying QAC techniques, users

are assisted in formulating queries and saving input keystrokes.

Due to the convenience it brings to users, QAC has been adopted

in many real-world applications, including search engines,

integrated development environments (IDEs), and mobile

devices. With the growing popularity of mobile devices, a recent

trend is to integrate query autocompletion into location-based

services, such as Web mapping and spatial keyword search. In

this paper, we present an interactive system of location-aware

query autocompletion called Loquat, which provides a graphical

interface to help users easily formulate their location-aware

queries. We develop novel index structures and search

algorithms to make such an interactive system work efficiently.

We extend our system to support fuzzy search and

multiple-keyword search. We also define a new ranking function

taking fuzzy threshold value into consideration. The

experiments on two real-life datasets verify the efficiency and its

interactive usability of our system.

Index Terms—Query autocompletion, spatial databases,

interactive.

I. INTRODUCTION

The prevalence of geo-tagged text data in modern

real-world applications such as Web mapping and

spatial-keyword search has led to a rejuvenation of research

on geo-text data managements. However, typing meaningful

spatial keyword query is a tedious and error-prone process

especially on devices with small keyboards such as mobile

phones. Query autocompletion plays an important role in

search engines, command shells, desktop search, software

development environments, and mobile applications. It can

guide users to create queries faster and avoid spelling errors

by providing instant completions to users’ query letter by

letter. It can also improve the throughput of the system as

query or intermediate results can be effectively cached and

reused. With the growing popularity of mobile devices, a

recent trend is to integrate query autocompletion into

location-based services. One of the main applications is to

complete the queries with the textual descriptions of nearby

points of interest within distances bounded by a threshold

value, such as a Web mapping service illustrated in Fig. 1. We

Manuscript received August 10, 2018; revised November 12, 2108. This

research was partly supported by the Grant-in-Aid for Scientific Research

(16H01722) from JSPS.

Sheng Hu and Ishikawa Yoshiharu are with Graduate School of

Informatics, Nagoya University, Nagoya, 464-0804 Japan (e-mail:

hu@db.ss.is.nagoya-u.ac.jp, ishikawa@i.nagoya-u.ac.jp).

Chuan Xiao is with Institute for Advanced Research, Nagoya University,

Nagoya, 464-0804 Japan (e-mail: chuanx@nagoya-u.jp).

call this problem location-aware query autocompletion. A

query of this problem includes a location, such as the black

arrow mark in Fig. 1, which can be obtained automatically

by tracking the GPS signal of the mobile devices. The query

also includes a string prefix, a point of interest will be

returned if it is close to the spatial location and its textual

descriptions begin with the given string prefix. Moreover,

fuzzy search, or error-tolerant autocompletion also becomes

very prevalent, especially considering the case that users

might type with the error-prone keyboards of mobile devices.

With the help of fuzzy search features, the system can suggest

correct results despite there are typos on both query prefix and

data sides. To handle the location-aware query

autocompletion problem, existing methods focus on

combining spatial and textual information to process queries

efficiently. A comprehensive prospective of these methods

can be presented in a taxonomy, according to how their

indexes are combined. We classify them into text-first [1],

space-first [2], and tightly-combined [3] methods. For

text-first methods, a trie is used to index string descriptions of

data objects. Meanwhile, objects and the information of the

locations can be retrieved on leaf nodes of the trie. For

space-first methods, an R-tree or quadtree is used to index

data objects by their locations, and use the textual

descriptions as filters when processing queries. For

tightly-combined methods, integrated descriptors of both

textual and spatial information are designed to build the index.

However, all of the existing methods have the drawbacks of

low runtime performance when come across the scalable data,

and the response time latency becomes unendurable

especially when large amount of simultaneous queries occur.

In addition, these methods also ignore to support fuzzy search

features which might be an even worse case for system

workload. To avoid the problem brought in by storing on trie

nodes the spatial information of all the queries, we choose to

only store the spatial information of data objects instead.

In this paper, we show that by employing novel index

structures and algorithms, high speed for interactive and fuzzy

search performance can be achieved. We implemented these

algorithms and techniques in a system called Loquat

(Location-aware query autocompletion). A part of the

preliminary algorithmic aspect of this work was presented

previously in a journal [4]. We extend our system to support

fuzzy search and multiple-keyword search. We also define a

new ranking function taking fuzzy threshold value into

consideration. Finally, we demonstrate the superiority of our

system compared with the state-of-the-art work through the

experiments.

Loquat: An Interactive System Design for Location-Aware

Query Autocompletion

Sheng Hu, Chuan Xiao, and Yoshiharu Ishikawa

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

91doi: 10.18178/jacn.2018.6.2.260

Fig. 1. Interface of loquat system.

Fig. 1 is a screenshot of our system when a user tried

finding POIs begin with “star”. The user intended to find the

nearest Starbucks coffee for a rest and wanted to find the one

with the highest rating and providing good services. The

user’s location was obtained by GPS signal and marked on the

map as a black arrow. The search results returned on the left

side were refreshed incrementally when the query was typed

letter by letter. Finally, when the user stopped at “star”, three

qualified POIs were returned as A, B and C. A was ranked

highest because it is nearest and also has a highest rating.

The Loquat system provides several customized features to

make it user-friendly. By changing the search settings by

clicking the setting button, users can choose to select a

rectangle area on the map to return all qualified results instead

of return the highest ranked k ones. Also, users can switch the

fuzzy search option to decide to perform an exact match or not.

Users are also allowed to specify how many typos can be

tolerant as errors. Moreover, user can set a weight between

distance and POI popularity (ratings, price, etc.).

Our contributions can be summarized as follows:

 • We implement a highly interactive and efficient

location-aware autocompletion system called Loquat. It has a

user-friendly interface and a lot of user-customized settings. It

can efficiently answer range and top-k queries with an

acceptable index size. Both range queries and top-k queries

can be answered in microseconds or even faster.

• We extend the system to support fuzzy search and

multiple-keyword search so as to handle the case when users

input queries with error-prone devices.

• We conduct experiments to evaluate the efficiency and

II. OVERVIEW OF LOQUAT

A. System Architecture

The overall architecture of Loquat is shown in Fig. 2. The

system adopts client/server architecture. The client-side is

based on a web-based interface and can be accessed by

mobile phones, desktop PC, tablets and so on. The user inputs

his query through the interactive user interface, and the web

interface acts like a client to transmit the formatted query to

our web server. The server-side is composed of (1) a Query

Processing module, (2) an Index module, (3) a Results

Ranking module and (4) a Geo-Textual Database module.

The Query Processing module receives a formatted query

from the user client and transforms the raw query into the

form which will be executed directly in the Index module. The

index module indexes the textual data as a prefix-tree (trie)

with additional spatial information for fast look-ups. After

executing the query passed from Query Processing module,

the Index module returns all possible candidate results to

Result Ranking module. Then, the Results Ranking module

ranks the results according to some specific criterions and

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

92

interactive usability of our system with comparison to the

state-of-the-art work. The rest of this paper is organized as

follows. Section II is an overview of Loquat. Section III

presents more technical details including index structure and

query processing algorithms. Section IV reports experiment

results and analysis. Section V surveys related work. Section

VI concludes this paper.

returns the top-k results to the user client. The user interface

will receive the top-k results and show the results in a

drop-down list in an incremental way. The Geo-Textual

Database module will collect the POIs information regularly

and update the trie in the Index module incrementally. Except

for the Geo-Textual database module, the other three modules

will be run in memory.

User Interface

Query Processing Results Ranking

Index

Database

Server

Database Database

Update

Fig. 2. The system architecture of loquat.

B. Problem Formulation

Consider a geo-textual database O. Each object o ∈ O is

defined as a tuple {o.str, o.loc, o.scr}, where o.str is the text

which describes the objects. o.loc = (x, y) is a descriptor and

describes the location in a 2-dimensional space.

Fig. 3. An example of database O.

o.scr is the static score aggregated from several features,

e.g. user rating and price. max_scr is the maximum static

score of the objects. max_dist is the maximum distance

between two objects in O. An example is shown in Fig. 3 and

Fig. 4.

Fig. 4. O in 2-dimensional space.

Consider two strings s and s’, “s’ s” denotes that s’ is a

prefix of s; i.e., s’ = s[1..|s’|]. We introduce two types of

queries as below:

Range Query. The query q is composed of a query string

q.str which is the input prefix and a range q.rng depicted by a

rectangle. The results to the query q is a set of the objects o ∈

O such that q.str o.str and o.loc is in the range q.rng.

Top-k Query. The query q is composed of a query string

q.str which is the input prefix and a location q.loc. The results

to the query q is a ranked set of the top-k objects o ∈ O such

that q.str o.str, ranked by a ranking function F(o, q). A

following ranking function is defined to combine some

normalized factors of an object with regarding to the query q,

In addition, our method can be extended to support other

monotonic functions.

. (. , .)
(,) (1) 1

_ _

o scr dist o loc q loc
F o q

max scr max dist

(1)

where α is a weight parameter to balance spatial proximity

and the static score. .

_

o scr

max scr

 is the normalized score within

the range of [0, 1] which measures the popularity with the

object. (. , .)
1

_

dist o loc q loc

max dist

 is the normalized Euclidean

distance between the object and the query.

III. TECHNICAL DETAILS

A. Index Structure

We build our index as a trie on the set of object strings.

Each string corresponds to the labeled path from the root to a

node in the trie, then the traversal can be quickly done by

starting from the root node to locate by going along the path

matched by the query string. Next, we give a definition of the

underlying object. If a data object appears as a result of a trie

node, that is, the path from the root to the trie node is a prefix

of the data object, then we call a data object an underlying

object of this trie node. Note that a trie node may have many

underlying objects. For easy illustration, we equip each trie

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

93

node with a unique id by running a pre-order traversal in the

trie as shown in Fig. 5. Meanwhile, for each trie node, we

integrate spatial information into it. First, the global space is

partitioned into a set of spatial regions. This step can be done

using common data structures for spatial objects, such as grid,

R-tree, quadtree, etc. As shown in Fig. 4, the global space is

partitioned into nine regions. These regions can be obtained

by the cells of grids or the leaf nodes of a quadtree. For ease of

illustration, we use a grid to partition the global space in Fig. 4,

then denote each region with a region number in the left-down

corner of that region. Note that in our experiments, quadtree is

used because of better practical performance. According to

the number order attached in each region, a bit array is

designed with each position of the array representing a region.

We equip each node in the trie with such a bit array. We set

the corresponding bit to 1 if the node has an underlying object

in this region; or 0, otherwise. Especially, we call it region bit

array. By the intersection operation of this bit array, we can

check whether there is an underlying object in the region by

simply intersecting it with the query range.

Fig. 5. The bit trie index.

Next we introduce the data objects storage structure. We

store all the data objects into an array called data object array,

which is partitioned similarly into spatial regions according to

the partitions on the global space. Then we begin to sort the

data object array by two kinds of orders. First we sort them as

the region order shown in Fig. 5. Then we sort the partial array

corresponding to each region according to the order of the leaf

node appearing in the trie. Next, we equipped each trie node

with a list called region list, whose entries are in the form of <

region ID, maximum static score, starting pointer, ending

pointer >, to efficiently locate the underlying objects in the

array. The maximum static score of an entry is computed in

advance as the maximum static score among all the

underlying objects of that node in this region, and it is used for

early termination when answering top-k queries. The starting

and ending pointers are used to quickly locate results in the

data object array with a linear scan. They can be recorded as

the index of the starting and ending positions in the partial

array which contains the underlying objects of the node in this

region, respectively. For the purpose of early termination, we

sort the entries in the list by descending maximum static score

order.

For index construction, we first sort the data strings in

alphabetical order, then insert them into the trie one by one.

When a string is inserted, we update the region bit arrays and

the region lists of the nodes on the path, along with the

maximum static scores of the nodes. The time complexity of

the index construction is O(OlogO + S), where S is the sum of

string lengths of the objects. Consider the strings in Fig. 3, its

trie is shown in Fig. 5. For node 2, its corresponding prefix is

na, its bit array is “000010001”, and its underlying objects are

o1, o2 and o3.

B. Search Algorithm

We introduce several query processing algorithms in this

section. First, range queries and top-k queries algorithms are

shown. Then, we extend them to support fuzzy search and

discuss the way to support multiple-keyword search.

C. Incrementally Search Keywords of An Input Prefix

Range Query. We divide query processing into two phases:

(1) searching phase, in which we traverse the trie index using

the query string then checked the spatial condition; and (2)

result fetching phase, in which we access the data object array

to locate and return results. Searching phase is run first. Given

a query <q.str, q.rng>, we first converse q.rng according to

the global space partitioning and obtain the regions

intersected by q.rng. According to the regions obtained, an

initialized bit array is obtained, by setting a bit to 1 if q.rng

intersects a region; or 0, otherwise. We call the bit array

region status. After that we begin to traverse the trie using

q.str. When come across a trie node, we update the region

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

94

status by a bitwise AND operation with the region bit array of

the node. If a bit becomes 0 after the bitwise AND operation,

it means that obviously there is no underlying object in this

region for the query. Whenever query string cannot be

matched or the intersected region status becomes all zero, we

can terminate the traversal of the trie and return no results. We

describe the above process in Algorithm 1. First, a region

status is initialized (Line 1). Then it traverses the trie to match

the incoming keystroke (Line 4) and update the region status

(Line 5). If the keystroke cannot be matched or the region

status becomes all zero, the whole traversal is terminated. It

returns the currently located nodes and the region status for

result fetching, or null to indicate there is no result (Line 14).

The time complexity is O(|q.str|), where || denotes the length

of a string.

We show the result fetching phase in Algorithm 2. First, the

region status bit array is scanned and the positions of the bits

equal to 1 are obtained. Then we scan the corresponding

regions in the region list. The objects in the data object array

are located using the starting and ending pointers. Each object

is verified by the query range. The time complexity

is
| |

1
(1)

L

i ii
e s

 , where L denotes the region list, si and ei

denote the starting and ending pointers of the i-th entry in the

list, respectively.

Top-k Query. As the algorithm framework of processing

top-k queries is similar to processing range queries, except

that the region status is not involved as there is no spatial

constraint, we omit the detailed algorithms here. To

efficiently process the top-k queries, several pruning

techniques are proposed in our preliminary work [4] for the

purpose of early termination.

D. Supporting Fuzzy Search

Due to our trie-based index, our method can be easily

extended to support any existing fuzzy search algorithm

[5]-[10]. In the implementation of Loquat, we choose the

trie-based method proposed in [6]. The basic idea of the

method in [6] is to process the keystrokes in the query and

compute a set of active nodes in the trie. We use edit distance

as the threshold value to control the degree of fuzzy search,

The path from the root to an active node is a string whose edit

distance to the query is within the threshold .

E. Other Extensions

We discuss other extensions including supporting

multiple-keyword search and synonym query autocompletion

here. Compared to [3] and [1], our work is easier to extend to

multiple keyword search. Because each traversal of one

keyword in the trie will result in a temporary bit array. This

temporary bit array can be used as a filter in the subsequent

traversal of remaining keywords. If this preceding temporary

bit array has no intersection with the subsequent bit array, the

search can be terminated immediately because we can make

sure that there are no intersected underlying objects located in

any spatial grids. In addition, our index is also flexible to

support synonym query autocompletion by simply adding

synonym links between the trie nodes as shown in [11].

F. Ranking Results

Although we give a general ranking function in Section 3,

the popularity score can be aggregated by many ranking

signals such as the user ratings, user feedback and price of the

POI. In addition, we extend the ranking function by taking

fuzzy threshold value into considerations. The renewed

ranking function is modified as follow:

.
(,) 1

_ _

(. , .)
(1) 1

_

o scr
F o q

max scr max

dist o loc q loc

max dist

β

β

 (2)

In addition to , another weight is added to balance the

three components. is the edit distance of matched query and

data string pair. max_ is the maximum threshold value

allowed in the system. Using this new ranking function, an

answer with smaller will be ranked higher as users always

try to input correctly in the prefixes.

IV. EXPERIMENTAL RESULTS

A. Setup

Experimental Platform. All experiments were done on a

computer with an Intel i5 2.6GHz processor, 32GB RAM,

running Ubuntu 14.04.1. The backend system modules are

implemented using C++, the frontend interface is

implemented using Node.js framework.

Dataset. Our experiments are conducted on two real

datasets: UK and US. UK is a dataset containing POIs (e.g.

banks and cinemas) in UK (www.pocketgpsworld.com). US

is a dataset of 2M POIs located in US (www.geonames.org).

The statistics are shown in Table I.

Baseline method. We choose the state-of-the-art PR-Tree

as baseline [3]. PR-Tree is a tightly-combined method that

merges trie and quadtree into a single index. It was designed

for processing knn queries.

Evaluation measurements. For each type of query, we

generate 1,000 random queries by choosing strings that

appear in the dataset. Longitude and latitude are normalized

to [0, 1]. The default query range is a 0.08 × 0.08 square. The

default value of k is 10. We measure (1) average query

response time, including both searching time and result

fetching time, (2) index construction time, and (3) index size.

TABLE I: DATASET STATISTICS

Dataset |O| Size Avg. str_len

UK 181,549 7 MB 10.1

US 2,234,061 82 MB 10.6

B. Range Queries

We first show the performance of processing range queries.

Fig. 6 (a) – 6 (b) show the query processing times of the two

algorithms on the two datasets, varying query string length.

We can observe that query processing times decrease with the

query string length, this is mainly because the number of

results returned by both algorithms keeps reducing when

query length grows which leads to fast processing time.

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

95

PR-Tree shows some rebounds when the query becomes

longer because of more traversal cost. For both the small

dataset UK and large dataset US, Loquat outperforms

PR-Tree up to 10 times and 30 times, respectively.

Fig. 6(a). Performance on range queries on UK.

Fig. 6(b). Performance on range queries on US.

C. Top-k Queries

For top-k queries, the comparison with two methods on the

two datasets are shown in Fig. 7 (a) – 7 (b). Thank for the

optimization techniques of Loquat, our system is always faster

than PR-Tree, with the advantage of almost two orders of

magnitude.

Fig. 7(a). Performance on top-k queries on UK.

Fig. 7(b). Performance on top-k queries on US.

D. Supporting Fuzzy Search

After extending to fuzzy search, the query processing time

is shown in Figs. 8 (a) – 8 (b) for range queries and Figs. 9 (a)

– 9 (b) for top-k queries. For both methods, because the search

time of fuzzy search becomes a dominant component in the

whole processing times, the times continue growing with the

query string length. For range queries, Loquat achieves 15

times and 10 times faster on UK and US than PR-Tree. For

top-k queries, Loquat also achieves 15 and 10 times faster

than PR-Tree on UK and US, respectively.

Fig. 8(a). Performance on fuzzy range queries on UK.

Fig. 8(b). Performance on fuzzy range queries on US.

Fig. 9(a). Performance on fuzzy top-k queries on UK.

Fig. 9(b). Performance on fuzzy top-k queries on US.

E. Index Construction

Table II shows the index sizes of the two methods on the

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

96

two datasets. Table III shows the corresponding index

construction times. Due to more information stored in the

index, the size of Loquat is 2-3 times larger than PR-Tree. The

construction time of Loquat is 2-3 times slower than PR-Tree.

Both Loquat and PR-Tree can finish the index construction

with an acceptable size and reasonable amount of time.

TABLE II: INDEX SIZE (MB)

Dataset Loquat PR-Tree

UK 74.0 39.8

US 1411.2 435.2

TABLE III: INDEX CONSTRUCTION TIME (SECONDS)

Dataset Loquat PR-Tree

UK 0.542 0.347

US 10.038 3.418

V. RELATED WORKS

Query autocompletion has been widely adopted under

various settings, including (1) location-aware type-ahead

search, (2) fuzzy search or error-tolerant autocompletion and

synonym autocompletion. (3) spatial-keyword search. Roy

and Chakrabarti [1] studied the problem of location-aware

type-ahead search and proposed a trie-based index which

enumerates every query location possibility trying to rank the

objects in advance. However, their index suffers from the

consumption of large amount of memory. Ji et al. [2]

proposed a method called Filtering-Effective Hybrid

Indexing (FEH) to answer range queries and kNN queries.

The method builds an R-tree to index data objects by their

locations. Textual filters are used in each R-tree node to check

whether the query string is a prefix of the objects in the

subtree. After that, Zhong et al. proposed Prefix Region Tree

(PR-Tree) [3] that considers textual and spatial partitioning

simultaneously to build the index. Their main index is a

special trie, whose each node is divided into four nodes, each

representing a region in a quadtree, with centroids selected as

the center for partitioning. The major problem of PR-Tree is

the exhausive divisions of trie nodes cause too many branches

of tree nodes, which makes the traversal very slow. Fuzzy

type-ahead search or error-tolerant autocompletion were first

studied in [5] and [6]. Li et al. [7] improved the method

proposed in [5] for space and runtime performance. More

efficient methods were proposed in [8]-[10]. After that, Xu et

al. first studied the problem of synonym query

autocompletion [11]. For spatial keyword search, this

problem has been extensively studied in the database

community, which is a problem about returning the relevant

POIs considering both spatial proximity and textual relevance,

when given a query composed of keywords and a location.

Existing solutions are based on Rtree [12]-[16], grid [17],

[18], and space filling curve [19]. We also refer users to an

experimental evaluation [20] that compares these methods.

VI. CONCLUSION

In this paper, we presented a new system for location-aware

query autocompletion called Loquat, featuring with an

interactive and user-friendly interface and several

user-customized functions. Our system can answer range and

top-k queries on a large scale. Our system can also be easily

extended to support fuzzy search, multiple-keyword search

and synonym autocompletion. The experiment results

demonstrate the efficiency of Loquat and its superiority over

existing state-of-the-art method. For future work, we plan to

utilize external resources such as knowledge graphs or

corpuses to support semantic search. We also plan to integrate

our system with entity resolution techniques to support more

accurate autocompletions.

REFERENCES

[1] S. B. Roy and K. Chakrabarti, “Location-aware type ahead search on

spatial databases: Semantics and efficiency,” ACM SIGMOD 2011, pp.

361-372, 2011.

[2] S. Ji and C. Li, “Location-based instant search,” in Proc. of Int’l Conf.

Scientific and Statistical Database Management (SSDBM 2011), 2011,

pp. 17-36.

[3] R. Zhong, J. Fan, G. Li, K.-L. Tan, and L. Zhou, “Location-aware

instant search,” ACM CIKM 2012, pp. 385-394, 2012.

[4] S. Hu, C. Xiao, and Y. Ishikawa, “An efficient algorithm for

location-aware query autocompletion,” IEICE Transactions, vol. 101,

no. 1, pp. 181-192, 2018.

[5] S. Ji, G. Li, C. Li, and J. Feng, “Efficient interactive fuzzy keyword

search,” WWW 2009, pp. 371-380, 2009.

[6] S. Chaudhuri and R. Kaushik, “Extending autocompletion to tolerate

errors,” ACM SIGMOD 2009, pp. 707-718, 2009.

[7] G. Li, S. Ji, C. Li, and J. Feng, “Efficient fuzzy full-text type-ahead

search,” VLDB J., vol. 20, no. 4, pp. 617-640, 2011.

[8] C. Xiao, J. Qin, W. Wang, Y. Ishikawa, K. Tsuda, and K. Sadakane,

“Efficient error-tolerant query autocompletion,” PVLDB, vol. 6, no. 6,

pp. 373-384, 2013.

[9] X. Zhou, J. Qin, C. Xiao, W. Wang, X. Lin, and Y. Ishikawa, “BEVA:

An efficient query processing algorithm for error-tolerant

autocompletion,” ACM Trans. Database Syst., vol. 41, no. 1, pp. 1-5,

2016.

[10] D. Deng, G. Li, H. Wen, H. V. Jagadish, and J. Feng, “META: An

efficient matching-based method for error-tolerant autocompletion,”

PVLDB, vol. 9, no. 10, pp. 828-839, 2016.

[11] P. Xu and J. Lu, “Top-k string auto-completion with synonyms,”

DASFAA, pp. 202-218, 2017.

[12] I. D. Felipe, V. Hristidis, and N. Rishe, “Keyword search on spatial

databases,” ICDE 2008, pp. 656-665, 2008.

[13] A. Cary, O. Wolfson, and N. Rishe, “Efficient and scalable method for

processing top-k spatial boolean queries,” in Proc. of Int’l. Conf.

Scientific and Statistical Database Management (SSDBM 2010), 2010,

pp. 87-95.

[14] Z. Li, K. C. K. Lee, B. Zheng, W. C. Lee, D. Lee, and X. Wang, “Ir-tree:

An efficient index for geographic document search,” IEEE TKDE, vol.

23, no. 4, pp. 585-599, 2011.

[15] D. Wu, G. Cong, and C. S. Jensen, “A framework for efficient spatial

web object retrieval,” VLDB J., vol. 21, no. 6, pp. 797-822, 2012.

[16] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen, “Joint top-k spatial

keyword query processing,” IEEE TKDE, vol. 24, no. 10, pp.

1889-1903, 2012.

[17] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson, “Spatio-textual

indexing for geographical search on the web,” Int’l. Symp. Spatial and

Temporal Databases (SSTD 2005), pp. 218-235, 2005.

[18] A. Khodaei, C. Shahabi, and C. Li, “Hybrid indexing and seamless

ranking of spatial and textual features of web documents,” DEXA 2010,

vol. 6261, pp. 450-466, 2010.

[19] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and T. Suel,

“Text vs. space: Efficient geo-search query processing,” ACM CIKM

2011, pp. 423-432, 2011.

[20] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword query

processing: An experimental evaluation,” PVLDB, vol. 6, no. 3, pp.

217-228, 2013.

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

97

Sheng Hu is a Ph.D candidate in Graduate School

of Information Science, Nagoya University. He

received B.E. degree from North China Electric

Power University in 2013. His research interests

include textual databases and spatiotemporal

databases.

Chuan Xiao is an assistant professor in Graduate

School of Information Science, Nagoya University.

He received B.E. degree from Northeastern

University, China in 2005, and Ph.D. degree from

The University of New South Wales in 2010. His

research interests include data cleaning, data

integration, textual databases, and graph databases.

He is a member of DBSJ.

Ishikawa Yoshiharu is a professor in Graduate

School of Informatics, Nagoya University. He

received B.S., M.E., and Dr. Eng. degrees from

University of Tsukuba in 1989, 1991, and 1995,

respectively. His research interests include

spatio-temporal databases, mobile databases,

sensor databases, data mining, information

retrieval, and e-science. He is a member of ACM,

DBSJ, IEEE, IEICE, IPSJ, and JSAI.

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

98

