
  

 

Abstract—Query autocompletion (QAC) is the feature to 

provide the intended possible candidate completions given some 

initial prefixes from users. By applying QAC techniques, users 

are assisted in formulating queries and saving input keystrokes. 

Due to the convenience it brings to users, QAC has been adopted 

in many real-world applications, including search engines, 

integrated development environments (IDEs), and mobile 

devices. With the growing popularity of mobile devices, a recent 

trend is to integrate query autocompletion into location-based 

services, such as Web mapping and spatial keyword search. In 

this paper, we present an interactive system of location-aware 

query autocompletion called Loquat, which provides a graphical 

interface to help users easily formulate their location-aware 

queries. We develop novel index structures and search 

algorithms to make such an interactive system work efficiently. 

We extend our system to support fuzzy search and 

multiple-keyword search. We also define a new ranking function 

taking fuzzy threshold value into consideration. The 

experiments on two real-life datasets verify the efficiency and its 

interactive usability of our system. 

 
Index Terms—Query autocompletion, spatial databases, 

interactive.  

 

I. INTRODUCTION 

The prevalence of geo-tagged text data in modern 

real-world applications such as Web mapping and 

spatial-keyword search has led to a rejuvenation of research 

on geo-text data managements. However, typing meaningful 

spatial keyword query is a tedious and error-prone process 

especially on devices with small keyboards such as mobile 

phones. Query autocompletion plays an important role in 

search engines, command shells, desktop search, software 

development environments, and mobile applications. It can 

guide users to create queries faster and avoid spelling errors 

by providing instant completions to users’ query letter by 

letter. It can also improve the throughput of the system as 

query or intermediate results can be effectively cached and 

reused. With the growing popularity of mobile devices, a 

recent trend is to integrate query autocompletion into 

location-based services. One of the main applications is to 

complete the queries with the textual descriptions of nearby 

points of interest within distances bounded by a threshold 

value, such as a Web mapping service illustrated in Fig. 1. We 
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call this problem location-aware query autocompletion. A 

query of this problem includes a location, such as the black 

arrow mark in Fig. 1, which can be obtained automatically 

by tracking the GPS signal of the mobile devices. The query 

also includes a string prefix, a point of interest will be 

returned if it is close to the spatial location and its textual 

descriptions begin with the given string prefix. Moreover, 

fuzzy search, or error-tolerant autocompletion also becomes 

very prevalent, especially considering the case that users 

might type with the error-prone keyboards of mobile devices. 

With the help of fuzzy search features, the system can suggest 

correct results despite there are typos on both query prefix and 

data sides. To handle the location-aware query 

autocompletion problem, existing methods focus on 

combining spatial and textual information to process queries 

efficiently. A comprehensive prospective of these methods 

can be presented in a taxonomy, according to how their 

indexes are combined. We classify them into text-first [1], 

space-first [2], and tightly-combined [3] methods. For 

text-first methods, a trie is used to index string descriptions of 

data objects. Meanwhile, objects and the information of the 

locations can be retrieved on leaf nodes of the trie. For 

space-first methods, an R-tree or quadtree is used to index 

data objects by their locations, and use the textual 

descriptions as filters when processing queries. For 

tightly-combined methods, integrated descriptors of both 

textual and spatial information are designed to build the index. 

However, all of the existing methods have the drawbacks of 

low runtime performance when come across the scalable data, 

and the response time latency becomes unendurable 

especially when large amount of simultaneous queries occur. 

In addition, these methods also ignore to support fuzzy search 

features which might be an even worse case for system 

workload. To avoid the problem brought in by storing on trie 

nodes the spatial information of all the queries, we choose to 

only store the spatial information of data objects instead.  

In this paper, we show that by employing novel index 

structures and algorithms, high speed for interactive and fuzzy 

search performance can be achieved. We implemented these 

algorithms and techniques in a system called Loquat 

(Location-aware query autocompletion). A part of the 

preliminary algorithmic aspect of this work was presented 

previously in a journal [4]. We extend our system to support 

fuzzy search and multiple-keyword search. We also define a 

new ranking function taking fuzzy threshold value into 

consideration. Finally, we demonstrate the superiority of our 

system compared with the state-of-the-art work through the 

experiments. 
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Fig. 1. Interface of loquat system. 

 

Fig. 1 is a screenshot of our system when a user tried 

finding POIs begin with “star”. The user intended to find the 

nearest Starbucks coffee for a rest and wanted to find the one 

with the highest rating and providing good services. The 

user’s location was obtained by GPS signal and marked on the 

map as a black arrow. The search results returned on the left 

side were refreshed incrementally when the query was typed 

letter by letter. Finally, when the user stopped at “star”, three 

qualified POIs were returned as A, B and C. A was ranked 

highest because it is nearest and also has a highest rating. 

The Loquat system provides several customized features to 

make it user-friendly. By changing the search settings by 

clicking the setting button, users can choose to select a 

rectangle area on the map to return all qualified results instead 

of return the highest ranked k ones. Also, users can switch the 

fuzzy search option to decide to perform an exact match or not. 

Users are also allowed to specify how many typos can be 

tolerant as errors. Moreover, user can set a weight between 

distance and POI popularity (ratings, price, etc.). 

Our contributions can be summarized as follows: 

 • We implement a highly interactive and efficient 

location-aware autocompletion system called Loquat. It has a 

user-friendly interface and a lot of user-customized settings. It 

can efficiently answer range and top-k queries with an 

acceptable index size. Both range queries and top-k queries 

can be answered in microseconds or even faster.  

• We extend the system to support fuzzy search and 

multiple-keyword search so as to handle the case when users 

input queries with error-prone devices. 

• We conduct experiments to evaluate the efficiency and 

 

II. OVERVIEW OF LOQUAT 

A. System Architecture 

The overall architecture of Loquat is shown in Fig. 2. The 

system adopts client/server architecture. The client-side is 

based on a web-based interface and can be accessed by 

mobile phones, desktop PC, tablets and so on. The user inputs 

his query through the interactive user interface, and the web 

interface acts like a client to transmit the formatted query to 

our web server. The server-side is composed of (1) a Query 

Processing module, (2) an Index module, (3) a Results 

Ranking module and (4) a Geo-Textual Database module. 

The Query Processing module receives a formatted query 

from the user client and transforms the raw query into the 

form which will be executed directly in the Index module. The 

index module indexes the textual data as a prefix-tree (trie) 

with additional spatial information for fast look-ups. After 

executing the query passed from Query Processing module, 

the Index module returns all possible candidate results to 

Result Ranking module. Then, the Results Ranking module 

ranks the results according to some specific criterions and 
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interactive usability of our system with comparison to the 

state-of-the-art work. The rest of this paper is organized as 

follows. Section II is an overview of Loquat. Section III

presents more technical details including index structure and 

query processing algorithms. Section IV reports experiment 

results and analysis. Section V surveys related work. Section 

VI concludes this paper.



  

returns the top-k results to the user client. The user interface 

will receive the top-k results and show the results in a 

drop-down list in an incremental way. The Geo-Textual 

Database module will collect the POIs information regularly 

and update the trie in the Index module incrementally. Except 

for the Geo-Textual database module, the other three modules 

will be run in memory. 

 

User Interface

Query Processing Results Ranking

Index

Database

Server

Database Database

Update

 
Fig. 2. The system architecture of loquat.  

 

B. Problem Formulation 

Consider a geo-textual database O. Each object o ∈ O is 

defined as a tuple {o.str, o.loc, o.scr}, where o.str is the text 

which describes the objects. o.loc = (x, y) is a descriptor and 

describes the location in a 2-dimensional space.  

 

 
Fig. 3. An example of database O.  

 

o.scr is the static score aggregated from several features, 

e.g. user rating and price. max_scr is the maximum static 

score of the objects. max_dist is the maximum distance 

between two objects in O. An example is shown in Fig. 3 and 

Fig. 4. 

 

 
Fig. 4. O in 2-dimensional space.  

  

Consider two strings s and s’, “s’  s” denotes that s’ is a 

prefix of s; i.e., s’ = s[1..|s’|]. We introduce two types of 

queries as below:  

Range Query. The query q is composed of a query string 

q.str which is the input prefix and a range q.rng depicted by a 

rectangle. The results to the query q is a set of the objects o ∈ 

O such that q.str  o.str and o.loc is in the range q.rng.  

Top-k Query. The query q is composed of a query string 

q.str which is the input prefix and a location q.loc. The results 

to the query q is a ranked set of the top-k objects o ∈ O such 

that q.str   o.str, ranked by a ranking function F(o, q). A 

following ranking function is defined to combine some 

normalized factors of an object with regarding to the query q, 

In addition, our method can be extended to support other 

monotonic functions. 
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and the static score. .
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 is the normalized Euclidean 

distance between the object and the query.  

 

III. TECHNICAL DETAILS 

A. Index Structure 

We build our index as a trie on the set of object strings. 

Each string corresponds to the labeled path from the root to a 

node in the trie, then the traversal can be quickly done by 

starting from the root node to locate by going along the path 

matched by the query string.  Next, we give a definition of the 

underlying object. If a data object appears as a result of a trie 

node, that is, the path from the root to the trie node is a prefix 

of the data object, then we call a data object an underlying 

object of this trie node. Note that a trie node may have many 

underlying objects. For easy illustration, we equip each trie 
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node with a unique id by running a pre-order traversal in the 

trie as shown in Fig. 5. Meanwhile, for each trie node, we 

integrate spatial information into it. First, the global space is 

partitioned into a set of spatial regions. This step can be done 

using common data structures for spatial objects, such as grid, 

R-tree, quadtree, etc. As shown in Fig. 4, the global space is 

partitioned into nine regions. These regions can be obtained 

by the cells of grids or the leaf nodes of a quadtree. For ease of 

illustration, we use a grid to partition the global space in Fig. 4, 

then denote each region with a region number in the left-down 

corner of that region. Note that in our experiments, quadtree is 

used because of better practical performance. According to 

the number order attached in each region, a bit array is 

designed with each position of the array representing a region. 

We equip each node in the trie with such a bit array. We set 

the corresponding bit to 1 if the node has an underlying object 

in this region; or 0, otherwise. Especially, we call it region bit 

array. By the intersection operation of this bit array, we can 

check whether there is an underlying object in the region by 

simply intersecting it with the query range.  

 

 
Fig. 5. The bit trie index.  

 

Next we introduce the data objects storage structure. We 

store all the data objects into an array called data object array, 

which is partitioned similarly into spatial regions according to 

the partitions on the global space. Then we begin to sort the 

data object array by two kinds of orders. First we sort them as 

the region order shown in Fig. 5. Then we sort the partial array 

corresponding to each region according to the order of the leaf 

node appearing in the trie. Next, we equipped each trie node 

with a list called region list, whose entries are in the form of < 

region ID, maximum static score, starting pointer, ending 

pointer >, to efficiently locate the underlying objects in the 

array. The maximum static score of an entry is computed in 

advance as the maximum static score among all the 

underlying objects of that node in this region, and it is used for 

early termination when answering top-k queries. The starting 

and ending pointers are used to quickly locate results in the 

data object array with a linear scan. They can be recorded as 

the index of the starting and ending positions in the partial 

array which contains the underlying objects of the node in this 

region, respectively. For the purpose of early termination, we 

sort the entries in the list by descending maximum static score 

order. 

For index construction, we first sort the data strings in 

alphabetical order, then insert them into the trie one by one. 

When a string is inserted, we update the region bit arrays and 

the region lists of the nodes on the path, along with the 

maximum static scores of the nodes. The time complexity of 

the index construction is O(OlogO + S), where S is the sum of 

string lengths of the objects. Consider the strings in Fig. 3, its 

trie is shown in Fig. 5. For node 2, its corresponding prefix is 

na, its bit array is “000010001”, and its underlying objects are 

o1, o2 and o3. 

B. Search Algorithm 

We introduce several query processing algorithms in this 

section. First, range queries and top-k queries algorithms are 

shown. Then, we extend them to support fuzzy search and 

discuss the way to support multiple-keyword search. 

 

 
 

 
 

C. Incrementally Search Keywords of An Input Prefix  

Range Query. We divide query processing into two phases: 

(1) searching phase, in which we traverse the trie index using 

the query string then checked the spatial condition; and (2) 

result fetching phase, in which we access the data object array 

to locate and return results. Searching phase is run first. Given 

a query <q.str, q.rng>, we first converse q.rng according to 

the global space partitioning and obtain the regions 

intersected by q.rng. According to the regions obtained, an 

initialized bit array is obtained, by setting a bit to 1 if q.rng 

intersects a region; or 0, otherwise. We call the bit array 

region status. After that we begin to traverse the trie using 

q.str. When come across a trie node, we update the region 
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status by a bitwise AND operation with the region bit array of 

the node. If a bit becomes 0 after the bitwise AND operation, 

it means that obviously there is no underlying object in this 

region for the query. Whenever query string cannot be 

matched or the intersected region status becomes all zero, we 

can terminate the traversal of the trie and return no results. We 

describe the above process in Algorithm 1. First, a region 

status is initialized (Line 1). Then it traverses the trie to match 

the incoming keystroke (Line 4) and update the region status 

(Line 5). If the keystroke cannot be matched or the region 

status becomes all zero, the whole traversal is terminated. It 

returns the currently located nodes and the region status for 

result fetching, or null to indicate there is no result (Line 14). 

The time complexity is O(|q.str|), where || denotes the length 

of a string.  

We show the result fetching phase in Algorithm 2. First, the 

region status bit array is scanned and the positions of the bits 

equal to 1 are obtained. Then we scan the corresponding 

regions in the region list. The objects in the data object array 

are located using the starting and ending pointers. Each object 

is verified by the query range. The time complexity 

is
| |

1
( 1)

L

i ii
e s


  , where L denotes the region list, si and ei 

denote the starting and ending pointers of the i-th entry in the 

list, respectively.  

Top-k Query. As the algorithm framework of processing 

top-k queries is similar to processing range queries, except 

that the region status is not involved as there is no spatial 

constraint, we omit the detailed algorithms here. To 

efficiently process the top-k queries, several pruning 

techniques are proposed in our preliminary work [4] for the 

purpose of early termination. 

D. Supporting Fuzzy Search 

Due to our trie-based index, our method can be easily 

extended to support any existing fuzzy search algorithm 

[5]-[10]. In the implementation of Loquat, we choose the 

trie-based method proposed in [6]. The basic idea of the 

method in [6] is to process the keystrokes in the query and 

compute a set of active nodes in the trie. We use edit distance 

as the threshold value to control the degree of fuzzy search, 

The path from the root to an active node is a string whose edit 

distance to the query is within the threshold . 

E. Other Extensions 

We discuss other extensions including supporting 

multiple-keyword search and synonym query autocompletion 

here. Compared to [3] and [1], our work is easier to extend to 

multiple keyword search. Because each traversal of one 

keyword in the trie will result in a temporary bit array. This 

temporary bit array can be used as a filter in the subsequent 

traversal of remaining keywords. If this preceding temporary 

bit array has no intersection with the subsequent bit array, the 

search can be terminated immediately because we can make 

sure that there are no intersected underlying objects located in 

any spatial grids. In addition, our index is also flexible to 

support synonym query autocompletion by simply adding 

synonym links between the trie nodes as shown in [11].  

F. Ranking Results 

Although we give a general ranking function in Section 3, 

the popularity score can be aggregated by many ranking 

signals such as the user ratings, user feedback and price of the 

POI. In addition, we extend the ranking function by taking 

fuzzy threshold value into considerations. The renewed 

ranking function is modified as follow: 
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In addition to , another weight  is added to balance the 

three components.  is the edit distance of matched query and 

data string pair. max_ is the maximum threshold value 

allowed in the system. Using this new ranking function, an 

answer with smaller  will be ranked higher as users always 

try to input correctly in the prefixes.  

 

IV. EXPERIMENTAL RESULTS  

A. Setup 

Experimental Platform. All experiments were done on a 

computer with an Intel i5 2.6GHz processor, 32GB RAM, 

running Ubuntu 14.04.1. The backend system modules are 

implemented using C++, the frontend interface is 

implemented using Node.js framework.  

Dataset. Our experiments are conducted on two real 

datasets: UK and US. UK is a dataset containing POIs (e.g. 

banks and cinemas) in UK (www.pocketgpsworld.com). US 

is a dataset of 2M POIs located in US (www.geonames.org). 

The statistics are shown in Table I. 

Baseline method. We choose the state-of-the-art PR-Tree 

as baseline [3]. PR-Tree is a tightly-combined method that 

merges trie and quadtree into a single index. It was designed 

for processing knn queries. 

Evaluation measurements. For each type of query, we 

generate 1,000 random queries by choosing strings that 

appear in the dataset. Longitude and latitude are normalized 

to [0, 1]. The default query range is a 0.08 × 0.08 square. The 

default value of k is 10. We measure (1) average query 

response time, including both searching time and result 

fetching time, (2) index construction time, and (3) index size. 
 

TABLE I: DATASET STATISTICS 

Dataset |O| Size Avg. str_len 

UK 181,549 7 MB 10.1 

US 2,234,061 82 MB 10.6 

 

B. Range Queries 

We first show the performance of processing range queries. 

Fig. 6 (a) – 6 (b) show the query processing times of the two 

algorithms on the two datasets, varying query string length. 

We can observe that query processing times decrease with the 

query string length, this is mainly because the number of 

results returned by both algorithms keeps reducing when 

query length grows which leads to fast processing time. 
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PR-Tree shows some rebounds when the query becomes 

longer because of more traversal cost. For both the small 

dataset UK and large dataset US, Loquat outperforms 

PR-Tree up to 10 times and 30 times, respectively. 

 

 
Fig. 6(a). Performance on range queries on UK. 

 

 
Fig. 6(b). Performance on range queries on US. 

 

 

C. Top-k Queries 

For top-k queries, the comparison with two methods on the 

two datasets are shown in Fig. 7 (a) – 7 (b). Thank for the 

optimization techniques of Loquat, our system is always faster 

than PR-Tree, with the advantage of almost two orders of 

magnitude. 

 

 
Fig. 7(a). Performance on top-k queries on UK. 

 

 
Fig. 7(b). Performance on top-k queries on US. 

D. Supporting Fuzzy Search 

After extending to fuzzy search, the query processing time 

is shown in Figs. 8 (a) – 8 (b) for range queries and Figs. 9 (a) 

– 9 (b) for top-k queries. For both methods, because the search 

time of fuzzy search becomes a dominant component in the 

whole processing times, the times continue growing with the 

query string length. For range queries, Loquat achieves 15 

times and 10 times faster on UK and US than PR-Tree. For 

top-k queries, Loquat also achieves 15 and 10 times faster 

than PR-Tree on UK and US, respectively. 

 

 
Fig. 8(a). Performance on fuzzy range queries on UK. 

 

 
Fig. 8(b). Performance on fuzzy range queries on US. 

 

 
Fig. 9(a). Performance on fuzzy top-k queries on UK. 

 

 
Fig. 9(b). Performance on fuzzy top-k queries on US. 

 

E. Index Construction 

Table II shows the index sizes of the two methods on the 
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two datasets. Table III shows the corresponding index 

construction times. Due to more information stored in the 

index, the size of Loquat is 2-3 times larger than PR-Tree. The 

construction time of Loquat is 2-3 times slower than PR-Tree. 

Both Loquat and PR-Tree can finish the index construction 

with an acceptable size and reasonable amount of time. 

 
TABLE II: INDEX SIZE (MB)  

Dataset Loquat PR-Tree 

UK 74.0 39.8 

US 1411.2 435.2 

 
TABLE III: INDEX CONSTRUCTION TIME (SECONDS) 

Dataset Loquat PR-Tree 

UK 0.542 0.347 

US 10.038 3.418 

 

V. RELATED WORKS 

Query autocompletion has been widely adopted under 

various settings, including (1) location-aware type-ahead 

search, (2) fuzzy search or error-tolerant autocompletion and 

synonym autocompletion. (3) spatial-keyword search. Roy 

and Chakrabarti [1] studied the problem of location-aware 

type-ahead search and proposed a trie-based index which 

enumerates every query location possibility trying to rank the 

objects in advance. However, their index suffers from the 

consumption of large amount of memory. Ji et al. [2] 

proposed a method called Filtering-Effective Hybrid 

Indexing (FEH) to answer range queries and kNN queries. 

The method builds an R-tree to index data objects by their 

locations. Textual filters are used in each R-tree node to check 

whether the query string is a prefix of the objects in the 

subtree. After that, Zhong et al. proposed Prefix Region Tree 

(PR-Tree) [3] that considers textual and spatial partitioning 

simultaneously to build the index. Their main index is a 

special trie, whose each node is divided into four nodes, each 

representing a region in a quadtree, with centroids selected as 

the center for partitioning. The major problem of PR-Tree is 

the exhausive divisions of trie nodes cause too many branches 

of tree nodes, which makes the traversal very slow. Fuzzy 

type-ahead search or error-tolerant autocompletion were first 

studied in [5] and [6]. Li et al. [7] improved the method 

proposed in [5] for space and runtime performance. More 

efficient methods were proposed in [8]-[10]. After that, Xu et 

al. first studied the problem of synonym query 

autocompletion [11]. For spatial keyword search, this 

problem has been extensively studied in the database 

community, which is a problem about returning the relevant 

POIs considering both spatial proximity and textual relevance, 

when given a query composed of keywords and a location. 

Existing solutions are based on Rtree [12]-[16], grid [17], 

[18], and space filling curve [19]. We also refer users to an 

experimental evaluation [20] that compares these methods. 

 

VI. CONCLUSION 

In this paper, we presented a new system for location-aware 

query autocompletion called Loquat, featuring with an 

interactive and user-friendly interface and several 

user-customized functions. Our system can answer range and 

top-k queries on a large scale. Our system can also be easily 

extended to support fuzzy search, multiple-keyword search 

and synonym autocompletion. The experiment results 

demonstrate the efficiency of Loquat and its superiority over 

existing state-of-the-art method. For future work, we plan to 

utilize external resources such as knowledge graphs or 

corpuses to support semantic search. We also plan to integrate 

our system with entity resolution techniques to support more 

accurate autocompletions. 
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