

Abstract—The design of secure protocols is complex and

prone to error. Formal verification is an imperative step in the

design of security protocols and provides a rigid and thorough

means of evaluating the correctness of security protocols. This

paper discusses the process of formal verification using a

logic-based technique for detecting protocol weaknesses that are

exploitable by freshness and interleaving attacks. This technique

is realised as a special purpose logic for attack detection that can

be used throughout the design stage, i.e. it subjects a draft of a

protocol to formal analysis prior to its publication or

deployment. For any detected failure the analysis will also reveal

reasons for the weaknesses, facilitating design corrections. A

summary of the attack detection logic is presented and its ability

to detect weaknesses is demonstrated by applying it to a

smart-card based authentication protocol. Further, a prototype

implementation of the attack detection logic theory is introduced.

An empirical study is presented that assesses the effectiveness

and efficiency of the proposed automated technique by applying

it to a set of protocols, incorporating some with known

vulnerabilities and some that are known to be secure. This study

confirms the ability of the technique to detect all design

weaknesses. Additionally, it establishes the efficiency of the

verification technique, in terms of memory requirements (study

was carried out on a computing platform of 2GB of RAM) and

execution times (milliseconds) required for protocol verification.

Index Terms—Attacks, formal verification, logic-based

verification tool security protocols.

I. INTRODUCTION

The security of electronic networks and information

systems is a critical issue for the use of new technologies in

many fields of life. The massive growth in communications,

in particular in the wireless sector and internet of things,

causes an ever changing environment for today‟s

communication services. Security protocols are required to

ensure the security of both the communications infrastructure

itself and the information that runs through it. Designing

error-free security protocols that are impervious to attack

techniques, such as freshness and interleaving sessions (i.e.

impersonation attacks, man-in-the-middle attacks, oracle

attacks, multiplicity attacks and other types of parallel session

attacks) is an extremely challenging task [1]. The challenge

comes mainly from the difficulty of foreseeing all possible

operative scenarios of an attacker, which can include

concurrent execution of several protocol sessions and various

different attack strategies. For example, in a freshness attack

the adversary uses components of the messages from previous

Manuscript received September 10, 2018; revised November 15, 2018.

A. D. Jurcut is with the School of Computer Science, University College

Dublin, Ireland (e-mail: anca.jurcut@ucd.ie).

runs of the protocol to gain an advantage, while in an

interleaving session attack the adversary uses multiple runs of

the protocol to gather knowledge. Even though protocols‟

structure sometimes can be simple (only a few messages are

exchanged, in general, among a reduced number of protocol

principals), they are prone to errors that are subtle and very

hard to detect manually.

Formal verification of a security protocol is a critical part

of the design process of security protocols [2], as it provides a

systematic way to detect design flaws. The importance of

formal methods has been practically demonstrated by several

success stories of protocol weaknesses discovered using

formal analysis methods - often several years after the original

publication [3]-[15]. As a consequence, when designing a

protocol, it needs to be formally verified in order to prove that

it meets its security goals and is free of weaknesses that might

be exploitable by mountable attacks. Thus, it improves

confidence in the security of the designed protocol.

Existing formal methods include two main different

approaches to the verification problem: logic-based analysis

[3]-[18] normally used to verify the correctness of security

goals of a protocol and brute force methods of state-space

exploration [19], [20], respectively used for the detection of

attacks against a protocol. While both approaches have been

successfully employed to detect weaknesses in security

protocols, currently there is a significant need for techniques

which can achieve both objectives of formal security protocol

verification: proving that the verified protocol meets its

security goals and demonstrating the absence of mountable

attacks against the protocol. Further, the automation of the

verification process minimizes the risk of faulty proofs and

simplifies the verification process for the protocol verifier. In

addition, logics have an advantage in that they are usually

decidable and often efficiently computable and thus can be

completely automated [17].

This paper is concerned with the use of logic techniques for

the formal analysis of security protocols. We demonstrate the

application of a recently proposed technique, which was

realised as a special purpose logic for attack detection [21].

The Attack Detection Logic expands the capabilities of

logic-based verification techniques, by adding attack

detection to their traditional role of proving that protocols

meet their security goals. We demonstrate the ability of the

logic to detect attacks, by presenting in detail the analysis

process, when manually applying this technique to a

smart-card authentication protocol [9]. For any detected

failure, the analysis will also reveal reasons for the

weaknesses, facilitating design corrections of the protocol

verified. Further, we present a prototype implementation of

the Attack Detection Logic, which was integrated into an

Automated Logic-Based Technique for Formal

Verification of Security Protocols

Anca D. Jurcut

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

77doi: 10.18178/jacn.2018.6.2.258

existing logic-based verification tool CDVT [22], using a

modal logic of knowledge and belief. Hence, we show that our

proposed automated logic can cooperate with conventional

verification logics. Together the combined logics have the

capability to achieve both objectives of formal security

protocol verification (i.e. proving that the verified protocol

meets its security goals and demonstrating the absence of

mountable attacks against the protocol). Empirical results on

verifying a range of security protocols using the automated

prototype implementation of the Attack Detection Logic are

also presented. Successful detection of all attacks shows the

effectiveness of the proposed automated logic. Furthermore,

the fast execution times demonstrate the efficiency of this

technique.

The remainder of this paper has the following structure:

Section 2 gives an overview of Attack Detection Logic and

presents a detailed explanation on how to apply the logic. A

prototype implementation of the attack detection logic theory

is introduced in Section 3. Section 4 shows an empirical study

that assesses the effectiveness and efficiency of the proposed

automated technique. Finally, Section 5 concludes the paper.

Additionally, a sample verification of the protocol [9], using

the proposed automated technique is demonstrated in the

Appendix.

II. LOGIC-BASED TECHNIQUE FOR FORMAL VERIFICATION OF

SECURITY PROTOCOLS

In 2017, Jurcut, Coffey and Dojen [21] proposed a novel

logic with attack detection capabilities for the formal

verification of cryptographic security protocols. This logic,

referred to as the Attack Detection Logic, expands the

capabilities of existing logic-based verification techniques, by

adding attack detection to their traditional role of proving that

protocols meet their security goals. The Attack Detection

Logic is designed to detect security protocol weaknesses that

can be exploited by freshness and interleaving session attacks

(including identity attacks, man-in-the-middle attacks,

unknown key-share attacks, oracle attacks, multiplicity

attacks and other parallel session attacks).

The Attack Detection Logic has a unique attack detection

capability for freshness and interleaving session attacks and it

provides generic structures of the detected attacks. The

proposed logic characterizes the general circumstances under

which attacks may exist by examining the structure of

message exchanges in a protocol. This examination takes into

account:

1) Knowledge of the principals involved.

2) Role of the messages in the protocol.

3) The way messages are transmitted.

4) Content of messages.

The Attack Detection Logic is based on the set of protocol

design guidelines introduced by Jurcut et al. in [1]. These

guidelines are general purpose so as to encompass a wide

variety of protocols and to address the following protocol

message exchange situations:

1) Guidelines to Ensure Message Freshness covering:

 Freshness requirements with and without synchronized

clocks.

 Transmission of components used in key generation.

2) Guidelines to Prevent Message Symmetry covering:

 Direct and indirect (via a TTP) exchanges of

cryptographic transformations.

3) Guidelines for Signed Messages covering:

 Signed messages & parent cryptographic expressions.

 Signed messages contained by parent cryptographic

expressions encrypted with symmetric or public keys.

 Signed messages intended for public key distribution.

4) Guidelines for Handshakes Construction covering:

 Direct and indirect POSH (“Public Out Secret In”),

SOPH (“Secret Out Public In”), and SOSH (“Secret

Out Secret In”) types of challenge-response handshakes

using symmetric and asymmetric encryption.

The logic characterizes the general circumstances under

which a potential attack may exist, by examining the protocol

design and defines a logical formula that describes these

circumstances. It consists of a language, sets of predicates,

axioms, rules and semantics:

 The language introduces syntactic rules for building

well-formed formulas of the logic.

 The predicates evaluate properties of message

exchanges and their components as well as principals.

 The axioms enable reasoning about message

characteristics in cryptographic protocols.

 The rules combine axioms to describe the circumstances

in which a protocol is vulnerable to replay or parallel

session attacks.

 The semantics ascribe meaning to the components of the

logic theory (i.e. logical connectives and of the

predicates).

A. Applying the Attack Detection Logic

In this section we show how our proposed technique can be

used in the design/re-design process of security protocols. For

this demonstration we:

 Manually apply the proposed Attack Detection Logic to a

security protocol with known weaknesses.

 Show which of the attack detection rules are violated.

 Re-design the protocol according to the design guidelines

and re-evaluate the amended protocol to ensure it is free of

design weaknesses exploitable by freshness or

interleaving attacks.

Evaluating a Protocol with Known Weaknesses. In this

evaluation we manually analyse the nonce-based mutual

authentication scheme of Lee, Kim and Yoo [9], which has

known weaknesses [10]-[31]. This analysis is realised by

formalising the protocol in the logic‟s language and then

using deductive reasoning to prove the presence of

weaknesses exploitable by replay or parallel session attacks.

During this deductive reasoning process all detection rules

need to be applied to the protocol. However, the presented

analysis only shows application of rules violated by the

protocol.

1) Formalization of protocol

The authentication session of the LKY scheme [9] (E3(P))

is formalized as follows:

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

78

)),}({,(0SdataxAHAP

),,(1SNAGen A

)}({:)(}{)()(2232 kxSmkxPRSSPES 

))),}({}({),),}({}({(TTPTTPAA NdataxAHNHNdataxAHNHSymmetric

The following initial assumptions are considered when

manually applying the Attack Detection Logic:

A1: - Principal A possesses data

H({A}datax) which plays the role of a symmetric key shared

with the system TTP, before the authentication session of the

protocol (i.e. at time t0);

A2: - Principal A generated NA in step S1;

A3: - Trusted third party TTP

possesses data H({A}datax) which plays the role of a

symmetric key shared with the user A, before the

authentication session of the protocol (i.e. at time t0);
A4: - Trusted third party TTP generated

nonce NTTP in step S2.

2) Applying the detection rules

Axioms (A2) of the logic states that a component x is fresh

for recipient (),(xR) if x is a timestamp or a counter

generated by the sender of x under the assumption of

synchronized clocks and the recipient R can check this

timestamp for timeliness or if R is the receiver of response

step Sp that contains x and x is a function of a component wR

freshly generated and sent by R in a previous initiation step of

the same protocol run.

(A2) (,)R x 

As none of the components in the cryptographic expression

 transmitted in response step S2 are

timestamps or freshly generated by the recipient A,

application of axiom (A2) yields:

(1)

Axiom (A4) defines a cryptographic expression {x}k as

freshness protected ()}({ kx) if {x}k contains a fresh

component for recipient or if there exists a step Sp in En(P)

where {x}k is concatenated with a hashed expression H(y*),

where y* contains a secret shared between the two principals

G and R and y* contains a fresh component for recipient R of

Sp. Further, G possesses y* and y* contains {x}k.

 (A4) ({ })x k 

As by (1) cryptographic expression is neither fresh for

recipient nor part of a hashed expression containing a fresh

component for recipient of step S2 (user A), application of

(A4) establishes:

 (2)

As the cryptographic expression is the

only cryptographic expression in S2 and as S2 is a response

step, the following is derived:

 (3)

Rule (R1.2) states that if no cryptographic expression in a

response step Sp of message exchange En(P) is freshness

protected, then a replay attack can be mounted on that

message exchange:

(R1.2) () : () { } () : ({ })Sp En P Sp RS P x k m Sp x k     

ReplayAttack ())En P
According to (3) the prerequisites of attack detection rule

(R1.2) are fulfilled and therefore a replay attack (R) can be

mounted on E3(P).

Continuing the analysis, the remaining rules are applied.

By definition of predicate Symmetric(x,y) the following

pair of hash functions are symmetric:

 (4)

Axiom (A5) states that two keys k1 and k2 are matching keys

()2,1(kk) if either:

 keys k1, k2 are both symmetric keys and have the same

value,

 keys k1, k2 are both symmetric keys and are shared with the

same TTP,

 keys k1,k2 are both public keys,

 keys k1,k2 are both private keys.

(A5) (1, 2)k k ↔

Axiom (A6) defines a pair of cryptographic expressions

{x}k1, {y}k2 as being symmetric if x, y are symmetric and

keys k1, k2 are matching keys.

(A6) ({ } 1,{ } 2) (,) (1, 2)Symmetric x k y k Symmetric x y k k 
Applying axiom (A6) to the cryptographic expressions of E3(P)

reveals:

 Symmetric ({NA}H({A}datax), {NTTP}H({A}datax)) (5)

The axiom (A7) defines two components, x and y as

principal value type equivalent (),(yxPvte) if for each

subcomponent xi at position i of x that is of type principal

there is a corresponding subcomponent yi at the same position

i of y that is also of type principal and at least one of the

following also holds:
 If xi is a trusted third party (TTP) then yi is also a trusted

third party (TTP).

 If xi is the generator of x then yi is the generator of y.

)),}({,(0SdataxAHTTPP

),,(2SNTTPGen TTP

)}({}{ dataxAHNTTP

(1 2 (1 2 , , : (, 1)

(, 2) (, 1) (, 2)) (1 2)

(1 Pr 2 Pr)

k SymK k SymK k k G R TTP ENT P G k

P R k P TTP k P TTP k k PubK k PubK

k ivK k ivK

        

      

  

(: ((),) () ()

(, ,) ())

(() () : ((),) ()

() (() : (, ,)))

R

R R

Sr P C m Sr x s Sr G r Sr R

x T Gen G x Sr Fresh x

r Sr R Sp RS P C m Sp x x F w

Fresh w So IS P o p Gen R w So

      

   

      

    

(: ({ } ,) (,)) (() : ((),({ } , (*)))

(: (*,) (, ,) (, *) (, *) (*,{ })))

z C x k z R z Sp En P C m Sp x k H y

w C y w G R w P G y R y C y x k

     

      

) } ({ } { datax A H N TTP

P

))}({}{,(dataxAHNA TTP

))}({}({ dataxAHNTTP

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

79

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

80

))}({}{),}({}({ dataxAHNdataxAHNPvte TTPA

))),}({}({),),}({}({(TTPTTPAA NdataxAHNHNdataxAHNHPvte

)),}({}{,int(

)),}({}{,(

)}({}{),((

)),}({}{,int(

)),}({}{,(

)}({}{),((

:)()}({}{),}({}{

2

2

2

1

1

1

SdataxAHNAR

SdataxAHNTTPGen

dataxAHNSmC

SdataxAHNTTPR

SdataxAHNAGen

dataxAHNSmC

PCTdataxAHNdataxAHN

TTP

TTP

TTP

A

A

A

TTPA













)),),}({}({,int(

)),),}({}({,(

))),}({}({),((

)),),}({}({,int(

)),),}({}({,(

))),}({}({),((

:)()),}({}({),),}({}({

3

3

3

2

2

2

SNdataxAHNHTTPR

SNdataxAHNHAGen

NdataxAHNHSmC

SNdataxAHNHAR

SNdataxAHNHTTPGen

NdataxAHNHSmC

PCTNdataxAHNHNdataxAHNH

TTPTTP

TTPTTP

TTPTTP

AA

AA

AA

TTPTTPAA













3))}({}{),}({}({ TODTTPA dataxAHNdataxAHN

3))),}({}({),),}({}({(TODTTPTTPAA NdataxAHNHNdataxAHNH

3

3

))}({}{),}({}({

))}({}{),}({}({

))}({}{),}({}({

))}({}({))}({}({

:))(()}({}{),}({}{

TODTTPA

TTPA

TTPA

TTPA

TTPA

dataxAHNdataxAHN

dataxAHNdataxAHNPvte

dataxAHNdataxAHNSymmetric

dataxAHNdataxAHN

PECTdataxAHNdataxAHN











3

3

))),}({}({),),}({}({(

))),}({}({),),}({}({(

))),}({}({),),}({}({(

))),}({}({())),}({}({(

:))(()),}({}({),),}({}({

TODTTPTTPAA

TTPTTPAA

TTPTTPAA

TTPTTPAA

TTPTTPAA

NdataxAHNHNdataxAHNH

NdataxAHNHNdataxAHNHPvte

NdataxAHNHNdataxAHNHSymmetric

NdataxAHNHNdataxAHNH

PECTNdataxAHNHNdataxAHNH











 If xi is not the generator of component x then yi is not the

generator of y.

 If xi is the intended recipient of x then yi is the intended

recipient of y.

 If xi is not the intended recipient of x then yi is not the

intended recipient of y.

(A7) ),(yxPvte

Application of axiom (A7) to the symmetric

transformations in (4) and (5) reveals that these pairs of

transformations are also principal value type equivalent:

(6)

 (7)

The following two expressions can be derived from E3(P)

and the above considered assumptions:

(8)

(9)

Axiom (A16c) states that two cryptographic transformation

c1, c2 are travelling in opposite direction  (c1,c2)TOD3,

when a TTP is involved in the message exchange and creates

one of the cryptographic transformation c2. Further, the

intended recipient of c2 is different from the generator of c1.

 (A16c)  3)2,1(TODcc

Combining (8) and axiom (A16c) results in:

 (10)

Combining (9) and axiom (A16c) results in:

(11)

Detection rule (R2.3) states that: If two principals exchange

symmetric parent cryptographic transformations c1, c2, which

are principal value type equivalent pairs and are travelling in

opposite directions and a TTP is involved in the exchange and

creates one cryptographic transformation c2, where the

intended recipient of c2 is different to the generator of c1,

then a parallel session attack can be can be mounted on En(P).

(R2.3) 1, 2 (()) : (1) (2) (1, 2)c c CT En P c c Symmetric c c     

3)2,1()2,1(TODccccPvte 

Parallel SessionAttack))((PEn

Combining (5), (6), and (10), the prerequisite of rule (R2.3)

can be derived:

 (12)

In addition, combining (4), (7), and (11), the prerequisite of

rule (R2.3) can also be derived:

 (13)

Hence, (12) and (13) indicate that parallel session attacks

(P) can be mounted on E3(P).

In summary application of the the Attack Detection Logic

reveals weaknesses in the design of LKY protocol that are

exploitable by a replay attack (R) and a parallel session

attacks (P).

3) Reasons for detected design weaknesses

In addition to detecting the presence of the design

weaknesses, the logic also identifies the reasons for the

failure.

As shown above, the LKY scheme is vulnerable to a replay

attack as it violates freshness rule (R1.2). This violation is due

to the fact that the cryptographic expression in step 2

{Nttp}H({A}datax) (as revealed in equation (2)) does not

contain any component which receiver A recognizes as being

fresh. The impact of this replay attack is that an attacker,

without knowing any secret of a remote user, can masquerade

as a legitimate remote user and can obtain the valid

authentication message from any normal session between the

remote user and the system TTP.

Additionally, the LKY scheme violates the symmetry rule

(R2.3), therefore it is vulnerable to parallel session attacks.

This violation is due to the symmetrical structure of (i) the

pair of cryptographic expressions {Na}H({A}datax) and

{Nttp}H({A}datax) (as shown in equation (5)) and (ii) the

pair of hashed expressions H({Na}H({A}datax),Na) and

H({Nttp}H({A}datax), Nttp) (as shown in equation (4)). The

impact of these parallel session attacks is that an intruder can

masquerade as a legitimate remote user and fool the server

into accepting a login request from a user who is not

registered with the system.

1, 2 () : ((), 1) (, 1,)

int(, 1,) ((), 2) (, 2,)

int(, 2,)

c c CT P C m Sq c Gen G c Sq

R TTP c Sq C m Sr c Gen TTP c Sr

R R c Sr G R

   

  

 

)))),,int(

),,int(()),,int(),,int((

)),,(),,(()),,(

),,((:,()((

))()((:),,(),,,(|,

SqyRR

SlxGRSqyRRSlxGR

SqyRGenSlxGGenSqyRGen

SlxGGenPSqSlTTPRTTPG

PENTRPENTGiRyCiGxCRG

i

iii

iii

iii

iiiiii











Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

81

4) Re-designing protocol

As shown in the previous sections the LKY scheme cannot

be considered secure. We now present an amended version of

the LKY scheme to overcome the described weaknesses.

In order to prevent the potential replay, attack the

cryptographic messages transmitted in the scheme needs to be

freshness protected. Hence, to prevent triggering detection

rule (R1.1) the cryptographic message {Nttp}H({A}datax) in

step 2 should include a component which the recipient

recognises as fresh. This can be achieved by including nonce

Na, previously generated by A in step 1, in the second

message of step 2. Thus, A can establish whether the received

cryptographic expression belongs to the current protocol run.

Consequently, any attempt by an intruder to replay the second

message of step 2 will fail, as A can identify the replay

through the incorrect value of Na.

In order to prevent the potential parallel session attacks, the

cryptographic transformations transmitted need to be

asymmetric. Hence, to prevent triggering detection rule

(R2.3) the symmetrical structure of the pair of hashed

expressions in steps 2 and 3 and the symmetrical structure of

the pair of cryptographic expressions in steps 1 and 2 of the

scheme needs to be broken. This can be achieved by adding

nonce NA and identity A to these components as shown in Fig.

1. Further, re-application of the proposed detection logic to

the amended scheme demonstrates that none of the rules are

triggered and hence it is deemed to be free of design

weaknesses exploitable by replay or parallel session attacks.

Fig. 1. Amended version proposed for LKY scheme.

III. AUTOMATION OF ATTACK DETECTION LOGIC THEORY

While logics for verifications purposes (“conventional

verification logics”) are powerful techniques for establishing

that a design meets its specifications, the manual application

of verification logics often requires in-depth expertise. A

logic-based verification, as shown in the previous section,

will typically include initially specifying the initial

assumptions, protocol steps, and protocol goals in the

language of the logic. The final and most complex step

concerns the application of the logical rules and axioms, using

deductive reasoning, to establish the beliefs, knowledge, and

possessions of the protocol‟s principals. The verification

process is thus complex, tedious and prone to error. This is a

serious issue, as a single mistake during any stage of the

verification process can render the result of the verification

useless.

Automated techniques that carry out the deductive

reasoning by automatically applying the logic axioms and

rules offer a range of benefits including reducing the potential

for human errors during verification, while simultaneously

removing the need of in-depth knowledge of the employed

verification logic. Also, the effort involved in protocol

verification can be considerably reduced, since familiarity

with the axioms and rules is no longer required. The time

taken to perform the verification is greatly reduced as

software can automatically verify a system in minutes while a

similar manual proof often requires hours, days or even

weeks.

This section outlines a prototype implementation of the

Attack Detection Logic theory [21], which was integrated into

an existing logic-based verification tool CDVT [22]. The

CDVT tool uses a process of deductive reasoning based on

Layered Proving Tree theoretical concept [17] to produce the

verification results. The resulting automated system, as shown

in Fig. 2, enables both attack detection analysis and

conventional logic-based protocol verification from a single

protocol specification.

Fig. 2. Automated system overview.

A. Role of Proposed Automated Technique in Formal

Verification

The scope of the new proposed automated technique is to

expand the capabilities of logic-based formal verification

techniques by adding attack detection to their traditional role

of proving that protocols meet their security goals. This attack

detection is provided by automating the detection logic that

can cooperate with conventional verification logics, as

outlined in Fig. 3.

Fig. 3. Cooperation of detection and verification logics.

Together the detection logic and the conventional logic

have the capability to achieve both objectives of formal

security protocol verification (i.e. proving that the verified

protocol meets its security goals and demonstrating the

absence of mountable attacks against the protocol).

B. Structure of Automated System

The upgraded automated system, as shown in Fig. 4,

comprises a number of existing modules, upgraded and new

modules:















),),}({},({::

)}({},{),),}({}({::

}({}{,::

)(

3

2

1

3

ANdataxAHNNHBAS

dataxAHNNNdataxAHNHATTPS

dataxAHNATTPAS

PE

TTPATTP

ATTPAA

A

 Existing modules incorporate: LPT Proving Engine [17],

Conventional Logic of Knowledge and Belief with

adjusted postulates and termination rules [16]-[22].

 Upgraded modules include Unified Protocol Specification

Language, Formal Specification Translator consisting of

(i) Unified Grammar for Logics Specification Language;

(ii) syntax validation of Unified Protocol Specification

Language.

 New module on the implementation of the Attack Detection

Logic.

Fig. 4. Automated system modules structure.

CDVT Logic-based Verification Tool. The CDVT

Verification Engine [22] is an automated system that

implements a Conventional Modal Logic of Knowledge and

Belief using Layered Proving Trees. The implemented logic

can analyse the evolution of both knowledge and belief during

a protocol execution and is therefore useful in addressing

issues of both security and trust. The CDVT Verification

Engine incorporates a specification language for formal

protocol specifications. The engine uses a parser to read in the

protocol specification from a text file, which is then processed

by the LPT verification engine and the verification results are

output.

Formalised Protocol Specification. The Formalised Protocol

Specification introduces an efficient way for describing a

security protocol to be verified within the automated system.

The formalised protocol is written using English-like

language (i.e. Unified Protocol Specification Language), to

aid understanding and thus avoiding the complexity of the

mathematical formulas as shown in previous section.

Unified Protocol Specification Language. The Unified

Protocol Specification Language is an updated version of the

Protocol Specification Language for Conventional Logic of

Knowledge and Belief [22]. This unified language enables the

formal specification of protocols that can be processed by

both the Attack Detection Logic and the Logic of Knowledge

and Belief. A protocol is specified declaratively in an

individual text file (.txt), following well-defined syntax

statements. The formalisation specification of a protocol

incorporates three parts: Assumptions, Steps, and Goals.

General form of specifications is:

Label : Statement ;

Label is An, Sn, Gn for Assumptions, Steps, Goals

respectively, „n‟ is positive integer (e.g. protocol assumptions

defined with label A1, A2, etc., protocol steps defined with S1,

S2, etc.). Moreover, each and every line must end with a

semicolon („;‟) and comments are introduced following a

double forward slash „//‟, i.e., the C++ style comments.

Statements are defined according to the rules presented in

Table I, where elements follow the regular expressions given

in Table II. “Data” is either an atomic unit or a composite data

as defined in Table III. “i” indicates the indexed discrete time

(-1: indicates previous protocol runs; 0: indicates the

beginning of the current protocol run; 1 – n: indicates the time

at step 1 – n) and “Statement” represents an arbitrary

statement. “Operator” can be any of: “send”, “receive” or

“possess”, while “Trans_Operator” are the transmission

operators and can be one of the following: “send to” or

“receive from”. The purpose of the transmission operators is

to construct a specific type of statement that expresses

reception from or emission to a principal.

For example, the following step of a protocol: S1: A -> B:

A,{Na}Kab, can formalised using the Unified Protocol

Specification Language as:

S1: B receivefrom A at[1] A,{Na}Kab;

TABLE I: STATEMENT CONSTRUCTION

Principal Operator at[i] Data

Principal Trans_Operator Principal at[i] Data

Principal know at[i] Statement

Principal believe at[i] Statement

Principal know at[i] NOT (Statement)

Principal believe at[i] NOT (Statement)

(Statement)

NOT(Statement)

(Statement AND Statement)

(Statement IMPLY Statement)

TABLE II: ATOMIC UNITS TEXTUAL GRAMMAR

Textual Grammar Regular Expression

Principal [AB-EIJLMOQRSU-Z][A-Za-z_0-9_]*

Trusted Principal TTP[A-Za-z0-9_]*

Sym. Key K[a-z][a-zA-Z0-9_]*

Public Key K[a-z][A-Za-z0-9_]*Pub

Private Key K[a-z][A-Za-z0-9_]*Priv

Nonce N[a-z][A-Za-z0-9_]*

Timestamp TS[a-z][A-Za-z0-9_]*

Function F[A-Za-z0-9_]*

Hash H[A-Za-z0-9_]*

Binary Data [a-z][A-Za-z0-9_]*

Formal Specification Translator. The Formal Specification

Translator uses the Formalised Protocol Specification to

automate the creation of the data input sets required by

Layered Proving Trees Proving Engine. The translator also

verifies the syntax of the protocol specification. The Layered

Proving Trees Engine (LPT) produces the results for the

Conventional Logic of Knowledge and Belief (i.e. prove the

correctness of protocol goals). It also provides the data sets

required by the rules of the Attack Detection Logic module,

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

82

which verifies if any of the rules of the logic are violated and

outputs the attack detection verification results accordingly.

TABLE III: COMPOSITE DATA CONSTRUCTION

Composite Data Textual Representation

Concatenation Data,Data

Group Element (Data)

Symmetric Encryption {Data}Data

Public Key Encryption {Data}KPub

Private Key Encryption {Data}KPriv

Function of Data F(Data)

Hash of Data H(Data)

Key Material of Data KMaterial(Data)

The Formal Specification Translator requires defining a

grammar for the protocol specification language to allow

protocol formalisation using the textual statements. The

grammar for the Conventional Logic of Knowledge and

Belief was updated with the additional requirements of the

Attack Detection Logic to create a Unified Grammar for both

logics. Additionally, the new grammar required that also the

validation process of the syntax and semantics of the formal

specification to be updated. The updated parser automates

the creation of the statements used as input by the LPT engine,

and also enables the validation of the syntax and semantics of

the formal specification of the protocol. The protocol

formalisation translator has three-phases: (1) The lexical

phase allows the creation of lexical units by recognising

lexical patterns from the protocol formalisation. Lexical

patterns are defined using regular expressions; (2) The

parsing phase that allows grouping lexical units into syntactic

units and construction of a parse tree representation of the

protocol; (3) The semantic analysis phase allows the analysis

of the parse tree for context-sensitive information and

construction of an annotated parse tree. A symbol table is

used to store variable and objects used to perform

context-sensitive checking.

Implementation of Attack Detection Logic. The Attack

Detection Logic was implemented in C++. The function of the

Attack Detection Logic module is to take a data set (from the

LPT), which incorporates the formalised protocol

assumptions and steps, and apply the axioms in order to

derive the perquisites of the set of the attack detection rules. If

all the prerequisites of a rule can be established, then a

weakness message leading to a replay or parallel session

attack is output to the results.

IV. EVALUATION STUDY ON PROPOSED TECHNIQUE

This section presents empirical verification results of a

range of security protocols, obtained from the prototype

automated implementation of the Attack Detection Logic.

The prototype was executed on a PC with 2GHz Intel

Core™2 Duo processor and 2GB RAM, running Windows 7.

The analysis results are summarized in Table IV, where the

second column enumerates previously published replay (R) or

parallel session (P) attacks on the analyzed protocols. The

third column indicates the rules of the detection logic that

reveal the attack(s), while the last column presents the

verification time in milliseconds. The protocols evaluated

include those with known weaknesses and their published

amended versions. The technique can be considered effective

if:

• Protocols with known weaknesses trigger some of the

attack detection rules.

• Protocols without weaknesses do not trigger any attack

detection rule.

This study shows that the Automated Attack Detection

Logic is able to detect all previously published weaknesses

exploitable by replay and parallel session attacks in the

chosen set of security protocol with known weaknesses. Also

the protocols (e.g. amended versions) for which no replay or

parallel session attacks are known indicate that none of the

detection rules are established, demonstrating that the

detection logic does not produce false positives. Further, the

measured execution times obtained for the verification of the

protocols highlights the efficiency of logic-based approach,

where short verification times were achieved. Another

benefit of the logic-based approach is the modest memory

space requirements to model these protocols and execute the

verifications - the empirical study was carried out on a

computing platform of 2GB of RAM.

We provide a sample verification using our proposed

automated technique of the smart-card authentication

protocol [9], which was manually analysed in section 2, in the

Appendix.

TABLE IV: EMPIRICAL RESULTS OF ATTACK DETECTION LOGIC

Analyzed Protocol
Published

Attacks
Triggered Logic Rule

Time

* ms

NS PK,1978 1981[23]; 1995[4] R1.1(R); R1.2(R);

R4.7(P)

427

Lowe's fix NS PK,1995 1981[4] R1.1(R); R1.2(R) 301

AS RPC,1989 1990[3]; 1996[4] R1.2(R); R4.3(P) 378

BAN mod AS RPC,1990 1996[4] R4.3(P) 411

BAN conc.AS RPC,1990 1996[4] R4.1(P) 440

Lowe AS RPC, 1996[4] No attack None 503

BANYahalom,1990 1994[6] R2.4(P) 839

Paul.Yahalom, 2001[24] No attack None 823

SPLICE/AS,1991 1995[25];

1995[25]

R1.3(R); R3.4(P) 910

HC SPLICE/AS,1995 1995[25] R1.3(R) 1051

Kao-Chow,1995 1995[26];

2008[22]

R1.3(R); R2.1(P) 1250

W-M Frog,1994 1998[20] R2.3(P) 103

SSH PK,1996 1997[27] R3.3(P) 598

Abadi SSH PK, 1997[27] No attack None 645

PKM. IEEE 802.16, 2004 2006[28]; R1.1(R); R1.2(R) 410

PKM_v2 IEEE802.16,

2005

2006[28] R4.1(P) 489

Lowe W-M Frog,1997 2008[5] R1.2(R); R2.3(P);

R4.3(P)

786

CBKM IC,2008 2008[29] R1.1(R); R1.2(R); 252

DZC CBKM IC,2008[29] No attack None 336

KJKW IP, 2009 2013[30] R2.2(P); R4.1(P) 201

LMLM_KJKW IP,

2012[30]

No attack None 279

LKY Auth., 2005 2013[31];

2007[10]

R1.2(R); R2.3(P) 993

NKPW mod. LKY, 2007 2013[31] R1.2(R); R2.3(P) 593

JDC mod. LKY, 2013,

[31]

No attack None 602

MSCP, 2009 2018[15] R1.1(R); R4.7(P) 492

JLCGH MSCP, 2018 [15] No attack None 712

* Includes combined Attack Detection and Conventional Logics verification times.

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

83

V. CONCLUSION

This paper concerned the formal verification of security

protocols using logic-based techniques. The research

objective of this work was the development of an automated

logic-based technique which besides establishing the

correctness of security goals of protocols is also able to

demonstrate the absence of mountable attacks against the

protocols. Our proposed automated technique can be used at

the design stage of a security protocol to establish the

presence of such weaknesses. If any weaknesses are revealed,

the technique also identifies the reasons for these design

weaknesses. This information can then be used to eradicate

the design weaknesses. In this paper, the ability of the Attack

Detection Logic to detect weaknesses exploitable by replay

and parallel session attacks was demonstrated by applying it

to an authentication protocol with known weaknesses. Further,

the results of an evaluation study on the effectiveness of our

proposed automated technique on a range of selected

protocols revealed that: (i) for all the protocols evaluated

those with known replay or parallel session attacks trigger at

least one of the logic detection rules, (ii) detection of all

design weaknesses exploitable by the published replay and

parallel session attacks, (iii) none of the detection rules were

triggered for protocols that are known to be secure against

replay or parallel session attacks, (iv) it establishes the

efficiency of the verification technique, in terms of memory

requirements (study was carried out on a computing platform

of 2GB of RAM) and execution times (milliseconds) required

for protocol verification.

APPENDIX: FORMAL VERIFICATION OF LKY SCHEME

A. Formalisation of the Authentication Scheme of Lee, Kim

and Yoo (LKY) [9]

//Initial Assumptions
A1: A possess at[0] H({A}datax);
A2: A know at[0] TTP possess at[0] H({A}datax);
A3: A possess at[0] Na;
A4: A know at[0] NOT(Zero possess at[0] Na);
A5: TTP possess at[0] H({A}datax);
A6: TTP know at[0] A possess at[0] H({A}datax);
A7: TTP possess at[0] Nttp;
A8: TTP know at[0] NOT(Zero possess at[0] Nttp);

//LKY scheme steps
S1: TTP receivefrom A at [1] A,{Na}H({A}datax);
S2: A receivefrom TTP at [2] H({Na}H({A}datax),Na), {Nttp}H({A}datax);
S3: TTP receivefrom A at [3] H({Nttp}H({A}datax), Nttp);

//LKY scheme goals
G1: A know at [2] TTP send at [2] H({Na}H({A}datax),Na);
G2: A know at [2] NOT(Zero send at [0] H({Na}H({A}datax), Na));
G3: A know at [2] TTP send at[2] {Nttp}H({A}datax);
G4: A know at [2] NOT (Zero send at [0] {Nttp}H({A}datax));
G5: TTP know at [3] A send at [3] H({Nttp}H({A}datax),Nttp);
G6: TTP know at[3] NOT(Zero send at [0] H({Nttp}H({A}datax),Nttp));

B. Verification Results of the of the LKY Scheme

Fig. 5. Security goals verification results of LKY scheme.

Fig. 6. Attack detection results of LKY scheme.

REFERENCES

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

84

[1] A. Jurcut, T. Coffey, and R. Dojen. “Design guidelines for security

protocols to prevent replay & parallel session attacks,” Computer and

Security, vol. 45, pp. 255-273, 2014.

[2] T. Coffey, R. Dojen, and T. Flanagan, “Formal verification: An

imperative step in the design of security protocols,” Computer

Networks Journal Elsevier Science, vol. 43 pp. 601-618, December,

2003.

[3] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication

ACM transactions on computer systems,” TOCS, vol. 8, no. 1, pp

18-36, February 1990.

[4] G. Lowe, “Some new attacks upon security protocols,” in Proc. of the

Computer Security Foundations Workshop VIII, pp. 1996, 162-169.

[5] A. Jurcut, T. Coffey, R. Dojen, and R. Gyorodi, “Analysis of a

key-establishment security protocol,” Journal of Computer Science

and Control Systems, pp. 42-47, May 2008.

[6] P. Syverson, “A taxonomy of replay attacks,” in Proc. of the Computer

Security Foundations Workshop (CSFW97), 1994, pp. 187-191.

[7] A. Jurcut, T. Coffey, R. Dojen, and R. Gyorodi, “Security protocol

design: A case study using key distribution protocols,” Journal of

Computer Science and Control Systems, vol. 2, no. 2, pp. 16-21, 2009.

[8] V. Pasca, A. Jurcut, R. Dojen, and T. Coffey, “Determining a Parallel

session attack on a key distribution protocol using a model checker,” in

ACM Proc. of the 6th International Conf. on Advances in Mobile

Computing and Multimedia (MoMM ’08), Linz, Austria, 2008, pp.

150-155.

[9] S. Lee, H. Kim, and K. Yoo, “Efficient nonce-based remote user

authentication scheme using smart cards,” Appl. Math., Comput., vol.

167, no. 1, pp. 355-361, August 2005.

[10] J. Nam, S. Kim, S. Park, and D. Won, “Security analysis of a

nonce-based user authentication scheme using smart cards,” IEICE

Transactions Fundamentals, vol. E90-A, no. 1, pp. 299-302, January

2007.

[11] A. Jurcut, T. Coffey, and R. Dojen, “On the prevention and detection of

replay attacks using a logic-based verification tool,” in Proc. of

International Conf. on Computer Networks, Computer Networks,

Series: Communications in Computer and Information Science, pp.

128-137, vol. 431, June 2014.

https://www.sciencedirect.com/science/journal/00963003/167/1

Journal of Advances in Computer Networks, Vol. 6, No. 2, December 2018

85

[12] A. Jurcut, T. Coffey, and R. Dojen, “Symmetry in security protocol

cryptographic messages – A serious weakness exploitable by parallel

session attacks,” in Proc. of 7th IEEE International Conf. on

Availability, Reliability and Security (ARES’12), August 2012.

[13] I. Androulidakis, “Sms security issues,” Mobile Phone Security and

Forensics, pp. 71-86, 2016.

[14] S. Wu and C. Tan, “High security communication protocol for sms,” in

Proc. of International Conf. on Multimedia Information Networking

and Security, 2009, pp. 53-56.

[15] A. Jurcut, M. Liyanage, J. Chen, C. Gyorodi, and J. He, “On the

security verification of a short message service protocol,” in Proc. of

IEEE Wireless Communications and Networking Conf. (WCNC),

April, 2018.

[16] T. Coffey and P. Saidha, “Logic for verifying public-key cryptographic

protocols,” IEEE Proceedings-Computers and Digital Techniques, vol.

144, no. 1, pp. 28-32, 1997.

[17] R. Dojen and T. Coffey, “Layered proving trees: A novel approach to

the automation of logic-based security protocol verification,” in ACM

Transactions on Information and System Security (TISSEC), vol. 8, no.

3, pp. 287-311, 2005.

[18] A. Datta, A. Derek, J. Mitchell, and A. Roy, “Protocol composition

logic (PCL),” Electron. Notes in Theoretical Computer. Science, vol.

172, pp. 311-358, 2007.

[19] D. Basin, S. Mödersheim, and L. Vigano, “OFMC: A symbolic model

checker for security protocols,” International Journal of Information

Security, vol. 4, no. 3, pp. 181-208, June 2005.

[20] G. Lowe, “Casper: A compiler for the analysis of security protocols,”

Journal of Computer Security, vol. 6, pp. 53-84, January 1998.

[21] A. Jurcut, T. Coffey, and R. Dojen, “A novel security protocol attack

detection logic with unique fault discovery capability for freshness

attacks and interleaving session attacks,” IEEE Transactions on

Dependable and Secure Computing, July 2017.

[22] R. Dojen, I. Lasc, and T. Coffey, “Establishing and fixing a freshness

flaw in a key-distribution and authentication protocol,” in Proc. of

IEEE International Conf. on Intelligent Computer Communication

and Processing, 2008, pp. 185-192.

[23] D. Denning and G. Sacco, “Timestamps in key distributed protocols,”

Communication of the ACM, vol. 24, no. 8, pp. 533-535, 1981.

[24] L. Paulson, “Relations between secrets: Two formal analyses of the

yahalom protocol,” Journal of Computer Security, vol. 9, no. 3, pp.

197-216, 2001.

[25] J. Clark and J. Jacob, “On the security of recent protocols,”

Information Processing Letters, vol. 56, no. 3, pp. 151-155, 1995.

[26] I. Kao and R. Chow, “An efficient and secure authentication protocol

using uncertified keys,” Operating Systems Review, vol. 29, no. 3, pp.

14-21, 1995.

[27] M. Abadi, “Explicit communication revisited: Two new attacks on

authentication protocols,” IEEE Transactions on Software

Engineering, vol. 23, no. 3, pp. 185-186, 1997.

[28] S. Xu and C. Huang, “Attacks on PKM protocols of IEEE 802.16 and

its later versions,” Computer Science and Engineering Department,

University of South Carolina, Columbia, 2006.

[29] R. Dojen, F. Zhang, and T. Coffey, “On the formal verification of a

cluster based key management protocol for wireless sensor networks,”

in Proc. of 27th IEEE International Performance Computing and

Communications Conference (IPCCC08), Workshop of Information

and Data Assurance (WIDA08), Austin, Texas, USA, 2008, pp.

499-506.

[30] C. Lv, M. Ma, H. Li, and J. Ma, “A security enhanced authentication

and key distribution protocol for wireless networks,” Security and

Communication Networks, vol. 5, no. 4, pp. 343-352, 2012.

[31] A. Jurcut, T. Coffey, and R. Dojen, “Establishing and fixing security

protocols weaknesses using a logic-based verification tool,” Journal of

Comunication, vol. 8, no. 11, pp. 795-806, 2013.

Anca D. Jurcut received a bachelor of mathematics

and computer science from West University of

Timisoara, Romania (2007) and a Ph.D from

University of Limerick, Ireland (2013). From 2008 to

2013, she was a research assistant with the Data

Communication Security Laboratory at University of

Limerick, and from 2013 to 2015, she was working as

a postdoctoral researcher in the Department of

Electronic and Computer Engineering at the

University of Limerick and as a software engineer at IBM, Ireland. Since

2015, she has been an assistant professor with the School of Computer

Science, University College Dublin, Ireland. Her research interests focuses

on network and data security, security for internet of things (IoT), security

protocols, formal verification techniques and applications of blockchain

technologies in cybersecurity.

Author‟s formal

photo

