

Abstract—The user authorization query (UAQ) problem

determines whether there exist an optimum set of roles to be

activated to provide a set of permissions requested by a user.

It has been deemed as a key issue for efficiently handling

user’s access request. The cardinality and dynamic

separation of duty constraints make the issue more complex

in role based access control (RBAC). There are many

researches dedicate to analyze the computational complexity

of the UAQ problem and try to solve this problem using

algorithms. However, all of these researches only consider the

dynamic separation of duties, role-cardinality and

permission-cardinality constraints, and they do not pay

attention to the context constraints. The UAQ problem is

raised in the web environment, there is always a lot of context

information, and thus this paper intends to use the context to

propose a general model to solve the UAQ problem in the

web environment.

Index Terms—Role-based access control, user

authorization query, context, fine-grained.

I. INTRODUCTION

A recent study [1]shows that the role-based access

control (RBAC) has become the most popular access

control model. RBAC is simple, which reflects

organizational structure, and it is easy to administer and

review. In the RBAC users are assigned to roles and roles

are assigned to permissions, thereby users are granted

permissions through role activation. This simple user

authorization model in RBAC is sufficient in well-

organized systems (e.g. in a company), since a user is

typically assigned to a small number of roles. However,

this simple user authorization model cannot address more

fine-grained access requests. Today, with the development

of internet, the system often consists of hundreds of roles

and users in the interconnected and collaborative system,

and it is difficult to find the set of roles requested by the

user.

There are many researches on the user authorization

query (UAQ) problem [2]-[7], including the complexity

analysis of the UAQ problem and approaches to solve

Manuscript received February 5, 2018; revised May 10, 2018. This

work is supported by the National Natural Science Foundation (NNSF) of

China (Grant No. 61572385).

Gang Liu, Shaomin Ji, Runnan Zhang, Guofang Zhang, Lu Fang and
Quan Wang are with School of Computer Science and Technology,

XIDIAN University, Xi’an, China (e-mail: gliu_xd@163.com,

865332046@qq.com, zhangrunnan_xd@qq.com,
zgf356653246@163.com, l_silence104@163.com, qwang_xd@163.com).

UAQ problem. The UAQ problem’s definition [2] is that

in the web environment, the number of roles in the system

is large, users do not know which roles they are assigned

to, and users only request permission set without

activating roles, according to the permission set requested

by the user, the system needs to find the role set to activate,

and the role set must meet certain conditions. The

conditions here not only mean that the role set must

contain the permission set requested by the user but also

include the dynamic separation of duties, hybrid hierarchy

[2], role-cardinality, permission-cardinality [3] and other

constraints, which make the problem intractable. These

researches use various algorithms to solve this problem,

which includes greedy algorithm [2], depth search

algorithm [3], and weight algorithm [7] and so on, but

neither can solve this problem well.

In the web environment, especially in the

interconnected and collaborative systems, access control

policies always need to consider context constraints, such

as location or time. In contrast to the restrictions

mentioned above, context restrictions are the most

common constraints in the interconnected system. Here are

a lot of researches on the context in the interconnected

environment [8]-[10], from which we can see that in the

web environment, the context of the application is

ubiquitous. As far as we know, no research has been

devoted to exploiting the context to solve the UAQ

problem.

In this paper, we proposed a context-based role-

recommendation (R
3
BAC) model based on RBAC model,

which uses context condition to filter roles so that it can

significantly reduce the range of effective roles and solve

the UAQ problem fundamentally, because the

precondition of UAQ is assuming there are a large number

of roles in the web environment [2]. The R
3
BAC model is

not only a solution to the UAQ problem, but also to solve

the more general problem-role activation problem. In the

web environment, there are often hundreds of roles in the

system to achieve fine-grained access control, the user or

system want to determine an optimum set of roles to be

activated to provide a particular set of permissions

requested by user is very difficult and time-consuming. In

this paper, we define this problem as the role activation

problem. The difference between the two problems is that

the UAQ problem assumes that the user requests

permission set and the system activate the role set

according to the permission set requested by user, in the

role activation problem, we do not make such assumption

because we think the user also needs to be responsible for

Extended RBAC with Context-Based Role-

Recommendation

Gang Liu, Shaomin Ji, Runnan Zhang, Guofang Zhang, Lu Fang, and Quan Wang

Journal of Advances in Computer Networks, Vol. 6, No. 1, June 2018

48doi: 10.18178/jacn.2018.6.1.253

http://www.baidu.com/link?url=OKpslWn8iadCgmZH10sUl-Dp83IveWoQLkOTlv6AWaKJEbqSKl6ql7HPj-4TaRMoF3ST8yUO3yztBy5sbL6f_G-un6UijUsJtcUyMyJK4py
mailto:gliu_xd@163.com
mailto:865332046@qq.com
mailto:zhangrunnan_xd@qq.com
mailto:zgf356653246@163.com
mailto:l_silence104@163.com

determining if the role set to be activated to provide the

permission set requested by themselves. In simple terms,

the role activation problem includes the UAQ problem.

The proposed R
3
BAC model can filter roles and efficiently

locate the role set which contains the permission set

requested by the user based on context, the specific model

we will describe later.

The paper is organized as follows: Section 2 discusses

the context condition briefly. Section 3 develops R
3
BAC

model along with its reference model and functional

specifications. Section 4 defines the XACML profile for

R
3
BAC and presents an implementation example. Section

5 concludes the paper.

II. CONTEXT CONDITION

In the web environment, in order to achieve fine-grained

model of access control, security administrators often set

context restrictions on the roles, and we will use these

restrictions to filter roles to solve the role activation

problem. In this paper, we will call these context

restrictions as context condition uniformly, and the

description of the specific context condition is given in

this chapter

A. Context

The context has been applied to many areas, such as

assisted living [11], hospital information systems [12],

tour guides [13], and smart environments [14]. At the

same time, using the context to improve the security

performance of various applications has become an

important work of researchers. Several researchers have

developed RBAC models that support context-based

access control [15]-[17].

Context is an elusive concept which has many different

meanings to different people and communities. There are a

lot of context definitions，Anind K. Dey and Gregory D.

Abowd [18] refer to context as: “ Context is any

information that can be used to characterize the situation

of an entity. An entity is a person, place, or object that is

considered relevant to the interaction between a user and

an application, including the user and applications

themselves.” In a similar definition, Gustaf Neumann and

Mark Strembeck [15] define context as: “ context in

general may consist of almost every available information

that describes a specific situation”. Ryan et al. [19] define

context as the user’s location, environment, identity and

time.

The specific context definition is outside the scope of

the research. This paper chooses the context defined by

Schilit et al. [20] as the context concept in this paper.

B. Context Condition

In order to accurately describe the context condition and

apply the context to the R
3
BAC model, this research

introduces the concept of context condition. The context

condition is an abstract concept, and it describes the

constraint on the role activation. A context condition is

defined through the terms context attribute, context

function, and context clause:

 A context attribute (catt) represents a certain
attribute of the environment whose actual value
might change dynamically (e.g. time), or which
varies for different instances of the same abstract
entity (e.g. location, birthday, or nationality).

 A context function (cfun) is a mechanism to obtain
the current value of a specific context attribute (e.g.
Date() could be defined to return the current date).
The return type of context function can be an
integer, a date, a string, and so on.

 A context clause (ccla) is a predicate (a Boolean
function) that compares the current value of
context attribute with a predefined constant (like
Date()==”2016.10.1”) or compares the different
context attributes(like Score()>AverageScore()).
The range of a context clause is {true, false}.

 A context condition (cond) contains a combination
of one or more context clauses (like Birthday
(subjectId)==2008.8.8&Nationality(subject)==Chi
na).It returns true when all of the context clause
hold. Otherwise it returns false.

III. R
3
BAC MODEL

In this chapter, we give the description of the R
3
BAC

model, and show how the model filter the roles based on

the context conditions. Section 3.1 introduces the R
3
BAC

reference model. Section 3.2 introduces the R
3
BAC

functional model. The R
3
BAC reference model provides

an exact definition of R
3
BAC basic elements and relations.

R
3
BAC functional model provides an overview of the

R
3
BAC functional specification in four aspects:

administrative functions, supporting system functions,

review functions and Role Filter Process function.

A. R
3
BAC Reference Model

R
3
BAC model element sets and their relations are

defined in Fig. 1. It includes the basic RBAC model and

some new elements and relations.

USERS ROLESROLES OPSOPS OBSOBS

SessionSession

PRMS

Recommened
Role Set

Recommened
Role Set

Role Filter ProcessRole Filter Process

CATTSCATTS CCLASCCLAS

（UA）
User

Assignment

（PA）
Permission
Assignment

（UC）
User-Catts
Relation

（RC）
Role-Cclas Relation

Fig. 1. R3BAC model.

In the R
3
BAC model, the context attributes(CATTS) are

Journal of Advances in Computer Networks, Vol. 6, No. 1, June 2018

49

assigned to the user based on the role sets assigned to the

user, and these attributes can be used as monitor for user’s

context. Fig. 1 illustrates USER-CATT(UC) relation. The

arrows indicate a many-to-many relationship (e.g. a user

can be assigned to one or more CATTS, and a CATT can

be assigned to one or more users). This arrangement

provides great flexibility and granularity of CATTs

assignment to users. Table I lists context attribute

assignments to three persons as example.

TABLE I: ASSIGNMENT OF CONTEXT ATTRIBUTES

 Address Time Temperature Noise Network

Capacity

Ali

ce

Bo

b

Jac

k

This paper uses context clause (CCLAS) to describe the

single constraints on the role activation, and the examples

are shown in Table II. As shown in Fig. 1, in general, the

context clauses and roles are a many-to-many assignment

relation, the examples are shown in Table III(e.g. ccla1 and

ccla4 are assigned to role_student). The user must meet all

the context clauses assigned to the role when he/she

activates it.

TABLE II: CONTEXT CONDITIONS

 Address Time Temperature Network
Capacity

ccla1 201
ccla2 09:00≤&&≤12:00
ccla3 ≥36.5℃
ccla4 ≥10G/s

TABLE III: THE ASSIGNMENT OF CONTEXT CONDITIONS

 ccla1 ccla2 ccla3 ccla4

role_student

role_programmer

role_experimenter

Security administrator establishes role-ccla relations

when creating roles, and the user-catt relations is

established after assigning user to a roles (For example,

assigning user to a role_student role, and according to

Table II and Table III, the address attribute and network

attribute are also assigned to the user automatically).When

the context attributes are assigned to users, then the system

can obtain the users’ context information, and these

information are used to evaluate context condition

assigned to the specific role.

The above only describes the R
3
BAC model elements

and their relations, and the specific role filter process is

done by the Role Filter Process (RFP) and Recommended

Role Set (RSS). The RFP and RSS components are all

related to the authorization process. The following figure

illustrates these two components’ function through

comparing the authorization process of the RBAC and

R
3
BAC model, and presents how the R

3
BAC model filter

roles to solve the role activation problem. The

authorization process in RBAC is shown in Fig. 2.

CreateSession

DeactivateRoles PerformTasks

ActivateRoles

DeleteSession

RequestPermission CheckAccess

The permission user requested is not in session

The permission user requested is in session

1 2 4

5

67

8

9

3

The component is accomplished by
SessionManager

The component is accomplished by user

The component is accomplished
by SessionManager or user

Task
completed

Task not
completed

Fig. 2. The authorization process in RBAC.

 CreateSession. In NIST RBAC [21], the session is
defined as: each session is a mapping of one user to
possibly many roles, that is, a user establishes a
session during which the user activates some
subset of roles that he or she is assigned.

 ActivateRoles. ActivateRoles operation is a key
feature of RBAC which distinguishes it from other
access control models. The user selects the
appropriate role to activate, and gets the
permissions assigned to the role. The ActivateRoles
operation ensures that only a part of the roles is
active, guarantees the least privilege principle, and
increases the security of the system. In well-
organized systems (e.g. in a company), since a user
is typically assigned to a small number of roles, he
knows which role should be activated before
request permissions.

 RequestPermission and CheckAccess. Like other
access control models, RequestPermission and
CheckAccess are required in the RBAC model.
After user activates roles, he/she request
permissions to perform task, and the system check
whether the permissions is contained in the
activated roles.

 PerformTasks and DeactivateRoles. If the
permissions user requested is in the session, the
user begins to perform the task. If the permission
set isn’t in the session, the user returns to the
ActivateRoles. When the task is done, the user
needs to deactivate the role timely to ensure the
principle of least privilege. In the same session, the
user may request one or more permissions to
complete the task, and these permissions may be
assigned to different roles, so after the user
deactivating the roles, he or she must check
whether the task is completed, if not then the user
returns to ActivateRoles section to continue to
complete the task.

Journal of Advances in Computer Networks, Vol. 6, No. 1, June 2018

50

 DeleteSession. DeleteSession releases the resource
that is opened in the session, including some roles
that the user doesn’t deactivate.

As mentioned above, in the original RBAC model, the

user activates the role to get the requested permissions. In

the normal environment, the user is typically assigned to a

small number of roles and he/she knows which roles are

assigned to him/her, thus users can activate the role set on

their own; however in the network environment, there are

often hundreds of roles in the system, and it is difficult to

find the role set to be activated to provide a particular set

of permission requested by a user, and in a session, the

user may need to constantly request permission, which

make the role activation problem intractable, thus the

original RBAC model cannot handle this situation.

CreateSession

DeactivateRolesPerformTasks

ActivateRoles

DeleteSession

AccessRequestsCheckAccess
The permission user
requested is not in

session

Task
completed

Task not
completed

The permission user
requested is in session

1 2 4

567

8

9

3

The component is accomplished by
SessionManager

The component is accomplished by user

InstantiateContext

Attributes
ContextChanging AddRolesToRRS

10 11

12

The component is accomplished by RFP

RevokeContext

Contributes

13

The component is accomplished
by SessionManager or user

Fig. 3. The authorization process in R3BAC.

In order to solve the problem, we propose R
3
BAC

model to solve the problem. The authorization process of

the R
3
BAC model is listed in Fig. 3. Here the research

only lists differences of components between the R
3
BAC

model and the RBAC model.

 InstantiateContextAttributes. When a user creates
a session, the RFP instantiates the context
attributes assigned to the user, where instantiation
means that all the context attributes assigned to the
user are monitored in real time (e.g. after Bob
creates a session, the system will monitor his
location).

 ContextChanging and AddRolesToRRS. The
ContextChanging is not a real module that needs to
be executed by the SessionManager, the user or the
RFP components. In general, the user performs the
task with changes in the context especially in the
interconnected and collaborative environment. In
order to illustrate clearly, this paper draws this
module separately. When the RFP detects a change
in the user's context attributes, it evaluates the
context condition assigned to the role based on the
context, and adds the role whose context
condition’s value is true to the RRS, adding the
role whose context condition’s value is true to the
RRS is also called recommendation. This process

is repeated during the session, although we put this
module at the beginning. The specific RFP
function is given in the following.

 ActivateRoles. One of the main differences
between role activation in R

3
BAC and RBAC is

that the users need to find roles to activate in
RBAC, while in R

3
BAC model, the users or the

system only need to find roles in RRS, and the
number of roles in the RRS is significantly less
than the number of roles in the system, because in
current environment, the number of roles that
satisfy the context condition will be very small.
Thus, the user or the systems’ workload of
activating the role has been reduced a lot, and the
role activation problem will be solved. When the
required role is found in RRS, the user or the
system adds the role to the session.

 RevokeContextContributes. At the end of the
session, not only the remaining activated roles need
to be deactivated, but also the instantiated context
attributes need to be revoked, in other words, the
RFP does not monitor the user's context in real
time any more.

The above is the authorization process in R
3
BAC: it

uses context conditions to filter the role and adds the roles

which satisfy the context condition to the RRS, in this way,

the range of roles will be significantly reduced. In this

paper, we do not intend to use algorithms to solve the

UAQ problem. Instead, we propose a more general model

based on the RBAC model to solve the problem of role

activation under the web environment, so that users or

systems can quickly and effectively locate the role set

which provide the permission set user request.

B. R
3
BAC Functional Description

In this section, this paper presents the functional
description of R

3
BAC for each component defined in the

previous section. At the end of this section, the research
shows the Role Filter Process function.

C. Administrative Functions

Administrative Functions are used to create and

maintain element sets and relations. The basic elements in

the R
3
BAC model are ccla and catt. The administrator

creates and deletes ccla/catt, and establishes the relation

between ccla/role and catt/user. Administrative functions

for creating ccla and deleting ccla are CreatCclas and

DeleteCclas. The management functions for catt are

CreateCatts and DeleteCatts. New relations in R
3
BAC are

role-to-ccla (RC) and user-to-catt (UC). The functions for

creating and deleting RC are AssignCcla and

DeassignCcla. For UC, the corresponding functions are

AssignCatt and DeassignCatt.

D. Supporting System Functions

Supporting System Functions are used for session

management and access control decisions. The supporting

system functions in the R
3
BAC model are almost the same

as those in the NIST RBAC. The AddActiveRole function

in NIST RBAC is used to activate roles, and its parameter

space is the roles assigned to the user. Corresponding to

Journal of Advances in Computer Networks, Vol. 6, No. 1, June 2018

51

the R
3
BAC model, the parameter space is the roles in the

RRS.

E. Review Functions

When the role-to-ccla relations and the user-to-catt

relations are created, it should be possible to view the

contents of those relations from ccla, user, catt and role

perspectives. For example, for the RC relations, the

administrator should be able to view all the roles

associated with a ccla, and all of the cclas assigned to a

role. At the same time the user can view the roles in the

RRS attached to the session. The following are new

review functions for the R
3
BAC model on the basis of the

NIST RBAC model.

Assigned_cclas(r:ROLES):returns all cclas assigned the

role;

Assigned_roles(c:CCLAS):returns all roles assigned the

ccla;

Assigned_users(c:CATTS): returns all users assigned the

catt;

Assigned_catts(u: USERS): returns all catts assigned the

user;

RRSroles(se:SESSIONS):returns all roles in the RRS;

Role Filter Process Function.

Role Filter Process filters roles by the detection of the

contexts in real time. The process of Role Filter Process is

shown in Fig. 4, and it involves four functions:

Catt

For the role in

TargetRoles（catt）

ccla1
ccla2

.

.
cclan

V

TURE

FALSE

Role

Trigger

（Session）

role

RRS

Fig. 4. Role filter process.

Trigger(se: SESSIONS):return the catt whose value is

changed;

TargetRoles(ca: CATTS):return the set of catt-related

roles;

cond.value(se:SESSIONS): calculates the true value of all

the cclas assigned to the role according to the context of

the current session;

Addroles(r: roles, RRS): add the filtered role to RRS;

The complete pseudo-code is shown in Fig. 5:

Fig. 5. The function of role filter process.

IV. XACML PROFILE FOR R
3
BAC

XACML is a general access control policy language for

determining request/response and a framework for

implementing authorization policies. Because of its

reputation, considerable work has been done for XACML

to implementing RBAC. XACML profile for RBAC [22]

has been defined to guide the implementation of RBAC

via XACML. In order to show the universality of the

model, this research illustrates that R
3
BAC can be easily

implemented in XACML. Consistent with the description

of the previous R
3
BAC model, this paper proposes a

XACML profile for R
3
BAC based on that for RBAC and

gives a specific implementation example for this profile.

A. Proposed Profile

The XACML profile for R
3
BAC in this paper does not

change the original XACML profile for RBAC. The paper

only discusses those new components. The R
3
BAC profile

is guided by the following.

 The role filtering process should be performed by
an entity rather than the XACML PDP, where this
paper refers this entity as the Role Filter Process
entity. The Role Filter Process entity filters the
roles after the context changes according to the
Role Filter policies. These Role Filter policies are a
different policy file from the Role<PolicySet> and
Permission<PolicySet> files. Role Filter policies
are to be used only when the XACML request
comes from a Role Filter Process entity.

 The paper [22] includes four policy files:
Role<PolicySet>, Permission<PolicySet>,
Separation of Duty<PolicySet> and Role
Assignment<PolicySet>, in practice, these four
policy files and Role Filter Policy files are used by
different entities, the order in which they are used
is also different. Separation of Duty<PolicySet>
and Role Assignment<PolicySet> will be used first
when the system is initialized and the user
registered. The roles in the session are dynamically
changed, so the Role<PolicySet> and
Permission<PolicySet> may be used at any time
during the session lifetime. The Role Filter Policy
file is used continuously during the session lifetime
as well as the Role<PolicySet> and
Permission<PolicySet>, and the Role Filter Policy
files is used in advance of the Role <PolicySet>
and Permission <PolicySet>.

B. An Illustrative Scenario

This paper uses the BYOD scenario to illustrate our

model. An enterprise employee owns a mobile device,

such as a mobile phone, which has two types of

applications: one is the employee's own private application

and the other is the enterprise office application. Here are

two enterprise applications: one is the word application,

the other is the video application, where the word

application is used for enterprise day-to-day office, and the

video application is the learning tool provided by the

enterprise for employees to learn the professional

information. Enterprise Security Administrators have

For each catt∈Trigger（session）

 For each role in Targetroles（catt）

 For each ccla in Assigned_cclas（role）

 If cond.value（se）=TURE

 AddRoles(role, RRS);
 End If;
 End For;
 End For;
Return RRS;
End For;

Journal of Advances in Computer Networks, Vol. 6, No. 1, June 2018

52

developed security policies for the both application: the

word application can only be used inside the company and

the video application can’t be used with private screenshot

application at the same time. Here we treat the application

as a role. There always has a lot of this kind of enterprise

application in the enterprise, for the sake of convenience,

we only cite two. In this situation, when we use the

traditional RBAC model to achieve access control will

encounter the role activation problems, because the

number of roles is large, it is difficult to determine

whether there exists an optimum set of roles to be

activated to provide a particular set of permissions

requested by a user. It would be a lot simpler to take

advantage of the model presented in this paper: mobile

devices will get the user's context information in real time

and will validate or invalid the applications based on the

current context-visible or invisible to the user. In this way,

we can easily determine the role set that provide a

particular set of permissions requested by a user.

Here we use the XACML component defined above to

represent the role filter policies, for convenience, we only

cite the word office application example. Suppose here's

an employee named Bob, who is assigned the role_word

role. The XACML code is shown in Fig. 6:

Fig. 6. RoleFilter <PolicySet> policy file in example.

V. CONCLUSION

In this paper, we analyzed the UAQ problem and raised

the idea that context should be considered in authorization

query, especially in the interconnected and interactive

environments. Then the paper proposes the R
3
BAC model

and in this model the system filters roles for the user by

monitoring the context of the user in real time. In this way,

the number of effective roles will be greatly reduced in the

current environment, thus fundamentally solve the role

activation problem. The paper illustrates the authorization

process of the RBAC model, and gives the authorization

process of the R
3
BAC model. By comparing the

differences, the research explains how the R
3
BAC model

filters roles based on context condition. The paper also

extends the functional specification of the R
3
BAC model.

Functions provide developers with the design of flexibility

and the ability to incorporate additional features to meet

the needs of users. In the end the paper also presents the

XACML implementation of the R
3
BAC model with

practical examples.

REFERENCES

[1] R. J. Loomis and A. C. O'Connor, “2010 Economic analysis of role-
based access control,” Final Report, Nist, 2010.

[2] Y, Zhang and J. B. D. Joshi, “UAQ: A framework for user

authorization query processing in RBAC extended with hybrid
hierarchy and constraints,” ACM Symposium on Access Control

MODELS and Technologies ACM, 2008, pp. 83-92.

[3] J. Lu, J. B. Joshi, L. Jin, and Y. Liu, “Towards complexity analysis
of user authorization query problem in RBAC,” Computers &

Security, vol. 48, pp. 116-130, 2015.

[4] J. Lu, Y. Xin, Z. Zhang, H. Peng, and J. Han, “Supporting user
authorization queries in RBAC systems by role-permission

reassignment,” Future Generation Computer Systems, pp. 468-476,

2017.
[5] X. Ma, Y. Liu, L. Zhao, Y. Lan, and J. Lu, “Specification and

enforcement of the general user authorization query problem in role

based access control system,” Open Automation and Control
Systems Journal, vol. 6, pp. 692-698, 2014.

[6] G. T. Wickramaarachchi, W. H. Qardaji, and N. Li, “An efficient

framework for user authorization queries in RBAC systems,” in
Proc. ACM Symposium on Access Control Models and

Technologies, 2009, pp. 23-32.

[7] J. Lu, Z. Wang, D. Xu, C. Tang, and J. Han, “Towards an efficient
approximate solution for the weighted user authorization query

problem,” IEICE TRANSACTIONS on Information and Systems, vol.

E100.D, pp. 1762-1769, 2017.

[8] A. Samuel, M. I. Sarfraz, H. Haseeb, S. Basalamah, and A. Ghafoor,

“A framework for composition and enforcement of privacy-aware

and context-driven authorization mechanism for multimedia big
data,” IEEE Transactions on Multimedia, vol. 17, pp. 1484-1494,

July 2015.

[9] D. Kulkarni and A. Tripathi, “Context-aware role-based access
control in pervasive computing systems,” in Proc. ACM Symposium

on Access Control Models and Technologies, 2008, pp. 113-122.
[10] S. Hosseinzadeh, S. Virtanen, N. Díaz-Rodríguez, and J. Lilius, “A

semantic security framework and context-aware role-based access

control ontology for smart spaces,” International Workshop on
Semantic Big Data, 2011.

[11] A. D. Wood, J. A. Stankovic, G. Viron, L. Selavo, and Z. He,

“Context-aware wireless sensor networks for assisted living and
residential monitoring,” IEEE Network, vol. 22, pp. 26-33, July

2008.

[12] J. E. Bardram, T. R. Hansen, M. Mogensen, and M. Soegaard,
“Experiences from real-world deployment of context-aware

technologies in a hospital environment,” in Proc. International

Conf. on Ubiquitous Computing, pp. 2006, 369-386.

[13] N. Davies, K. Cheverst, K. Mitchell, and A. Efrat, “Using and

determining location in a context-sensitive tour guide,” Computer,

vol. 34, pp. 35-41, 2001.
[14] Y. Shi, W. Xie, G. Xu, R. Shi, E. Chen, Y. Mao, and F. Liu, “The

smart classroom: Merging technologies for seamless tele-

education,” IEEE Pervasive Computing, vol. 2, pp. 47-55, 2003.
[15] G. Neumann and M. Strembeck, “An approach to engineer and

enforce context constraints in an RBAC environment,” in Proc.

ACM Symposium on Access Control Models and Technologies, pp.
65-79, June 2003.

[16] J. Bacon, K. Moody, and W. Yao, “A model of OASIS role-based

access control and its support for active security,” ACM
Transactions on Information and System Security (TISSEC), vol. 5,

pp. 492-540, Nov 2002.

[17] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in

<PolicySet>
<Target> <Subject>
<SubjectMatch MatchId="&function;string-equal">
<AttributeValue DataType="&xml;string">Bob</AttributeValue>
<SubjectAttributeDesignator
AttributeId="urn:someapp:attributes:name"
DataType="&xml;string"/>
</SubjectMatch></Subject>
<Resource>
<ResourceMatch MatchId="&function;string-equal">
<AttributeValue DataType="&xml;string"> role_wordapp
</AttributeValue>
<ResourceAttributeDesignator
AttributeId="urn:someapp:attributes:role"
DataType="&xml;string"/>
</ResourceMatch></Resource>
<Action>
<ActionMatch MatchId="&function;string-equal">
<AttributeValue
DataType="&xml;string">recommend</AttributeValue>
<ActionAttributeDesignator
AttributeId="urn:someapp:attributes:action-id"
DataType="&xml;string"/>
</ActionMatch></Action>
</Target>
<Condition FunctionId="&function;and">
<Apply FunctionId="&function;types_in">
< Environment AttributeDesignator AttributeId="subjectlocation"
DataType="&xml;address"/>
<AttributeValueDataType="&xml;address">enterpriselocation</Att
ributeValue>
</Apply></Condition>
</PolicySet>

Journal of Advances in Computer Networks, Vol. 6, No. 1, June 2018

53

INFOCOM'10 Proc. of the 29th Conference on Information

Communications, 2010, pp. 534-542.

[18] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P.

Steggles, “Towards a better understanding of context and context-

awareness,” in Proc. of the 1st International Symposium on
Handheld and Ubiquitous Computing, 1999, pp. 304-307.

[19] R. Nick, J. Pascoe, and D. Morse, “Enhanced reality fieldwork: The

context aware archaeological assistant,” Bar International Series,
pp. 269-274, 1999.

[20] B. Schilit, N. Adams, and R. Want, “Context-aware computing

applications,” in Proc. of the 1994 First Workshop on Mobile
Computing Systems and Applications, pp. 85-90, Dec 1994

[21] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R.

Chandramouli, “Proposed NIST standard for role-based access
control,” ACM Transactions on Information and System Security

(TISSEC), vol. 4, pp. 224-274, Aug 2001

[22] A. Anne. “XACML profile for role based access control (RBAC),
version 2.0, ” Specification], 2004.

Gang Liu received M.S. and Ph.D degrees in
computer science and technology from Xi'an

Jiaotong University, Xi’an, China, in 2001 and 2004

respectively.
He has been a faculty member of School of

Computer Science and Technology at Xidian

University since 2007, where he is currently an
associate professor. His major research interests

include embedded system, information security and trusted computing.

Shaomin Ji is currently a M.S at Xidian University,

Xi’an, China.
His research interests include information

security, access control and security model of

integrity and confident in embedded system.

Runnan Zhang is currently a Ph.D at Xidian

University, Xi’an, China.

His research interests include information

security, access control and security model of

integrity and confident in embedded system.

Guofang Zhang is currently a M.S. at Xidian
University, Xi’an, China.

His research interests include information

security, access control and security model of
integrity and confident in embedded system.

Lu Fang is currently a M.S at Xidian University,
Xi’an, China.

Her research interests include information

security, access control and security model of
integrity and confident in embedded system.

Quan Wang received the B.S., M.S. and Ph.D

degrees in computer science from Xidian University

in 1992, 1997 and 2008 respectively.
He is now a professor at the School of Computer

Science and Technology and the institute director of

the Institute of Computer Peripheral Equipment. His
research interest includes embedded system.

Journal of Advances in Computer Networks, Vol. 6, No. 1, June 2018

54

