

Abstract—Trivial File Transfer Protocol (TFTP) is a simple

lockstep file transfer protocol. In this paper we use PAT, a

model checker for CSP, to detect errors in the TFTP. We

model the protocol and a very general intruder as CSP

processes, and use the model checker to test whether the

intruder can successfully attack the protocol. We discover

many different attacks leading to breaches of security.

Index Terms—Security protocols, PAT, CSP, TFTP, model

checking.

I. INTRODUCTION

In this paper we consider a protocol due to Karen R.

Sollins[6]. The protocol concerns a Server-Client system. In

order for allows a client to get a file from or put a file onto a

remote server. One of its primary uses is in the early stages

of nodes booting from a local area network. TFTP has been

used for this application because it is very simple to

implement. TFTP was first standardized in 1981 [1] and the

current specification for the protocol can be found in RFC

1350 [2]. In March 1995 the TFTP Option Extension RFC

1782 [3] updated later in May 1998 by RFC 2347 [4],

defined the option negotiation mechanism which establishes

the framework for file transfer options to be negotiated

prior to the transfer using a mechanism which is consistent

with TFTP's original specification.

The protocol is subject to a number of attacks; indeed,

since TFTP includes no login or access control mechanisms,

care must be taken in the rights granted to a TFTP server

process so as not to violate the security of the server hosts

file system. TFTP is often installed with controls such that

only files that have public read access are available via

TFTP and writing files via TFTP is disallowed. In this

paper we present many different attacks, which makes the

server or client cannot work anymore.

Our approach is to use the process algebra CSP [5], and

its model checker PAT [6]. We encode the protocol in CSP,

and produce a CSP description of the most general intruder

that can interact with the protocol. We then use PAT to

detect a number of attacks upon the protocol (PAT searches

the state space of the system until it either finds an attack or

exhausts the state space; this search is automatic in the

sense that it does not require user guidance once the system

has been modeled in CSP). Some of the attacks allow the

intruder imitate another agent in a fake session; other

attacks allow the intruder to learn the TID being used in a

session between two other agents, and so eavesdrop on that

session.

In the next section we describe the TFTP. In Section 3 we

Manuscript is received February 12, 2018; revised May 10, 2018.
Lou Chen is with Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China (e-mail:

51151500006@stu.ecnu.edu.cn).

describe how the protocol can be modeled in CSP, and in

Section 4 we use PAT, the model checker for CSP, to

discover that an intruder can attack the protocol in a number

of ways, leading to breaches of security. In Section 5 we

provide a method to prevent these attacks, which we store

the username or password in the data option field.

II. THE TFTP

We give brief introduction to TFTP in Appendix A. The

TFTP concerns two players: a Server Host, and a

Client Host. The TFTP protocol for establish a session

involves the exchange of three messages; It is illustrated

below in Fig. 1.

Fig. 1. Session.

TABLE I: MESSAGE

Message 1.
(RRQ)

:Client Server

.c sRRQ client server Port Port filename

Message 2.
(WRQ)

:Client Server

.c sWRQ client server Port Port filename

Message 3.
(ACKc)

:Client Server

.c sACKc client server Port Port ndx

Message 4.
(ACKs)

:Server Client

.s cACKs server client Port Port ndx

Message 5.
(DATAc)

:Client Server

.c sDATAc client server P Datort Por at ndx

Message 6.
(DATAs)

:Server Client

.s cDATAs server client P Datort Por at ndx

Message 7.
(ERR)

:Server Client

.s cERR server client Port Port ErrType

The message communicated between server and client

can be defined as Table I. The acknowledgement message

can be modelled into two messages, one is client send it to

server and another is server it to client. We treat the data

message like acknowledgement.

Any transfer begins with a request to read or write a file,

which also serves to request a connection (Messages 1

or/and Message 2). If the server grants the request (Message

4), the connection is opened and the file is sent in fixed

length blocks of 512 bytes (Message 5 or/and Message 6).

Each data packet contains one block of data, and must be

acknowledged by an acknowledgment packet before the

next packet can be sent (Message 4 or/and Message 3). A

Using CSP to Detect Errors in the TFTP

Lou Chen

Journal of Advances in Computer Networks, Vol. 6, No. 1, June 2018

24doi: 10.18178/jacn.2018.6.1.249

data packet of less than 512 bytes signals termination of a

transfer. If a packet gets lost in the network, the intended

recipient will timeout and may retransmit his last packet

(which may be data or an acknowledgment), thus causing

the sender of the lost packet to retransmit that lost packet.

The sender has to keep just one packet on hand for

retransmission, since the lock step acknowledgment

guarantees that all older packets have been received. Notice

that both machines involved in a transfer are considered

senders and receivers. One sends data and receives

acknowledgments, the other receives data and sends

acknowledgements.

III. MODELING THE PROTOCOL IN CSP

In this section we give a brief description of how we

model the TFTP in CSP. We give a brief overview of CSP

in Appendix B for the reader unfamiliar with the language,

the syntax of CSP has evolved since [5]. We assume the

existence of the sets Client of clients, Server of servers,

Port of ports, which are integer in[1,65535] . We define

different sorts of message, correspond to the steps of the

protocol. Each massage includes a tag from the set { ,RRQ

, , , , , }WRQ ACKc ACKs DATAc DATAs ERR ; sub-

sequent fields depend upon which protocol step we are

dealing with.

1 {ˆ

| , ,

, }

c s

c s

MSG RRQ client server Port Port filename

client Client server Server

Port Port Port



 



2 {ˆ

| , ,

, }

c s

c s

MSG WRQ client server Port Port filename

client Client server Server

Port Port Port



 



3 {ˆ

| , ,

, }

c s

c s

MSG ACKc client server Port Port ndx

client Client server Server

Port Port Port



 



4 {ˆ

| , ,

, }

s c

c s

MSG ACKs server client Port Port ndx

client Client server Server

Port Port Port



 



5 {ˆ

| , ,

, }

c s

c s

MSG DATAc client server Port Port Data ndx

client Client server Server

Port Port Port



 



6 {ˆ

| , ,

, }

s c

c s

MSG DATAs server client Port Port Data ndx

client Client server Server

Port Port Port



 



7 {ˆ

| , ,

, }

s c

c s

MSG ERR server client Port Port ErrType

client Client server Server

Port Port Port



 



1..7

ˆ
i

MSG MSGi




We use three channels to model the communications in
system:

 The channel session will represent standard com-

munications between two honest hosts.

 The channel _ _server fake session will re-

present the server taking part in fake session, where
the intruder impersonates the client.

 The channel _ _client fake session will re-

present the client taking part in fake session, where
the intruder impersonates the server.

 The channel _leak sission will represent the

sessions might be overheard by the intruder.
We declare these channels:

, _ _ ,

_ _ , _ :

channel session server fake session

client fake session leak session MSG

These channels are illustrated in Fig. 2.

The protocol should prevent these latter events from

happening, but as we shall see, it fails in this respect.

We now produce a CSP process representing each of the

hosts in protocol. First, we consider a client ignoring for the

moment the possibility of interference from the intruder, the

client is represented by the process Client below. The

client first request to write or read a file, and send an

appropriate Message 1 or Message 2. He then waits for a

corresponding Messages 4 or Message 3; he obtain the

sPort by decompose the message, and carries out sessions

using the sPort . A data packet of less than 512 bytes

signals the termination of a transfer.

Fig. 2. Channel.

A file will be divided into several data packets depend on

the size of it. The data packet will transfer iteratively. When

the client send a read request to server to read a file, the

server will reply data packet to client. We modelling the

behaviors of transfer data packets iteratively.

ClientIterRecv represents the client receive the data

packet and reply acknowledgement to server iteratively. It

will check the size of the Data, if the size less than 512 byte,

which stand for the last packet, the ClientIterRecv

behavior stop. Or it will receive the data packet then reply

acknowledgement to server, then it turn

to ClientIterRecv .

Journal of Advances in Computer Networks, Vol. 6, No. 1, June 2018

25

Algorithm 1 ClientIterRecv
ClientIterRecv =

If size(Data)<512 then
Skip

Else

 !session

 s cDATAs server client Port Port Data ndx 

 ?session

 c sACKc client server Port Port ndx 

 ClientIterRecv

End if

ServerIterSend represents the server send the data

packet and receive acknowledgement from client iteratively.

It will check the size of the Data, if the size less than 512

byte, which stand for the last packet, the ServerIterSend

behavior stop. Or it will send the data packet then reply

acknowledgement to server, then it turn to

ServerIterSend . The model of ServerIterSend is

similar to ClientIterRecv .

When the client send a write request to server to put a file,

the server will reply an acknowledgement to client, and then

they will transfer data packet. We modelling the behaviors

of transfer data packets iteratively.

ClientIterSend represents the client send the data

packet and receive acknowledgement from server iteratively.

It will check the size of the Data, if the size less than 512

byte, which stand for the last packet, the ClientIterSend

behavior stop. Or it will send the data packet and then

receive acknowledgement from server, and then it turn

to ClientIterSend .

Algorithm 2 ClientIterSend

ClientIterSend =

If size(Data)<512 then
Skip

Else

 ?session

 c sDATAc client server Port Port Data ndx 

 !session

 s cACKs server client Port Port ndx 

 ClientIterSend

End if

ServerIterRecv represents the server receive the data

packet and send acknowledgement to client iteratively. It

will check the size of the Data, if the size less than 512 byte,

which stand for the last packet, the ServerIterRecv

behavior stop. Or it will receive the data packet and then

reply acknowledgement to client, and then it turn

to ServerIterRecv . The model of ServerIterRecv is

similar to ClientIterSend .

The client contains two behaviors, one is send read

request and then get the file he need, another is send write

request and then send file to server. We modelling the

behaviors of Client.

?

(){ } { }

?

(){ } {

! . .

ˆ

c s

c s

session RRQ client server Port Port filename

if Error Stop else ClientIterRecv

Client

session WRQ client server Port Port filename

if Error Stop else

session ACKs server clien

Client

 
 








 
 

. . .

}

s ct Port Port ndx

ClientIterSend

Client

 
 
 
 
 

 
 
 

The Server contains two behaviors, one is receive read

request and then send the file out, the other is receive write

request and then receive file from client. We modelling the

behaviors of Server.

!

(){ } { }

!

(){ } {

? . .

ˆ

c s

c s

session RRQ client server Port Port filename

if Error Stop else ServerIterSend

Server

session WRQ client server Port Port filename

if Error Stop else

session ACKs server clien

Server

 
 








 
 

. . .

}

s ct Port Port ndx

ServerIterRecv

Server

 
 
 
 
 

 
 
 

We allow the possibility of intruder action: we must

allow instances of Message to be intercepted, instances of

Message to be faked, and sessions to be either faked or

overheard. We do this via a renaming:

[,ˆ

_ _ ,

_]

Client Client session session

session client fake session

session leak session

 





[,ˆ

_ _ ,

_]

Server Server session session

session server fake session

session leak session

 





IV. ATTACKS UPON THE PROTOCOL

We will analyze the security of the protocol by putting it

in parallel with an intruder. We want to model the intruder

as a process that can perform any attack that we would

expect a real-world intruder to be able to perform. Thus our

model will allow the intruder to send message, or replay

message. More precisely, we model an intruder who can:

 Overhear messages so as to learn the contents,
possibly intercepting these messages;

 Drive new messages from ones he already knows;

 Fake new messages using messages he knows;

 Fake new messages onto Server orClient .

We consider an intruder who initially knows TID

of Server . We assume that the intruder is a user of the

protocol in his own right, so can use the protocol to

establish sessions with other clients, and other clients might

try to establish sessions with him. Now we consider the

CSP model of intruder. We begin by defining the set of

facts that the intruder might learn; this consists of the

atomic datatypes,

ˆFacts Server Client Port  

We now define the submessages of a message. This are

Journal of Advances in Computer Networks, Vol. 6, No. 1, June 2018

26

the fact that an intruder will learn by seeing a message

(without doing any further deductions); they are also the

facts that the intruder needs to know in order to send a fake

message (this definition could be simplified by assuming

that the intruder always knows all the hosts' identities):

(.)

{ , , , , }ˆ

(.)

{ , , , , }ˆ

c s

c s

c s

c s

submessages RRQ client server Port Port filename

client server Port Port filename

submessages WRQ client server Port Port filename

client server Port Port filename





(.)

{ , , , , }ˆ

(.)

{ , , , , }ˆ

c s

c s

s c

s c

submessages ACKc client server Port Port ndx

client server Port Port ndx

submessages ACKs server client Port Port ndx

server client Port Port ndx





(.)

{ , , , , , }ˆ

(.)

{ , , , , , }ˆ

c s

c s

s c

s c

submessages DATAc client server Port Port Data ndx

client server Port Port Data ndx

submessages DATAs server client Port Port Data ndx

server client Port Port Data ndx





(.)

{ , , , , }ˆ

s c

s c

submessages ERR server client Port Port ErrType

server client Port Port ErrType

We declare a channel fake to represent messages

introduced by the intruder: the receiver of these messages

should not be aware that they are fakes; we declare a

channel intercept to represent messages sent by an

honest agent that are intercepted by the intruder: the sender

should not be aware that the message was intercepted.

, :channel fake intercept MSG

We declare a channel deduce , which will be used for

deducing new facts:

:channel deduce Facts

The definition of the intruder is parameterized by the set

of fact that he knows. The intruder can overhear or intercept

a message so as to learn all its submessages; he can fake a

message when he knows all the submessages; he can

deduce a new fact from ones he already knows.

, ()

,

() ˆ

_

Intruder(S

.

(())

.

(())

.

(())

.

)

m MSG

m MSG

m MSG

m MSG submessages m S

f Facts

Intruder S

leak session m

Intruder S submessages m

intercept m

Intruder S submessages m

session m

Intruder S submessages m

fake m







 



















.

({ })

f S deduce f

Intruder S f






We now consider a system with an intruder. First we

form the system without the intruder:

()[| _ |] ()ˆSYSTEM Client INTRUDER CONT Server

where:

_ ˆ

{ , , , _ _ ,

_ _ , _ }

INTRUDER CONT

session fake intercept client fake session

server fake session leak session



Note that in the above definition:

 session events are shared between the client and

server, so the intruder takes no part in these events;

 _ _client fake session events are shared

between the client and intruder, so the server takes
no part in these events;

 _ _server fake session events are shared

between the server and intruder, so the client takes
no part in these events;

 _leak session events are shared by all three

agents, so the intruder over hears the session
between the client and the server.

We want to know whether the intruder can ever spy upon

sessions or cause fake sessions to be set up between client

and server; i.e., we want to know whether the system with

an intruder will ever perform _leak session ,

_client fake _ session , _ _server fake session .

Thus we will test our system against the specifications:

({ _ })ˆ

({ _ _ })ˆ

({ _ _ })ˆ

l

c

s

SPEC CHAOS leak session

SPEC CHAOS client fake session

SPEC CHAOS server fake session

 

 

 

If the system with the intruder refined these

specifications, then it would indeed be secure. However,

PAT can be used to discover that SYSTEM does not

refine any of the above specifications; It discovers the

following attacks upon the protocol.

Attack 4.1. SYSTEM does not refine sSPEC . It can

perform the trace:

. 1, _ _ . 6, . 5fake Msg server fake session Msg fake Msg 

We can rewrite the attack in more conventional style; we

write, for example, cI to represent the intruder I

imitating client .

Step 1. : . 1cI S fake Msg

Step 2. : _ _ . 6cS I server fake session Msg

Step 3. : . 3cI S fake Msg

The intruder sends a RRQ to server (Step 1), pretending

to be client, to read a file. No attempt is made to

authenticate the identity of the client. The server send the

data of file to intruder with TID of intruder and server (Step

2), and then the intruder send acknowledgement to server

(Step 3). The intruder get the file of the server after the

session above.

Attack 4.2. SYSTEM does not refine cSPEC . It can

Journal of Advances in Computer Networks, Vol. 6, No. 1, June 2018

27

perform the trace:

_ _ . 1, . 6,

_ _ . 3

client fake session Msg fake Msg

client fake session Msg





We can rewrite the attack as follow:

Step 1. : _ _ . 1sC I client fake session Msg

Step 2. : . 6sI C fake Msg

Step 3. : _ _ . 3sC I client fake session Msg

The client sends a RRQ to server which is pretended by

intruder (Step 1), to read a file. The client was not aware the

message was intercept, the intruder deduce the message

received from client and fake the message to client. The

client get the file that was not supposed to be after the

session above.

Attack 4.3. SYSTEM does not refine lSPEC . It can

perform the trace:

_ . 1, _ . 6,

_ . 3

leak session Msg leak session Msg

leak session Msg





We can rewrite the attack as follows:

Step 1. : _ . 1C S leak session Msg

Step 2. : _ . 6S C leak session Msg

Step 3. : _ . 3C S leak session Msg

The intruder can get the message between client and

server, then it get the submessage, such as the TID of server

and client and the port they used. The intruder than

overhear the communications between server and client.

The reason these attacks succeeded was that the messages

are not authenticated, so the intruder can get or send

messages without any identification.

V. CONCLUSION

In this paper we have shown how to model the TFTP in

CSP, and how the session can be attacked by the intruder

which have been described attacks on the protocol.

In order to overcome the problems discovered above, we

think the TFTP protocol allows additional data options at

the end of RRQ and WRQ packets. These data options are

mainly used to negotiate the size of the data block and wait

for time and other information. Therefore username or

password can be stored in this data option field.

When we take usernames and passwords stores in the

data segment, the security of protocol can be improved.

First of all, before the establishment of communication, we

can design the algorithm that was related to time the clients'

TID and servers' TID, which requires both ends of the

moment with an Internet time synchronous. During the

communication, client and server can obtain the

submessages of the message, and both of them calculate a

determined value with the algorithm to compare with a

preset value. Therefore it prevent intruder counterfeit the

server and the client, at the same time, and provides a

different configuration of algorithms to encrypt the real data,

so that can prevent intruder monitoring the session.

APPENDIX A

In this appendix we give a brief introduction to TFTP,

We present the order of Headers in TABLE II. The order of

the contents of a packet will be: local medium header, if

used, Internet header, Datagram header, TFTP header,

followed by the remainder of the TFTP packet.

TABLE I： ORDER OF HEADERS

 2 bytes

Local Medium Internet Datagram TFTP
Opcode

In Table III we present TFTP Formats [7], TFTP support

five type of packets, all of which have been mentioned

above, RRQ and WRQ have the format shown in below.

The file name is a sequence of bytes in hetscii terminated

by a zero byte. The mode field contains the string “netascii”,

“octet”, or “mail”(or any combination of upper and lower

case, such as “NETASCII”, “NetAscii”, etc.) in netascii

indicating the three modes defined in the protocol.

Data is actually transferred in DATA packets depicted

below. DATA packets have a block number and data field.

The block numbers on data packets begin with one and

increase by one for each new block of data.

TABLE II： TFTP FORMATS

Type Op # Format without header
 2 bytes String 1 string 1 byte

RRQ 01 Filename 0 Mode 0
 2 bytes String 1 String 1 byte

WRQ 02 Filename 0 Mode 0
 2 bytes 2 bytes n bytes

DATA 03 Block # Data
 2 bytes 2 bytes

ACK 04 Block #
 2 bytes 2 bytes string 1 byte

ERROR 05 ErrorCode ErrMsg 0

TABLE III： ERROR CODES

Value Meaning

0 Not defined, see error message (if any).
1 File not found.
2 Access violation.
3 Disk full or allocation exceeded.
4 Illegal TFTP operation.
5 Unknown transfer ID.
6 File already exists.
7 No such user.

We show the error codes of TFTP in TABLE IV, the

error code is an integer indicating the nature of the error.

The error message is intended for human consumption, and

should be in netascii.

APPENDIX B

In this section we give a brief overview of CSP. More

details can be obtained from [5], [7].

An event represents an atomic communication; this might

either be between two processes or between a process and

the environment. Channels carry sets of events; for example,

_ _ . 1client fake session Msg is an event of channel

_ _client fake session .  represents the set of all

events. The notation {| , |}a b represents the set of all

events over channels a and b .

Journal of Advances in Computer Networks, Vol. 6, No. 1, June 2018

28

In this paper we use processes defined using the

following syntax:

TABLE IV：CSP SYNTAX

STOP process that can perform no events.

a P
process that can perform the event a ,

and then act like P .

P Q
external choice; the process can act like

either P or Q ; the choice is made by

the environment.

[[]]P a b

process that acts like P , except the event

a is renamed b ; this operator can also
be used for multiple renamings, and has
a comprehension form.

\P A
process that acts like P , except all

events from the set A are hidden, i.e.,
made internal.

()CHAOS A
the most nondeterministic, nondivergent

process with alphabet A ; the process can

perform any sequence of events from A .

[| |]P A Q
parallel composition of P and Q ,

synchronizing on events from A .

The trace model of CSP represents a process by the set of

traces it can perform, where a trace is a sequence of events.

We say that process P is (trace) refined by process Q if

the traces of P are a superset of the traces of Q . PAT can

be used for testing refinement between two finite state

processes.

PAT is a tool based on CSP and designed to apply model

checking techniques for system analysis. It is self-contained

framework for simulating and reasoning of concurrent, real-

time systems [8] and other domains. Above all, PAT

implements various model checking techniques catering for

different properties such as deadlock-freeness, reachability,

LTL properties with fairness assumption in distributed

systems [9]. Here we list some notations.

 # 0define V

It defines a global constant V with the initial value 0.

 [] [0,1,2, , 1]var Dstate V V 

This statement defines an array named Dstate . The

size of the array is V, which is a global constant.
And the initial value of the array is specified as the

sequence[0,1, 2, , 1]V  .

 1channel c

This statement declares a channel, c is the channel
name and 1 is the buffer size. Channel buffer size
must be greater than or equal to 0. Notice that a
channel with buffer size 0 sends/receives messages
synchronously.

 { 1}P v v Skip   

It denotes a global variable can be updated by an
action.

0;# ;define goal v assert P reaches goal It

defines an assertion to check whether process P can reach

a state which a condition goal is satisfied or not.

REFERENCES

[1] K. R. Sollins, The TFTP Protocol[J]. Rfc, 1981.

[2] K. Sollins, The TFTP Protocol (Revision 2)[M]. RFC Editor, 1992.
[3] A. Harkin, TFTP Option Extension[J]. Information on Rfc, 1995.

[4] A. Harkin, TFTP Option Extension[J]. Information on Rfc, 1998.

[5] C. A. R. Hoare, “Communicating Sequential Processes,”
Communications of the Acm, vol. 21, no. 1, pp. 666-677, 1985.

[6] J. Sun, Y. Liu, J. S. Dong, Model Checking CSP Revisited:

Introducing a Process Analysis Toolkit[M]// Leveraging Applications
of Formal Methods, Verification and Validation, Berlin Heidelberg:

Springer, 2008.

[7] A. W. Roscoe, “The theory and practice of concurrency,” Prentice
Hall PTR, 1997.

[8] J. Sun, Y. Liu, and J. S. Dong, “Modeling and verifying hierarchical

real-time systems using stateful timed CSP[J],” Acm Transactions on
Software Engineering & Methodology, vol. 22, no. 1, pp. 1-29, 2013.

[9] Y. Si, J. Sun, and Y. Liu, “Model checking with fairness assumptions

using PAT[J],” Frontiers of Computer Science, vol. 8, no. 1, pp. 1-16,
2014.

Lou Chen was born on Jan. 7th in Anhui province,

China. He obtained a bachelor’s degree in
mathematics and applied mathematics in Hefei,

Anhui province in 2011. He is currently studying for

master’s degree at East China Normal University, his
major is software engineering.

Journal of Advances in Computer Networks, Vol. 6, No. 1, June 2018

29

