
  

1 

Abstract—In last decades, the number of web pages on the 

Internet has been exposed a rapid increase intrinsically, and the 

information on the Internet has reached a very large size. 

Search engines have been developed to access this large-scale 

information efficiently. Web crawlers play a very important 

role in search engines. In this paper, an efficient multi-threaded 

web crawler is proposed, and empirically analyzed in terms of 

crawling speed and coverage. 

 
Index Terms—Coverage, HashMap, web crawler.  

 

I. INTRODUCTION 

A web search engine has been used to search for 

information obtained from text, images, videos etc. on the 

World Wide Web. The search engines use crawlers to gather 

and update its database include indices and contents of web 

pages. 

Searching on the web has a great challenge due to the rapid 

growth of information. [1]. In the literature, the problem has 

been divided into two parts as crawling and indexing of the 

web pages in a very short time and for a wide range of 

coverage.  

The first web crawler has been presented in 1993 by 

Matthew Gray [1]. Numerous successful methods have been 

developed from that day. In recent years, some discussions 

have been raised about how often the scanned web pages 

need to be re-scanned due to effecting on crawling 

performance [2]. Boldi et al. have proposed an efficient 

solution to improve performance of crawling process using 

distributed multiple crawlers running in parallel [3], [4]. By 

optimizing the number of parallel agents, performance of the 

crawler can be remarkably improved [5], [6]. 

In [7], an artificial intelligence method has been proposed 

to improve performance of crawling process. In this work, the 

proposed crawler called MySpiders scans web pages using 

multi-threaded structure. Similar architecture was used in [8] 

as well.  

Today, many researchers have studied on crawling 

mechanism [9], refresh policies [10], visit strategy for 

newborn links [11]. In [10], Internet traffic has been 

investigated caused by refresh policies of web crawlers. The 

authors have investigated on how they can maintain local 

copies of original data sources up to date. They proposed a 

new refresh policy and examined its effectiveness 

experimentally.  

 
Manuscript received August 14, 2017; revised October 20, 15. 

Y. Kansu is with the Command Control and Combat Systems, Havelsan, 
Ankara, Turkey (e-mail: ykansu@ havelsan.com.tr).  

B. Mutlu, A. Utku and M. Ali Akcayol are with the Department of 

Computer Engineering, Gazi University, Ankara, 06570 Turkey (e-mail: 
begummutlu@gazi.edu.tr, anilutku@gazi.edu.tr, akcayol@gazi.edu.tr). 

In [9], the traffic caused by web crawlers of the major 

search engines was examined. More recently, a web crawler 

named IWatch has been designed to analyze the distribution 

of information on the Internet [12].  

In this paper, an efficient multi-threaded web crawler 

algorithm has been developed using HashMaps. The main 

steps of the study are accessing the web pages, saving their 

contents, creating a directory, and performing an efficient 

search. The inverted index has been used to keep local 

summarized copy of original web pages. The web pages have 

been crawled and newborn web pages have been detected 

periodically. 

 

II. IMPLEMENTATION 

In this section, design details of proposed web crawler 

algorithm are presented with regards to its strategy on 

crawling web pages, keeping summarized contents of these 

pages and searching for items on the web pages. 

A. Multi-Threaded Crawler 

The multi-threaded crawler initially visits the web pages 

by starting from the seed fields. The URLs in these pages are 

extracted and inserted into the queue. Thus, all URLs can be 

accessed in the web pages. Fig. 1 shows structure of the 

multi-threaded crawler.  

As shown in Fig. 1, the multi-threaded crawler consists of 

(i) a component that manages shared areas, (ii) a component 

that scans pages, and (iii) a control component that organizes 

these components. It inserts the web addresses into the queue 

of manager component. It also adds the hosts of the start 

addresses to the host routing table of the manager and 

initializes the specified number of crawler components. 

The crawlers visit the web pages supplied by the link pool 

manager. New page addresses determined from visited links 

are delivered to the manager. Manager checks the links 

whether they were visited before or not, and inserts them into 

the queue if it is necessary repeatedly until the process is 

finished by the user. When any crawler needs to get an 

address, link pool manager gets a link from the queue and 

adds to the visited links. Simultaneously, the host of the link 

is added to the list of hosts. If the host has already visited 

before, it only increases the number of visits for the 

corresponding host.  

In order to reach different hosts, the URLs are divided into 

two parts as interlinks and intra-links. The intra-links point to 

the same host, otherwise the interlinks point to the other hosts. 

All the links are inserted to a priority queue that have higher 

priority for interlinks than intra-links.  

Regarding the aforementioned lists of hosts, a red-black 

tree data structure is utilized to manage the list of hosts, list of 

An Efficient Multi-Threaded Web Crawler Using 

HashMaps 

Yasin Kansu, Begum Mutlu, Anıl Utku, and M. Ali Akcayol  

Journal of Advances in Computer Networks, Vol. 5, No. 2, December 2017

65doi: 10.18178/jacn.2017.5.2.242

mailto:begummutlu@gazi.edu.tr


  

visited links and list of standby hosts. The reason behind this 

implementation is that it has low computational cost for 

searching, insertion and deletion tasks of items. Otherwise, 

crawlers in a multi-threaded structure could have to wait for 

other processes.  

The link pool manager inserts the links of the hosts to the 

priority queue or may redirect the link if required. The 

counter of the links belongs to visited host is incremented and 

the value field in red-black tree is updated. Since this process 

is performed in the host table, number of visited links of a 

host is automatically computed. 

 

 
Fig. 1. Proposed multi-thread crawler architecture. 

 

B. Indexer 

The web pages that are visited by the multi-threaded 

crawler are all sent to the indexer. Fig. 2 shows the 

pseudocode the main tasks of the developed multithreaded 

crawler.  

The contents of the pages are recorded, once their 

addresses are inserted into priority queue (in line 5). The 

indexer extracts head and body sections of the web pages (in 

line 6) which are then stored in a specially constructed 

HashMap data structure. 

The HashMap data structure allows storing data, which 

consists of key-value relationship and mapping key to value 

at      time complexity. Therefore, computational cost of 

the HashMap structure is very low for searching, adding, 

deleting and editing. It should be noted that in order to 

achieve high speed for access, mapping key-value has to be 

unique.  

The extracted words are used as keys. A new HashMap 

structure is created to store value. This HashMap holds the 

page address as the key and a private class which keeps some 

data about the relationship between the word and the web 

page address as the value. The HashMap structure is 

expressed by (1). 

 

                    { |       {   |        }}                 (1) 

 

In expression (1), k is the word, url is the web page address, 

c is the first sentence of the word on the page, n is the number 

of occurrences of the word on the page. Additionally, TF 

stands for term frequency which represents the ratio of the 

number of occurrences of the word on the page to the total 

number of words on the page. The process for a web page 

begins with the parsing web page and extract words. The 

terms are checked in the HashMap. If a term exists, the value 

of the term is taken, otherwise a new value for HashMap is 

created and the word is added to table. For existing page, the 

process is finished by increasing the number of occurrences 

by 1 and updating the TF value (in line 14). Otherwise, a 

sentence is obtained with words before and after 10th place 

on the page where the word is passed, and this sentence is 

appended to the value of the word HashMap with the number 

of passes of the word 1 and the calculated TF value as well as 

the address of the value page (in line 21 in Fig. 2). All search 

operations are performed by the HashMap at      time 

complexities that no matter with how many records are there. 

The developed data structure can be seen as growing list 

down as new words are inserted. If users are not interested in 

the page addresses ranking by search engines, the list can 

grow right to avoid unnecessary use of system resources and 

allocate more resources to grow down. For this reason, 

growth to the right in the data structure is limited to 100 pages 

(in line 18). 

It is necessary to compare the address to be added with the 

existing addresses in the list in case of bounded words (in line 

19). Since the TF cannot be calculated correctly when a new 

address is added for the first time, the page with the smallest 

TF is extracted directly from the pages and the new page is 

added. 

 

 
Fig. 2. A representation of main tasks of crawler as pseudocode. 

 

C. Searchers 

The searcher is designed to list the addresses of the web 

pages containing the desired search words given by the user. 

Some information has been created and recorded in the other 

components so that the list displayed to the user can be sorted. 

Journal of Advances in Computer Networks, Vol. 5, No. 2, December 2017

66



  

The searcher also performs a ranking by using this 

information. 

The searcher component starts processing by separating the 

user-entered text words and getting results for all words. 

Using HashMap data structure, this process is completed 

without any delay. Then, for each word, HashMaps contain up 

to     page links per word (for the most extreme case with 

100 records per word). If there are common links between 

these HashMaps, these links contain multiple words entered 

by the user at the same time. The searcher checks the 

hierarchy in HashMaps to find these common page addresses. 

Since the HashMap searches at time      and the number of 

the HashMap registers is 100, all the elements of one 

HashMap are checked at          times in the other 

HashMaps. In the worst case, this means a check up to 100 

times the number of words.  

For this reason, when more than one word is searched, the 

control time near      speed (        ,        ) is 

calculated. This is independent of the size of the index, 

depending on the number of words desired to be searched. In 

addition, since links containing more than one word are 

checked once, they don't need to be checked again. So, a 

representing the number of words searched, v representing the 

number of check operation, the number of check operation is 

represented by (2). 

 

                                             (2) 

 

As the number of links containing more than one word 

increases, the speed of control decreases.  

As a result of the check operation, a new TreeMap data 

structure holds the number that how many common words 

link is related as keys and values in a HashMap that contains 

link and other data. The TreeMap structure is expressed by 

(3). 

 

                       { |       {   |        }}               (3) 

 

In equation (3) o represents the number of searched words 

links are related. Since the TreeMap data structure 

automatically ordered by keys, it does not need to be sort 

again. If the tree was traversed bottom to up, the links 

containing the most searched words are first obtained.  

In the second stage, the links in the HashMaps of the 

TreeMap data structure are sorted by processing HashMaps 

by creating a sort number with various parameters. Using this 

number, the HashMaps are converted to a simple TreeMap. 

The structure of the TreeMap is given in (4). 

 

                                 { |{     }}.                                    (4) 

 

In equation (4),     is the address of the page,   sentence 

include the word,   is expressed to represent the number for 

sorts. 

Finally, the links are completely sorted. The parameters are 

the    value, the number of times the linking host address is 

routed to different host addresses, the number of lower links 

which are possessed by host address, the number of links at 

the link address, and the number of links at the host address. 

The parameters have an effect on ordering determined by their 

coefficients. Sorting can be controlled by changing the 

coefficients and the most suitable coefficient values can be 

determined. 

 

III. EXPERIMENTS & RESULTS 

The experiments are performed on Intel Core i3 3217U 

1.80 GHz processor running at 8 GB RAM at 1333 MHz. The 

storage equipment is SATA3 connected local storage device 

with 5400 rpm. In addition, Internet connection has 3Mbps for 

download and 5Mbps for upload.  It has been observed that 

threads usually spend most of the processing time to retrieve 

data on the Internet.  

 

 
Fig. 3. Relation between the number of hosts and the number of visited links 

per each host. 

 

The first analysis is related with how many links are visited 

by the hosts on the host list. The change in the number of 

visited links on the same host according to the number of 

hosts is shown in Fig. 3. As can be seen in here, the number of 

pages visited by a single link is very high. This shows that, 

aimed selectiveness about retrieving a new link form the 

queue is achieved, interlink priority queue succeeded.  

 

 
Fig. 4. An illustration of the increase in the number of hosts and links by 

time. 

 

The number of hosts and the number of web pages visited 

in 10 minutes is presented in Fig. 4. As can be seen in here, 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 6 11 16 21 26 31 40 46 58 89

N
u

m
b

er
 o

f 
h

o
st

s 

Number of visited links on the same host 

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60

T
h

e 
n

u
m

b
er

 o
f 

li
n

k
s 

/ 
h

o
st

s 

Time (min) 

Number of links

Number of hosts

Journal of Advances in Computer Networks, Vol. 5, No. 2, December 2017

67



  

the number of visited hosts and web pages is increasing 

linearly and the gap between them is proportionally same. If 

the proportional difference between the number of hosts and 

the number of links increases in time, it indicates that mostly 

the links on the same host are visited. 

The change number of the links and hosts according to 

number of parallel crawler is shown in Fig. 5. It can be seen 

that the excessive number of crawlers can cause adverse 

effects on the application performance. More than 100 

parallel crawlers have increased negative impact and 

performance has begun to fall. It is shown in Fig. 5 that using 

8 crawlers is also suitable for Internet bandwidth. When 8 

crawlers are used, the maximum number of hosts is not 

reached. 

 

 
Fig. 5. The effect of the number of crawlers on the visited links. 

 
TABLE I: HOSTS WITH MAXIMUM NUMBER OF REDIRECTIONS FROM 

DIFFERENT HOSTS  

Host Number of redirection  

www.about.com 31.808 

twitter.com 20.933 
www.yourdictionary.com 19.601 

www.facebook.com 13.028 

wikimediafoundation.org 8.401 
www.blogger.com 8.064 

en.wikipedia.org 8.001 

www.stateuniversity.com 7.682 
www.mediawiki.org 6.821 

incubator.wikimedia.org 6.453 

 

Regarding the number of visits, the hub pages are given in 

Table I. Here, the most linked pages are social media and 

encyclopedia pages. In this analysis, www.about.com takes 

the lead because it has its own sub-links on different hosts, 

such as breakfast.about.com, gardening.about.com. It may 

also be directed from different host addresses, but the 

sub-links are the majority. Results of Twitter and Facebook 

are plausible and foreseeable, since almost every web site 

keeps Facebook and Twitter. The encyclopedic sites also have 

high results due to the some of starting addresses have 

encyclopedic sites. The results show that the crawled pages 

are gathered from very large area. 

In the last analysis, the number of recorded page, the 

number of recorded word and the speed of searching were 

obtained within 10 minutes for query text “news Turkey”. 

The results are shown in Table II. According to results, search 

length in the directory is independent of the size of the 

directory. 

 
TABLE II: 10-MINUTE SEARCH PERFORMANCE   

Number of pages on 
record 

Number of words on 
record 

Search speed in 
record (ms) 

1.345 116.367 3,9156 

2.100 126.425 4,5022 
2.814 135.767 3,4405 

3.103 143.726 3,9833 

3.851 155.220 3,0180 

4.295 161.449 4,1629 

 

IV. CONCLUSION 

Due to the rapid increase in the number of web pages, it is 

inefficient and implausible to process all of these pages, and 

gathering information about their contents in order to search 

the web pages. It is not possible to be fully informed of web 

pages because the servers that provide access to the web 

pages are distributed. Also, it is not possible to know the 

addresses and contents of all pages. For this reason, scanning 

and saving these pages with web crawler software is 

important to increase the speed of accessing useful 

information. 

In this study, an efficient multi-threaded web crawler 

architecture is proposed. The web pages are obtained by the 

crawler algorithm, and stored in red-black tree structure for 

efficient insertion, deletion and searching performance. The 

HashMap data structure has been used for key-value mapping. 

Various analyses are performed by using the proposed web 

crawler software in terms of crawling speed and coverage; 

and results are examined with deep discussions.  

REFERENCES 

 

0

500

1000

1500

2000

2500

N
u

m
b

er
 o

f 
li

n
k

s 
/ 

h
o
st

s 

Number of crawlers 

Number of links

Number of hosts

Journal of Advances in Computer Networks, Vol. 5, No. 2, December 2017

68

[1] A. Heydon and M. Najork, “No title,” World Wide Web, vol. 2, no. 4, pp. 

219–229, 1999.

[2] J. Edwards, K. McCurley, and J. Tomlin, “An adaptive model for 

optimizing performance of an incremental web crawler,” in Proc. the 
Tenth International Conference on World Wide Web - WWW ’01, 2011, 

pp. 106–113.

[3] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “UbiCrawler: A 
scalable fully distributed web crawler,” Softw. - Pract. Exp., vol. 34, no. 

8, pp. 711–726, 2004.

[4] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Trovatore: Towards a 
highly scalable distributed web crawler,” WWW Posters, pp. 7–8, 2001.

[5] V. Shkapenyuk and T. Suel, “Design and implementation of a 

high-performance distributed Web crawler,” Icde 2002, pp. 357–368, 
2002.

[6] D. Chau, S. Pandit, S. Wang, and C. Faloutsos, “Parallel crawling for 

online social networks,” in Proc. 16th Int. Conf. World Wide Web, 2007, 
pp. 1283–1284.

[7] G. Pant and F. Menczer, “MySpiders: Evolve your own intelligent web 

crawlers,” Auton. Agent. Multi. Agent. Syst., vol. 5, no. 2, pp. 221–229, 
2002.

[8] A. Rungsawang and N. Angkawattanawit, “Learnable topic-specific 

web crawler,” J. Netw. Comput. Appl., vol. 28, no. 2, pp. 97–114, 2005.

[9] M. D. Dikaiakos, A. Stassopoulou, and L. Papageorgiou, “An 

investigation of web crawler behavior: Characterization and metrics,” 

Comput. Commun., vol. 28, no. 8, pp. 880–897, 2005.
[10]J. Cho and H. Garcia-Molina, “Effective page refresh policies for web 

crawlers,” ACM Trans. Database Syst., vol. 28, no. 4, pp. 390–426, 

2003.
[11]R. Baeza-Yates, C. Castillo, M. Marin, and A. Rodriguez, “Crawling a 

country: Better strategies than breadth-first for web page ordering,” 

Spec. Interes. Tracks Posters 14th Int. Conf. World Wide Web, pp. 864–
872, 2005.

[12]C. Jensen, C. Sarkar, C. Jensen, and C. Potts, “Tracking website 

data-collection and privacy practices with the iWatch web crawler,” in 
Proc. Third Symp. Usable Priv. Secur., 2007, pp. 29–40.



  

Yasin Kansu received the B.S degree from Gazi 

University, Department of Computer Engineering in 

2016. He is currently software engineer in command 
control and combat system, Havelsan, Ankara, Turkey. 

His research interests include recommendation systems, 

big data analysis, web search engines, web crawlers. 

 
Begum Mutlu is the corresponding author, she received 

her B.S degree from Gazi University, Department of 

Computer Engineering in 2012. She received M.Sc 
degree in Computer Engineering Department, Hacettepe 

University in 2014. She is currently a Ph.D candidate and 

research assistant at Department of Computer 
Engineering, Gazi University. Her research interests are 

soft computing, deep learning, and text mining. 

 
 

 

  
 

M. Ali Akcayol received the B.S degree in electronics 

and computer systems education from Gazi University in 

1993. He received M.Sc and Ph.D degrees in Institute of 
Science and Technology from Gazi University in 1998 

and 2001, respectively. His research interests include 

mobile wireless networking, web technologies, web 
mining, cloud computing, artificial intelligence, 

intelligent optimization techniques, hybrid intelligent systems. 

 
Anıl Utku received the B.S degree from Kocaeli 

University, Department of Computer Engineering in 

2010. He received M.c degree from Computer 
Engineering Department, Gazi University in 2015. He is 

currently a Ph.D candidate and research assistant at 

Department of Computer Engineering, Gazi University. 
His research interests include recommendation systems, 

big data analysis and wireless sensor networks. 

 

 

 

 

Journal of Advances in Computer Networks, Vol. 5, No. 2, December 2017

69


