

Abstract—Hadoop's popularity as a distributed computing

platform continues to grow as more and more data is generated

each year. As a fault-tolerant and horizontally scalable

ecosystem, it becomes a suitable platform for the analysis of big

network data. While most network data are currently being

analyzed by vertically scaled machines, Hadoop provides an

alternative method of analysis, allowing large datasets to be

analyzed in one horizontally-scaled cluster. This study attempts

to benchmark and profile the current known methods for

performing network analysis on Hadoop. After comparing three

data storage formats; plain text, Parquet, and raw PCAP files;

for use in Hadoop, the study has determined that the Parquet

and text formats greatly outperform the use of raw PCAP files

using the hadoop-pcap library which fails to complete tests with

high volumes of data. This comes at the expense, however, of

large data loss due to the need to create a well-defined schema

for processing and the conversion time necessary to shift to a

different format. However, Parquet still outperforms the text

format by an average of approximately 30% in the scan and

aggregate queries, and 70% and 40% respectively in the join

and aggregate-join queries while showing a 8%-10% increase of

performance in aggregate-join queries of over 60 minutes’

worth of PCAP data.

Index Terms—Big data, apache hadoop, apache hive, network

analysis.

I. INTRODUCTION

Data being generated in the digital world is growing at an

exponential rate. In the year 2000, an estimate of 800,000

petabytes of data was being stored by various sources [1]

while 130 exabytes of data was estimated to have been stored

in 2005, and over 10,000 exabytes in 2015 [2].

This is, in no small part, due to the continuous growth of IP

traffic over the years. In the year 2016, there was

approximately 1.2 zettabytes of traffic generated [3]; this is

expected to triple by the year 2021. Large datasets of this

network data also lay publicly available for deeper network

research and study.

The volume of data required for network analysis and the

increasing need to process these large volumes of data make

this an ideal use case for horizontally scalable platforms like

Hadoop [4]. Hadoop is a distributed processing framework

that attempts to address the problems faced when analyzing

this big data [5]. It uses a MapReduce model and its own

Hadoop Distributed File System (HDFS), implemented in

Manuscript received August 4, 2017; revised October 9, 2017.

M. L. Saavedra is with the Department of Information Systems and

Computer Science (DISCS) of the Ateneo De Manila University, Philippines

(email: miguel.saavedra@obf.ateneo.edu).

W. S. Yu is with Faculty at the DISCS of the Ateneo de Manila University,

Philippines (email: wyu@ateneo.edu).

Java, to create a large-scale and fault-tolerant clustered data

processing ecosystem [6]. While this may make it a suitable

environment for the analysis of network data, there is still

currently no efficient and reliable method to perform such an

analysis [4], [7].

This paper seeks to first explore the current methods

available for performing analysis on packet capture (PCAP)

data on Hadoop as packet captures are currently one of the

most popular formats for capturing network traffic [8]. For the

purposes of this study, three data formats were identified for

evaluation and profiling: text data in CSV format, Parquet,

and raw PCAP format using the RIPE-NCC hadoop-pcap

library [9] to be evaluated on Hive, Hadoop's SQL-like

interface [5].

A. Research Objectives

The long-term goal of this study is to identify the best

method of performing scalable network analytics on the

Hadoop Distributed Ecosystem. This is done in this paper by

first determining the current state of network analytics on the

platform through accomplishing the following objectives:

1) To compare the performance of each of the datatypes;

text, PCAP, or Parquet; after post-processing:

This study makes use of four types of queries; Scan,

Aggregate, Join, and Aggregate-Join; for the performance

evaluation of each of the datatypes.

2) To determine and compare the storage components of

each datatype:

The storage components evaluated in the study were the

space consumed by the datatype, the possible use of the

storage format in other applications, and the information

retained by each format.

3) To identify which datatype is best for network flow

analytics:

Given the performance and storage evaluations, the main

objective of this study is to determine which of the given

storage types can be best used for the analysis of big network

data.

B. Research Questions

To compare the given datatypes, the study seeks to answer

the following research questions:

1) What are the advantages and disadvantages of using

each datatype?

There may be specific trade-offs when using one datatype

over the other. By weighing the advantages and disadvantages

of each of the datatypes, the study aims to identify which one

is best to use for analyzing network data under certain

conditions.

A Comparison between Text, Parquet, and PCAP Formats

for Use in Distributed Network Flow Analysis on Hadoop

Miguel Zenon Nicanor L. Saavedra and William Emmanuel S. Yu

Journal of Advances in Computer Networks, Vol. 5, No. 2, December 2017

59doi: 10.18178/jacn.2017.5.2.241

2) How do the different datatypes perform in comparison

with each other?:

The performance measure used in this study is the query

response time of the Hive queries on each datatype, measured

only after the pre-processing of the data.

3) How do the storage components differ between the

datatypes?:

The construction and implementation of each of the

datatypes have their own effect on the performance in the tests

and information retention of the packets.

In Section II, the paper looks deeper into how the three

datatypes have currently been used for processing on Hadoop.

Section III then describes the experimental setup used in this

study, with the results explained in Section IV. Section V then

concludes the paper and describes the next steps that may be

taken in this research.

II. RELATED WORK

A. Text

By default, Hive automatically makes use of text-formatted

tables [10]. While it is one of the most common formats for

use on Hadoop, the data in the table is only partitioned by row,

requiring the serialization and deserialization of each row of

data whenever a query is executed [11]. This may become

inefficient especially if, like in the case of network data, there

are several fields in the row need to undergo this process when

the query only requires a small subset of the data.

Research has determined that text may be suitable for the

analysis of network data on Hadoop, especially when older

routers generate network flow data in plain text format. [7].

However, these studies have also determined that a more

sophisticated data format such as SequenceFiles or Parquet

may be more beneficial for network analytics to yield better

compression and easier parsing [7].

B. Parquet

Parquet is a columnar storage format built for the Hadoop

ecosystem based off Google's Dremel system [12], [13]. It

was optimized both for large-scale query processing and

storage through multiple supported compression formats. By

default, Parquet implements the Snappy compression format.

Other supported forms of compression are: LZO, Gzip, and

bizip2 [11].

There is a large amount of research done on network

analysis using Parquet on Hadoop as it is deemed to be ideal

for traffic analysis [14]. As a columnar-style datatype, it is

partitioned both by row and by column, allowing it to skip

chunks of data that are unnecessary for a particular query [11],

[12].

Parquet has been heavily used for the analysis of DNS

Traffic, however, a benchmark and comparison has yet to be

conducted, especially in the analysis of network flow [14],

[15]. Another issue with Parquet is that little research has

been done to study the processing required for converting the

raw PCAP data into Parquet formats. Although studies have

used this conversion for their analytics, the conversion itself

was never a factor in the evaluation of their applications [15].

C. PCAP

Much research has also been done in the processing of raw

PCAP data. Although some studies have mentioned that the

use of raw PCAP data may be too CPU intensive for

processing [15], there has been much work in creating a

method to use this file format because of its data retention and

general completeness of network data traffic [4], [9], [16],

[17]. The PCAP format, however, was never optimized for

data processing and was mainly created only for logging and

storing packet captures from Wireshark, TCPDump, and

other network collection software and devices which pose

several challenges when it is attempted to be used for

analytics [8].

III. METHODOLOGY

A. Description of Data

The study makes use of the CAIDA dataset as its source of

network data. The data was first collected from a one-hour

bidirectional trace, and was then stripped of its payload and

anonymized before being made publicly available.

For the purposes of the tests involving joins, a table of

common port numbers and services was also stored in an

external table in Hive in CSV format [18].

B. Cluster Configuration

A small 5-node testbed each consisting of 4Gb of memory,

500Gb of storage, and an Intel Core i5-2500 processor @

3.3ghz running on CentOS 7 Minimal was constructed for the

study. The cluster was networked using a 10/100mbps

network switch and ran with Hadoop 2.6.0-cdh5.8.0, Hive

version 1.1.0 and Java version 1.7.0_67.

C. Preprocessing of PCAP Data and Partitioning

To obtain the text and the Parquet data, the PCAP files

were first converted and flattened into a CSV file. For the

purposes of this study, only the fields related to network flow

data were retained during conversion to ensure a properly

defined schema for the text and Parquet datatypes. After

obtaining the text data, the text was first inserted into Hive,

then later converted into Parquet on another table. The

conversion was done on a machine outside of the cluster

running with 4Gb of memory, 1Tb of storage, and an Intel

Core i5-2500 processor @ 3.3ghz.

TABLE I: TABLE SCHEMA

Field Field Type

ts bigint

protocol string

ts_usec double

src string

src_port int

dst string

dst_port int

len int

ttl int

All tables were partitioned by their direction as given by the

CAIDA dataset, and in 10-minute intervals. There was a total

of two directions with 60 minutes per direction for a total of

Journal of Advances in Computer Networks, Vol. 5, No. 2, December 2017

60

12 partitions and 120 minutes. Table I contains the schema

used for all tables utilizing the different storage types.

However, it should be noted that, while this schema is used for

the purposes of this study, the PCAP file format supports

several other fields such as DNS, fragment, and payload

information.

The RIPE-NCC hadoop-pcap library was used to process

the raw PCAP data [9]. However, initial tests showed that not

all PCAP files were compatible with the library due to missing

information in the collected data (see Section IV for more

detailed information). To allow Hive to process the dataset

using the PCAP format, the incompatible files were first

removed before conducting the formal testing.

D. Testing and Profiling

A total of four distinct tests were run on the dataset stored

using the three different datatypes. The tests consisted of the

following commonly used Hive Queries:

1) Scan queries :

The scan query was a simple select statement that identified

all UDP traffic traveling from port 6699.

SELECT * FROM [TABLE] WHERE
src_port = 6699 AND protocol='UDP'
[AND PARTITIONS]

2) Aggregate queries:

The aggregate query counted the number of packets that

traveled from UDP port 80, then grouped the result by the

different partitions.

SELECT directory, minutes, COUNT(ts) FROM [TABLE]
WHERE protocol = 'UDP'
AND src_port=80 [AND PARTITIONS]
GROUP BY directory, minutes

3) Join queries:

The join query selected all UDP traffic. The query also

joins the selected traffic with the list of common port numbers

and services.

SELECT pcap.src, pcap.dst, pcap.src_port,
src.description, pcap.dst_port,
dst.description FROM [TABLE] pcap, ports src, ports dst
WHERE pcap.protocol = 'UDP' AND src.protocol = 'UDP'
AND dst.protocol = 'UDP' AND pcap.src_port = src.port
AND pcap.dst_port = dst.port [AND PARTITIONS]

4) Aggregate-join queries:

The aggregate-join query obtained the sum of all UDP

traffic grouped by their source port, joined with the table of

common ports, and sorted by the port with the highest count.

SELECT pcap.src_port, collect_set(src.description)[0],
pcap.dst_port, collect_set(dst.description)[0],
COUNT(ts) AS COUNT
FROM [TABLE] pcap, ports src, ports dst
WHERE pcap.protocol = 'UDP' AND src.protocol = 'UDP'
AND dst.protocol = 'UDP' AND src.port = pcap.src_port
AND dst.port = pcap.dst_port AND directory='dirA'
[AND PARTITIONS]
GROUP BY pcap.src_port, src.port, pcap.dst_port, dst.port
ORDER BY COUNT DESC LIMIT 10
Three trials of each query were done across 10-minute,

30-minute, 60-minute, 90-minute, and 120-minute

timeframes of packet data. The average performance of the 20

trials per time frame were recorded as the results to reduce the

possibility of other factors affecting the tests.

For consistency, each test was also run independently on

the cluster with no other concurrent applications

IV. RESULTS AND ANALYSIS

Four factors will be taken into consideration for evaluating

each data format: conversion, storage requirements,

processing time, and flexibility.

A. Conversion

Fig. 1 contains a summary of the time needed to convert the

entire dataset into a given format. The PCAP-formatted data

needs no initial processing for conversion because the

hadoop-pcap library directly handles the data extraction from

the PCAP files.

For the text and PCAP file types, there appears to be a

minimal difference between the two in terms of conversion

only because of the extra step needed to re-insert the data into

Hive as Parquet instead of text.

Fig. 1. Conversion time of each storage format.

B. Storage Requirements

Table II contains the storage requirements of each data type.

Despite containing the most information, the PCAP files

consume the least amount of space. This is because the PCAP

files were originally created for the purposes of storing these

types of network data, allowing it to store the most complete

amount of information using the least amount of storage [8].

The parquet format is only slightly larger than the PCAP

files because, by default, Parquet compresses the data for

storage [5]. Despite the initial overhead needed to

decompress the files for computation, the Snappy format used

by Parquet has a very high compression and decompression

rate of approximately 250Mb/sec and 500Mb/sec respectively

[19]. This balances the need for more storage space and faster

computation.

The text format needs the most amount of storage,

approximately 1.6 times more than the text and Parquet

formats. Text is well-known to have high entropy, becoming

an inefficient structure for storing high volumes of

information because of the need to encode each symbol

separately [20].

TABLE II: STORAGE CONSUMED BY EACH DATA TYPE (GB)

PCAP Text Parquet

153.3 249.1 154.8

Journal of Advances in Computer Networks, Vol. 5, No. 2, December 2017

61

C. Performance Testing

Table III contains an overview of the test results. For this

study, tests were considered failures if they would cause all

usable nodes to fail, not allowing the cluster to perform any

more processing. The performance of the different storage

types is first described generally per storage format, then by

query.

TABLE III: SUMMARY OF RESULTS

Minute

s

Storage

Format

Scan Aggregate Join Aggregate-

Join

10

Text 326s 798s 351s 826s

PCAP 6298s 7481s 7838s 7543s

Parque

t

266s 520s 102s 530s

30

Text 587s 2378s 988s 2309s

PCAP FAILED FAILED FAILED FAILED

Parque

t

437s 1371s 266s 1370s

60

Text 1824s 3254s 1983s 4663s

PCAP FAILED FAILED FAILED FAILED

Parque

t

1328s 2427s 530s 2873s

90

Text 2853s 5559s 3174s 7011s

PCAP FAILED FAILED FAILED FAILED

Parque

t

1991s 3682s 870s 3741s

120

Text 3918s 6598s 4280s 9246s

PCAP FAILED FAILED FAILED FAILED

Parque

t

2855s 5106s 1219s 4772s

1) Parquet:

The results are consistent for all tests with Parquet

performing significantly faster than all the other data types

because of its structured nature, especially during join queries.

As the data grows larger and the queries become more

complex, the gap between the performance times increases

with Parquet performing best because of its structure which is

optimized for distributed data processing on Hadoop [12] (see

Fig. 2 and 3 for the comparison graphs).

2) Text:

Text performed less efficiently as the queries became more

complicated. Because of less structured format as compared

to Parquet, mapping text files to obtain the query result was

more difficult for text compared to Parquet, making it

significantly slower, especially in more complicated maps

such as joins (see Fig. 3). This is also due to the fact that it is

necessary for Hive to process each query on text data line by

line, requiring it to read the entire text file instead of only the

data needed for the query [11].

3) PCAP:

The PCAP files were by far the most inefficient for data

processing taking far more time to process even small

amounts of data. Several other problems also arise when using

the hadoop-pcap library for processing the PCAP files

directly. The general flexibility of PCAP files and network

collection meant some of the packets were incomplete either

due to loss during collection or pre-processing right after

collection. The library then failed to process a number of

PCAP files with packets that were not well-formed. The

anonymization of the packets via the stripping of the payload

also led the production of unnecessarily large log files that

averaged 8Gb per map task, which consumed all the nodes'

storage making them unusable for further tasks.

Fig. 2. Performance of scan and aggregate queries.

Fig. 2. contains the graphs of the performance of the select

and aggregate queries over the time period of the packet

capture. The large performance gap between the PCAP

format and the text and Parquet formats show the benefits of

the trade-off between conversion and processing, especially if

multiple queries of that type are required. This is likely

because the PCAP file format was never intended to be

optimized for processing and was mainly constructed only for

capturing and logging network data [8]. When comparing

between the text and Parquet formats, however, there is

approximately only an average performance gain of 30% for

both queries which is relatively less difference than that of the

latter queries (see Fig. 3). This may be due to the fact that the

queries here do not use complicated operations, and since

most fields are utilized, not much data is skipped from the

table. These reduce the advantage of the columnar nature of

Parquet.

Fig. 3. Performance of join and aggregate-join queries.

Fig. 3 shows a much larger performance gain of

approximately 72% for joins and 42% in aggregate-joins on

average when running the analyses on Parquet-formatted

tables compared to text. In both the join and the

aggregate-join queries, the slope of the Parquet performance

is significantly less than that of text, even showing a clear

decay in processing time with a performance gain of

approximately 8%-10% in the aggregate-join results when

used for queries on over 60 minutes of packet capture. This is

likely due to Parquet's columnar nature and its ability to skip

column chunks that it does need for a specific query while

processing text requires the serialization and deserialization

Journal of Advances in Computer Networks, Vol. 5, No. 2, December 2017

62

of each row [21], [22].

D. Flexibility

In terms of flexibility, while all three are flexible as data

types, for Hadoop computation, the hadoop-pcap library is the

least flexible. While it is suitable for Hive queries, the

hadoop-pcap library was written with only MapReduce v1

(MRV1) support, making it difficult to port to other

applications which require MRV2 [9].

Parquet, while generally only limited to the Hadoop

ecosystem, can easily be used in any other application in the

Hadoop ecosystem [5]. This is even more true for the text

format which has compatibility that extends even beyond

Hadoop.

However, because the PCAP format stores all the metadata

for each packet, the conversion to text and Parquet also

entailed a large amount of data loss because of the need for a

well-defined structure. For this study, since the focus was on

network flow, the conversion to text and Parquet focused on

retaining only flow related data present in all packets. Further

studies may then require a different implementation

depending on their focus

V. CONCLUSION

This paper presents a comparison of different datatypes for

big data analytics of network data in a Hadoop Ecosystem.

The results of the study show that, in terms of performance,

using the hadoop-pcap library on raw PCAP data causes not

only has the slowest query response time by far, but it also

fails in all tests on high volumes of data. This leads to the

conclusion that text or Parquet formats may be best for

network flow analysis despite the factor of the long

conversion time. However, using Parquet over text yields an

average performance gain of 30% in scan and aggregate

queries and 70% and 40% in joins and aggregate-joins

respectively. As the data grows larger, Parquet is shown to

perform even better, further reducing query response time by

10% when performing aggregate-join queries on over 60

minutes of PCAP data.

While Parquet clearly performs best after conversion for

large datasets, using raw PCAP files may be more advisable

when performing a short analysis on small, well-formed

packets. Text files, on the other hand, even if they can be used

in applications outside of Hadoop, the large performance gain

for the short amount of conversion time indicates that it may

still be best to use Parquet, especially for use in the analysis of

larger network data due to its ability to run the queries on

smaller subsets of data.

However, when using Parquet or text, the need for a

defined schema leads to a large amount of data loss. PCAP

files would then still retain the most complete information

among all the datatypes while also utilizing the least amount

of storage. The hadoop-pcap library, however, may not be the

best way to perform analyses on this data.

New methods for utilizing PCAP data for big data analysis

on the Hadoop Distributed Platform are left open for further

study. Future work may be done on a better method for PCAP

to Parquet conversion by utilizing Parquet’s nested data

structure for more complete information retention and the

Hadoop’s distributed environment for faster processing [14].

More work can also be done to create a more optimal PCAP

Deserializer for faster processing of raw PCAP files.

ACKNOWLEDGMENT

The authors would like to acknowledge Dr. Ma. Regina E.

Estuar and the Ateneo Social Computing Science Laboratory

for providing the Hadoop cluster used in this study, and Mr.

Andrei M. Jaramillo for his assistance during the cluster

setup.

Journal of Advances in Computer Networks, Vol. 5, No. 2, December 2017

63

REFERENCES

[1] D. Deroos, P. Zikopoulos, C. Eaton, T. Deutsch, G. Lapis, and P.

Zikopoulos, Understanding Big Data: Analytics for Enterprise Class

Hadoop and Streaming Data, 1st ed. McGraw-Hill Osborne Media,

2011.

[2] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data,

bigger digital shadows, and biggest growth in the far east,” IDC IView

IDC Anal. Future, vol. 2007, pp. 1–16, 2012.

[3] CISCO White Paper, “Cisco visual networking index: Forecast and

methodology, 2016–2021,” CISCO, 2016.

[4] Y. Lee and Y. Lee, “Toward scalable internet traffic measurement and

analysis with hadoop,” ACM SIGCOMM Comput. Commun. Rev., vol.

43, no. 1, pp. 5–13, 2013.

[5] T. White, Hadoop: The Definitive Guide, O’Reilly Media, Inc., 2015.

[6] Y. S. Tan, “Hadoop framework: Impact of data organization on

performance,” Softw. Pract. Exp., vol. 43, no. 11, pp. 1241–1260, Nov.

2013.

[7] X. Zhou, M. Petrovic, T. Eskridge, M. Carvalho, and X. Tao,

“Exploring Netfow data using hadoop,” in Proc. the Second ASE

International Conference on Big Data Science and Computing, 2014.

[8] G. Harris. “Development/libpcapfileformat - The wireshark wiki,”

[Online]. Available:

https://wiki.wireshark.org/Development/LibpcapFileFormat

[9] RIPE-NCC, Hadoop-pcap: Hadoop Library to Read Packet Capture

(PCAP) Files. RIPE NCC, 2017.

[10] Apache Group, “LanguageManual DDL - Apache hive,” Apache

Software Foundation. [Online]. Available:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+

DDL#LanguageManualDDL-RowFormat,StorageFormat,andSerDe

[11] M. Grover, T. Malaska, J. Seidman, and G. Shapira, Hadoop

Application Architectures: Designing Real-World Big Data

Applications, 1 ed. Sebastopol, CA: O’Reilly Media, 2015.

[12] Apache Group, “Apache parquet documentation,” Apache Parquet.

[Online]. 2014. Available:

http://parquet.apache.org/documentation/latest/

[13] S. Melnik, Dremel: Interactive Analysis of Web-scale Datasets, 2010.

[14] M. Wullink, M. Muller, M. Davids, G. C. Moura, and C. Hesselman,

“ENTRADA: Enabling DNS big data applications,” in Proc. 2016

APWG Symposium on Electronic Crime Research (eCrime), 2016, pp.

1–11.

[15] M. Wullink, G. C. Moura, M. Müller, and C. Hesselman, “ENTRADA:

A high-performance network traffic data streaming warehouse,” in

Proc. Network Operations and Management Symposium (NOMS),

2016 IEEE/IFIP, 2016, pp. 913–918.

[16] Y. Lee and Y. Lee, “Detecting ddos attacks with hadoop,” in Proc. of

the ACM CoNEXT Student Workshop, 2011, p. 7.

[17] J. Liu, F. Liu, and N. Ansari, “Monitoring and analyzing big traffic

data of a large-scale cellular network with Hadoop,” IEEE Netw., vol.

28, no. 4, pp. 32–39, 2014.

[18] J. Touch. “Service name and transport protocol port number registry,”

Internet Assigned Numbers Authority. [Online]. Available:

https://www.iana.org/assignments/service-names-port-numbers/servi

ce-names-port-numbers.xhtml

[19] Google, Snappy: A Fast Compressor/Decompressor, Google, 2017.

[20] H. Balakrishnan, C. J. Terman, and G. C. Verghese, Bits, Signals, and

Packets.

[21] Apache Software Foundation, “Apache Parquet,” [Online]. Available:

https://parquet.apache.org/documentation/latest/

Journal of Advances in Computer Networks, Vol. 5, No. 2, December 2017

64

[22] Y. Huai, Major Technical Advancements in Apache Hive, 2014, pp.

1235–1246.

Miguel L. Saavedra earned his B.S in management

information systems from the Ateneo de Manila

University. He is currently pursuing the M.S degree in

computer science in the same university under the

guidance of Dr. William Yu. His research interests

center around network security and cryptography,

distributed computing, big data computing, and delay

tolerant networking.

William S. Yu obtained his M.S and Ph.D degrees in

computer science from the Ateneo de Manila

University. He is currently a faculty member of the

Department of Information Systems and Computer

Science in the same university. He is actively into

internet engineering, mobile platforms, information

security research, software defined networking, and

distributed systems.

