
  


 

Abstract—Hadoop's popularity as a distributed computing 

platform continues to grow as more and more data is generated 

each year. As a fault-tolerant and horizontally scalable 

ecosystem, it becomes a suitable platform for the analysis of big 

network data. While most network data are currently being 

analyzed by vertically scaled machines, Hadoop provides an 

alternative method of analysis, allowing large datasets to be 

analyzed in one horizontally-scaled cluster. This study attempts 

to benchmark and profile the current known methods for 

performing network analysis on Hadoop. After comparing three 

data storage formats; plain text, Parquet, and raw PCAP files; 

for use in Hadoop, the study has determined that the Parquet 

and text formats greatly outperform the use of raw PCAP files 

using the hadoop-pcap library which fails to complete tests with 

high volumes of data. This comes at the expense, however, of 

large data loss due to the need to create a well-defined schema 

for processing and the conversion time necessary to shift to a 

different format. However, Parquet still outperforms the text 

format by an average of approximately 30% in the scan and 

aggregate queries, and 70% and 40% respectively in the join 

and aggregate-join queries while showing a 8%-10% increase of 

performance in aggregate-join queries of over 60 minutes’ 

worth of PCAP data. 

 
Index Terms—Big data, apache hadoop, apache hive, network 

analysis. 

 

I. INTRODUCTION 

Data being generated in the digital world is growing at an 

exponential rate. In the year 2000, an estimate of 800,000 

petabytes of data was being stored by various sources [1] 

while 130 exabytes of data was estimated to have been stored 

in 2005, and over 10,000 exabytes in 2015 [2]. 

This is, in no small part, due to the continuous growth of IP 

traffic over the years. In the year 2016, there was 

approximately 1.2 zettabytes of traffic generated [3]; this is 

expected to triple by the year 2021. Large datasets of this 

network data also lay publicly available for deeper network 

research and study. 

The volume of data required for network analysis and the 

increasing need to process these large volumes of data make 

this an ideal use case for horizontally scalable platforms like 

Hadoop [4]. Hadoop is a distributed processing framework 

that attempts to address the problems faced when analyzing 

this big data [5]. It uses a MapReduce model and its own 

Hadoop Distributed File System (HDFS), implemented in 
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Java, to create a large-scale and fault-tolerant clustered data 

processing ecosystem [6]. While this may make it a suitable 

environment for the analysis of network data, there is still 

currently no efficient and reliable method to perform such an 

analysis [4], [7]. 

This paper seeks to first explore the current methods 

available for performing analysis on packet capture (PCAP) 

data on Hadoop as packet captures are currently one of the 

most popular formats for capturing network traffic [8]. For the 

purposes of this study, three data formats were identified for 

evaluation and profiling: text data in CSV format, Parquet, 

and raw PCAP format using the RIPE-NCC hadoop-pcap 

library [9] to be evaluated on Hive, Hadoop's SQL-like 

interface [5]. 

A. Research Objectives 

The long-term goal of this study is to identify the best 

method of performing scalable network analytics on the 

Hadoop Distributed Ecosystem. This is done in this paper by 

first determining the current state of network analytics on the 

platform through accomplishing the following objectives: 

1) To compare the performance of each of the datatypes; 

text, PCAP, or Parquet; after post-processing: 

This study makes use of four types of queries; Scan, 

Aggregate, Join, and Aggregate-Join; for the performance 

evaluation of each of the datatypes. 

2) To determine and compare the storage components of 

each datatype: 

The storage components evaluated in the study were the 

space consumed by the datatype, the possible use of the 

storage format in other applications, and the information 

retained by each format. 

3) To identify which datatype is best for network flow 

analytics: 

Given the performance and storage evaluations, the main 

objective of this study is to determine which of the given 

storage types can be best used for the analysis of big network 

data. 

B. Research Questions 

To compare the given datatypes, the study seeks to answer 

the following research questions: 

1) What are the advantages and disadvantages of using 

each datatype? 

There may be specific trade-offs when using one datatype 

over the other. By weighing the advantages and disadvantages 

of each of the datatypes, the study aims to identify which one 

is best to use for analyzing network data under certain 

conditions. 

A Comparison between Text, Parquet, and PCAP Formats 

for Use in Distributed Network Flow Analysis on Hadoop 

Miguel Zenon Nicanor L. Saavedra and William Emmanuel S. Yu 

Journal of Advances in Computer Networks, Vol. 5, No. 2, December 2017

59doi: 10.18178/jacn.2017.5.2.241



  

2) How do the different datatypes perform in comparison 

with each other?: 

The performance measure used in this study is the query 

response time of the Hive queries on each datatype, measured 

only after the pre-processing of the data. 

3) How do the storage components differ between the 

datatypes?: 

The construction and implementation of each of the 

datatypes have their own effect on the performance in the tests 

and information retention of the packets. 

In Section II, the paper looks deeper into how the three 

datatypes have currently been used for processing on Hadoop. 

Section III then describes the experimental setup used in this 

study, with the results explained in Section IV. Section V then 

concludes the paper and describes the next steps that may be 

taken in this research. 

 

II. RELATED WORK 

A. Text 

By default, Hive automatically makes use of text-formatted 

tables [10]. While it is one of the most common formats for 

use on Hadoop, the data in the table is only partitioned by row, 

requiring the serialization and deserialization of each row of 

data whenever a query is executed [11]. This may become 

inefficient especially if, like in the case of network data, there 

are several fields in the row need to undergo this process when 

the query only requires a small subset of the data. 

Research has determined that text may be suitable for the 

analysis of network data on Hadoop, especially when older 

routers generate network flow data in plain text format. [7]. 

However, these studies have also determined that a more 

sophisticated data format such as SequenceFiles or Parquet 

may be more beneficial for network analytics to yield better 

compression and easier parsing [7].  

B. Parquet 

Parquet is a columnar storage format built for the Hadoop 

ecosystem based off Google's Dremel system [12], [13]. It 

was optimized both for large-scale query processing and 

storage through multiple supported compression formats. By 

default, Parquet implements the Snappy compression format. 

Other supported forms of compression are: LZO, Gzip, and 

bizip2 [11].  

There is a large amount of research done on network 

analysis using Parquet on Hadoop as it is deemed to be ideal 

for traffic analysis [14]. As a columnar-style datatype, it is 

partitioned both by row and by column, allowing it to skip 

chunks of data that are unnecessary for a particular query [11], 

[12]. 

Parquet has been heavily used for the analysis of DNS 

Traffic, however, a benchmark and comparison has yet to be 

conducted, especially in the analysis of network flow [14], 

[15]. Another issue with Parquet is that little research has 

been done to study the processing required for converting the 

raw PCAP data into Parquet formats. Although studies have 

used this conversion for their analytics, the conversion itself 

was never a factor in the evaluation of their applications [15]. 

C. PCAP 

Much research has also been done in the processing of raw 

PCAP data. Although some studies have mentioned that the 

use of raw PCAP data may be too CPU intensive for 

processing [15], there has been much work in creating a 

method to use this file format because of its data retention and 

general completeness of network data traffic [4], [9], [16], 

[17]. The PCAP format, however, was never optimized for 

data processing and was mainly created only for logging and 

storing packet captures from Wireshark, TCPDump, and 

other network collection software and devices which pose 

several challenges when it is attempted to be used for 

analytics [8]. 

 

III. METHODOLOGY 

A. Description of Data 

The study makes use of the CAIDA dataset as its source of 

network data. The data was first collected from a one-hour 

bidirectional trace, and was then stripped of its payload and 

anonymized before being made publicly available. 

For the purposes of the tests involving joins, a table of 

common port numbers and services was also stored in an 

external table in Hive in CSV format [18].  

B. Cluster Configuration 

A small 5-node testbed each consisting of 4Gb of memory, 

500Gb of storage, and an Intel Core i5-2500 processor @ 

3.3ghz running on CentOS 7 Minimal was constructed for the 

study. The cluster was networked using a 10/100mbps 

network switch and ran with Hadoop 2.6.0-cdh5.8.0, Hive 

version 1.1.0 and Java version 1.7.0_67.  

C. Preprocessing of PCAP Data and Partitioning 

To obtain the text and the Parquet data, the PCAP files 

were first converted and flattened into a CSV file. For the 

purposes of this study, only the fields related to network flow 

data were retained during conversion to ensure a properly 

defined schema for the text and Parquet datatypes. After 

obtaining the text data, the text was first inserted into Hive, 

then later converted into Parquet on another table. The 

conversion was done on a machine outside of the cluster 

running with 4Gb of memory, 1Tb of storage, and an Intel 

Core i5-2500 processor @ 3.3ghz.  

 
TABLE I: TABLE SCHEMA 

Field Field Type 

ts bigint 

protocol string 

ts_usec double 

src string 

src_port int 

dst string 

dst_port int 

len int 

ttl int 

 
All tables were partitioned by their direction as given by the 

CAIDA dataset, and in 10-minute intervals. There was a total 

of two directions with 60 minutes per direction for a total of 
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12 partitions and 120 minutes. Table I contains the schema 

used for all tables utilizing the different storage types. 

However, it should be noted that, while this schema is used for 

the purposes of this study, the PCAP file format supports 

several other fields such as DNS, fragment, and payload 

information. 

The RIPE-NCC hadoop-pcap library was used to process 

the raw PCAP data [9]. However, initial tests showed that not 

all PCAP files were compatible with the library due to missing 

information in the collected data (see Section IV for more 

detailed information). To allow Hive to process the dataset 

using the PCAP format, the incompatible files were first 

removed before conducting the formal testing. 

D. Testing and Profiling 

A total of four distinct tests were run on the dataset stored 

using the three different datatypes. The tests consisted of the 

following commonly used Hive Queries:  

1) Scan queries :  

The scan query was a simple select statement that identified 

all UDP traffic traveling from port 6699.  

SELECT * FROM [TABLE] WHERE  
src_port = 6699 AND protocol='UDP' 
[AND PARTITIONS] 

2) Aggregate queries: 

The aggregate query counted the number of packets that 

traveled from UDP port 80, then grouped the result by the 

different partitions.  

SELECT directory, minutes, COUNT(ts) FROM [TABLE] 
WHERE protocol = 'UDP'  
AND src_port=80 [AND PARTITIONS]  
GROUP BY directory, minutes 

3) Join queries: 

The join query selected all UDP traffic. The query also 

joins the selected traffic with the list of common port numbers 

and services.  

SELECT pcap.src, pcap.dst, pcap.src_port,  
src.description, pcap.dst_port,  
dst.description FROM [TABLE] pcap, ports src, ports dst  
WHERE pcap.protocol = 'UDP' AND src.protocol = 'UDP'  
AND dst.protocol = 'UDP' AND pcap.src_port = src.port  
AND pcap.dst_port = dst.port [AND PARTITIONS] 

4) Aggregate-join queries: 

The aggregate-join query obtained the sum of all UDP 

traffic grouped by their source port, joined with the table of 

common ports, and sorted by the port with the highest count. 

SELECT pcap.src_port, collect_set(src.description)[0], 
pcap.dst_port, collect_set(dst.description)[0],  
COUNT(ts) AS COUNT  
FROM [TABLE] pcap, ports src, ports dst  
WHERE pcap.protocol = 'UDP' AND src.protocol = 'UDP'  
AND dst.protocol = 'UDP' AND src.port = pcap.src_port  
AND dst.port = pcap.dst_port AND directory='dirA'  
[AND PARTITIONS] 
GROUP BY pcap.src_port, src.port, pcap.dst_port, dst.port 
ORDER BY COUNT DESC LIMIT 10 
Three trials of each query were done across 10-minute, 

30-minute, 60-minute, 90-minute, and 120-minute 

timeframes of packet data. The average performance of the 20 

trials per time frame were recorded as the results to reduce the 

possibility of other factors affecting the tests. 

For consistency, each test was also run independently on 

the cluster with no other concurrent applications 

 

IV. RESULTS AND ANALYSIS 

Four factors will be taken into consideration for evaluating 

each data format: conversion, storage requirements, 

processing time, and flexibility. 

A. Conversion 

Fig. 1 contains a summary of the time needed to convert the 

entire dataset into a given format. The PCAP-formatted data 

needs no initial processing for conversion because the 

hadoop-pcap library directly handles the data extraction from 

the PCAP files. 

For the text and PCAP file types, there appears to be a 

minimal difference between the two in terms of conversion 

only because of the extra step needed to re-insert the data into 

Hive as Parquet instead of text.  

 

 
Fig. 1. Conversion time of each storage format. 

 

B. Storage Requirements 

Table II contains the storage requirements of each data type. 

Despite containing the most information, the PCAP files 

consume the least amount of space. This is because the PCAP 

files were originally created for the purposes of storing these 

types of network data, allowing it to store the most complete 

amount of information using the least amount of storage [8]. 

The parquet format is only slightly larger than the PCAP 

files because, by default, Parquet compresses the data for 

storage [5]. Despite the initial overhead needed to 

decompress the files for computation, the Snappy format used 

by Parquet has a very high compression and decompression 

rate of approximately 250Mb/sec and 500Mb/sec respectively 

[19]. This balances the need for more storage space and faster 

computation. 

The text format needs the most amount of storage, 

approximately 1.6 times more than the text and Parquet 

formats. Text is well-known to have high entropy, becoming 

an inefficient structure for storing high volumes of 

information because of the need to encode each symbol 

separately [20]. 

 
TABLE II: STORAGE CONSUMED BY EACH DATA TYPE (GB) 

PCAP Text Parquet 

153.3 249.1 154.8 
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C. Performance Testing 

Table III contains an overview of the test results. For this 

study, tests were considered failures if they would cause all 

usable nodes to fail, not allowing the cluster to perform any 

more processing. The performance of the different storage 

types is first described generally per storage format, then by 

query. 

 
TABLE III: SUMMARY OF RESULTS 

Minute

s 

Storage 

Format 

Scan Aggregate Join Aggregate- 

Join 

10 

Text 326s 798s 351s 826s 

PCAP 6298s 7481s 7838s 7543s 

Parque

t 

266s 520s 102s 530s 

30 

Text 587s 2378s 988s 2309s 

PCAP FAILED FAILED FAILED FAILED 

Parque

t 

437s 1371s 266s 1370s 

60 

Text 1824s 3254s 1983s 4663s 

PCAP FAILED FAILED FAILED FAILED 

Parque

t 

1328s 2427s 530s 2873s 

90 

Text 2853s 5559s 3174s 7011s 

PCAP FAILED FAILED FAILED FAILED 

Parque

t 

1991s 3682s 870s 3741s 

120 

Text 3918s 6598s 4280s 9246s 

PCAP FAILED FAILED FAILED FAILED 

Parque

t 

2855s 5106s 1219s 4772s 

 

1) Parquet: 

The results are consistent for all tests with Parquet 

performing significantly faster than all the other data types 

because of its structured nature, especially during join queries. 

As the data grows larger and the queries become more 

complex, the gap between the performance times increases 

with Parquet performing best because of its structure which is 

optimized for distributed data processing on Hadoop [12] (see 

Fig. 2 and 3 for the comparison graphs). 

2) Text: 

Text performed less efficiently as the queries became more 

complicated. Because of less structured format as compared 

to Parquet, mapping text files to obtain the query result was 

more difficult for text compared to Parquet, making it 

significantly slower, especially in more complicated maps 

such as joins (see Fig. 3). This is also due to the fact that it is 

necessary for Hive to process each query on text data line by 

line, requiring it to read the entire text file instead of only the 

data needed for the query [11]. 

3) PCAP: 

The PCAP files were by far the most inefficient for data 

processing taking far more time to process even small 

amounts of data. Several other problems also arise when using 

the hadoop-pcap library for processing the PCAP files 

directly. The general flexibility of PCAP files and network 

collection meant some of the packets were incomplete either 

due to loss during collection or pre-processing right after 

collection. The library then failed to process a number of 

PCAP files with packets that were not well-formed. The 

anonymization of the packets via the stripping of the payload 

also led the production of unnecessarily large log files that 

averaged 8Gb per map task, which consumed all the nodes' 

storage making them unusable for further tasks. 

 

 
Fig. 2. Performance of scan and aggregate queries. 

 

Fig. 2. contains the graphs of the performance of the select 

and aggregate queries over the time period of the packet 

capture. The large performance gap between the PCAP 

format and the text and Parquet formats show the benefits of 

the trade-off between conversion and processing, especially if 

multiple queries of that type are required. This is likely 

because the PCAP file format was never intended to be 

optimized for processing and was mainly constructed only for 

capturing and logging network data [8]. When comparing 

between the text and Parquet formats, however, there is 

approximately only an average performance gain of 30% for 

both queries which is relatively less difference than that of the 

latter queries (see Fig. 3). This may be due to the fact that the 

queries here do not use complicated operations, and since 

most fields are utilized, not much data is skipped from the 

table. These reduce the advantage of the columnar nature of 

Parquet. 

 

 
Fig. 3. Performance of join and aggregate-join queries. 

 

Fig. 3 shows a much larger performance gain of 

approximately 72% for joins and 42% in aggregate-joins on 

average when running the analyses on Parquet-formatted 

tables compared to text. In both the join and the 

aggregate-join queries, the slope of the Parquet performance 

is significantly less than that of text, even showing a clear 

decay in processing time with a performance gain of 

approximately 8%-10% in the aggregate-join results when 

used for queries on over 60 minutes of packet capture. This is 

likely due to Parquet's columnar nature and its ability to skip 

column chunks that it does need for a specific query while 

processing text requires the serialization and deserialization 
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of each row [21], [22]. 

D. Flexibility 

In terms of flexibility, while all three are flexible as data 

types, for Hadoop computation, the hadoop-pcap library is the 

least flexible. While it is suitable for Hive queries, the 

hadoop-pcap library was written with only MapReduce v1 

(MRV1) support, making it difficult to port to other 

applications which require MRV2 [9]. 

Parquet, while generally only limited to the Hadoop 

ecosystem, can easily be used in any other application in the 

Hadoop ecosystem [5]. This is even more true for the text 

format which has compatibility that extends even beyond 

Hadoop.  

However, because the PCAP format stores all the metadata 

for each packet, the conversion to text and Parquet also 

entailed a large amount of data loss because of the need for a 

well-defined structure. For this study, since the focus was on 

network flow, the conversion to text and Parquet focused on 

retaining only flow related data present in all packets. Further 

studies may then require a different implementation 

depending on their focus 

 

V. CONCLUSION 

This paper presents a comparison of different datatypes for 

big data analytics of network data in a Hadoop Ecosystem. 

The results of the study show that, in terms of performance, 

using the hadoop-pcap library on raw PCAP data causes not 

only has the slowest query response time by far, but it also 

fails in all tests on high volumes of data. This leads to the 

conclusion that text or Parquet formats may be best for 

network flow analysis despite the factor of the long 

conversion time. However, using Parquet over text yields an 

average performance gain of 30% in scan and aggregate 

queries and 70% and 40% in joins and aggregate-joins 

respectively. As the data grows larger, Parquet is shown to 

perform even better, further reducing query response time by 

10% when performing aggregate-join queries on over 60 

minutes of PCAP data. 

While Parquet clearly performs best after conversion for 

large datasets, using raw PCAP files may be more advisable 

when performing a short analysis on small, well-formed 

packets. Text files, on the other hand, even if they can be used 

in applications outside of Hadoop, the large performance gain 

for the short amount of conversion time indicates that it may 

still be best to use Parquet, especially for use in the analysis of 

larger network data due to its ability to run the queries on 

smaller subsets of data.  

However, when using Parquet or text, the need for a 

defined schema leads to a large amount of data loss. PCAP 

files would then still retain the most complete information 

among all the datatypes while also utilizing the least amount 

of storage. The hadoop-pcap library, however, may not be the 

best way to perform analyses on this data.  

New methods for utilizing PCAP data for big data analysis 

on the Hadoop Distributed Platform are left open for further 

study. Future work may be done on a better method for PCAP 

to Parquet conversion by utilizing Parquet’s nested data 

structure for more complete information retention and the 

Hadoop’s distributed environment for faster processing [14]. 

More work can also be done to create a more optimal PCAP 

Deserializer for faster processing of raw PCAP files. 
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