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Abstract—To obtain satisfactory performance in hierarchical 

wireless sensor networks (WSNs), it is a challenge to properly 

place the relay nodes in an efficient and effective way. The key 

focus of the current paper is the design of practical algorithm to 

achieve the solution of placement of relay nodes in a hierarchical 

WSN. We propose a relay node cover algorithm (RNCA) to 

generate all the possible positions for relay nodes and a genetic 

simulated annealing hybrid algorithm (GA-H-SA) to optimize 

the positions. Our goal is to find a acceptable trade-off among 

the three important objectives in order to maximize the lifetime 

and improve performance of the given WSN. The considered 

objectives are (1) the number of relay nodes is minimized, (2) the 

energy consumption is minimized, and (3) the connectivity 

degree between relay nodes and sensor nodes is maximized. Both 

theoretical analyses and numerical results demonstrate that, the 

proposed algorithms within limited number of iterations are 

promising. It is observed that they outperform other relevant 

state-of-the-art approaches. 

 
Index Terms—Genetic simulated annealing hybrid algorithm, 

fault tolerant, relay node cover algorithm, relay node placement, 

wireless sensor networks. 

 

I. INTRODUCTION 

Event detection is one of the most critical applications in 

WSNs. For implementing the event detection task, the sensor 

nodes deployed in monitoring region are capable of gathering 

data, processing data, transmitting data to sink nodes. They 

are deployed in various fields such as industrial, agricultural, 

health care and military applications. Sensor nodes are very 

small, low-cost and low-power and they are usually deployed 

outdoors in harsh environments where we can not reachable. 

So extending lifetime of wireless sensor networks is a major 

issue. In WSNs, the main source of energy consumption is 

data transmission which is a super-linear function of the 

transmission distance [1], [2]. Thus, we design sensor nodes 

communicate to more powerful special nodes, relay nodes, to 

deliver data through multiple hops to the base station (BS) in 

order to short communication range. 

Relay node placement is important for optimizing 

important network parameters and designing goals such as 

lifetime, cost, effectiveness, and connectivity [3]. In this 

paper, we establish a two tier communication network 
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architecture, which consists of sensor nodes, relay nodes and 

a BS. Relay nodes aggregate data from sensor nodes forming 

the lower tire, meanwhile, relay nodes communicate with BS 

via wireless single-hop or multi-hop paths forming the upper 

tire. In this hierarchical architecture, we consider only the 

lower tire as is depicted in Fig. 1. 

 

 
Fig. 1. The lower tire of a hierarchical model of WSNs. 

 

Even though relay nodes are provisioned with higher 

energy and enhanced capabilities as compared to normal 

sensor nodes, they are also small battery operated, they have 

the possibility of failure (maybe due to the inhospitable 

surrounding or hardware malfunction). When a relay node 

fails, the relative sensor nodes can not sent their data to the BS. 

The effects of this can be fatal, such as the system is used in 

the forest fire prevention. Therefore, it is extremely necessary 

to have adequate redundancy of relay nodes, which in this 

paper we use connectivity to measure in order to guarantee 

that most of the sensor nodes will have multiple relay nodes 

which can communicated with [4], [5]. It is also very 

important that WSNs system consume less energy to prolong 

lifetime, and reduce the number of relay nodes in terms of 

management and save energy of the system. They are three 

goals of this paper, what we should do is to trade-off among 

them, to achieve the overall optimal of the system [6]. We use 

a multi-objective fitness function using weight sum approach 

and a genetic simulated annealing hybrid algorithm 

(GA-H-SA), which can be integrated the advantages of the 

two algorithms, avoiding the deficiencies of genetic algorithm 

in global searching and convergence speed. The experiments 

prove that the hybrid algorithm greatly improve the 

performances compared with the single algorithm. 

The paper is organized as follows. We review the related 

works in Section 2 and propose our algorithms based on the 

new approaches to generate and optimize placements of relay 

nodes in Section 3 and Section 4 separately. Then we report 

the experimental results in Section 5, and conclude the paper 

in Section 6. 
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II. RELATED WORKS 

In recent times, several protocols and algorithms have been 

developed for two-tiered sensor networks. The authors of [7] 

consider a two-tiered wireless sensor network. Their goals are 

each sensor node can communicate with at least one relay 

node and the network of relay nodes is connected. Ebrahim 

Farahmand et al. applied a load balanced energy-aware 

genetic algorithm clustering technique in [8]. First, the 

technique picks up the optimal cluster heads. Next, this 

technique assigns a 

ppropriate cluster members to these cluster heads. The 

authors in [9] present a new routing protocol based on a 

lightweight genetic algorithm. In this method, the sensor 

nodes are aware of the data traffic rate to monitor the network 

congestion. In addition, the fitness function is designed from 

both the average and the standard deviation of the traffic rates 

of sensor nodes. 

Misra et al. [10] propose an approximation algorithm for a 

constrained relay model for the single-tiered relay node 

placement problem, which is classified as NP-Hard problem. 

The relay nodes can only be placed in intersection lines in a 

grid. Lee et al. in [11] propose a multi-hop clustering that 

consider proximity to neighbor nodes and residual energy in 

cluster head selection process. Mafuta et al. [12] develop an 

optimal greedy relay node placement (OGRNP) featuring full 

coverage, communication cost in terms of received power and 

minimizing the number of relay nodes required for 

connectivity. 

In this paper, we use a directed graph to model a fault 

tolerant hierarchical WSN. Our aim is to find the appropriate 

number of relay nodes which is a trade-off among the three 

objectives to achieve a better performance of the WSN. We 

proposed two algorithms, the first one is RNCA, which is used 

to generate the initial set of possible positions and the other 

one is GA-H-SA which is used to optimize the number of 

relay nodes generated from RNCA. 

 

III. GENERATION STRATEGY DESIGN 

In this section we should do is to generating possible 

positions of relay nodes according to RNCA, then establish 

connections between possible positions and sensor nodes 

using a novel method. In particular, our algorithm can make 

sensor nodes connect with relay nodes relative uniformly. 

We firstly describe the algorithm of RNCA as follows: 

We assume that the total number of relay nodes is defined 

as NR , the communication range of sensor nodes is r . For 

every sensor node, we set a flag bit if  with a initial value 

namely 0. The points which we find used following algorithm 

are called possible positions denoted by P-position. 

Step 1. For every sensor node is , whose flag bit if  equals 

0, find one other sensor node 1is   whose flag bit 1if   also 

equals 0, measure their distance called d , if failed, return to 

Step 2.  

If 2d r , we can find one P-position p , satisfies the 

condition that 1( , ) ( , )i idistance s p distance s p r  , 

make a circle of center p  and radius r , as is shown in Fig.  

2.(a), check all the sensor nodes belongs to this circle, turn 

their flag bits from 0 to 1. Then let 1N NR R  , return to 

Step 1. 

If 2d r , we can find two P-positions ip , satisfy the   

condition that 1( , ) ( , )i idistance s p distance s p r  ,      

then make circles of center ip  and radius r , as is shownin 

Fig. 2.(b), check all the sensor nodes belongs to thiscircle 

separately, turn their flag bits from 0 to 1. Then let 

2N NR R  , return to Step 1. 

If 2d r , for each of the two, we take any two distinct 

points on the circle of center is or 1is   and radius r  as 

P-positions as is shown in Fig. 2.(c). Then make a circle of 

center P-positions and radius r , check all the sensor nodes 

belongs to this circle, turn their flag bits from 0 to 1. Then let 

4N NR R  , return to Step 1. 

Step 2. For every sensor node which is not connected with 

relay nodes, we measure the distance 1id  from all the relay 

nodes, select one which is the minimum distance 1i md   of the 

sensor nodes, note that, all the available distances should 

within the communication range of the sensor nodes, that is r , 

then check how many other sensors have connected with this 

relay node. If the number is no more than (1 2)N

N

mS
m

R
  , 

we connect the link. In our simulation we set 1.4m , which 

is derived from experimental method. Otherwise, discard it, 

repeat this step. If it fails, return to Step 3. 

Step 3. We take any point on the circle of center of this 

senor node and radius r  in order to create a new relay node, 

then return to Step 2. 

 

 
Fig. 2. Three situations to generate P-positions. 

 

IV. OPTIMIZATION STRATEGY DESIGN 

A. Overview of GA-H-SA 

Generating all the P-positions used RNCA, we should 

optimize them. 
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GA simulates the genetic and evolutionary process of 

organisms in the natural environment and form a kind of 

adaptive global optimization probability search algorithm. It 

is a powerful tool especially suitable for processing complex 

optimization problems such as NP-hard problems, 

combinatorial optimization, automatic control, neural 

networks, image processing, etc. [13], [14]. Though its global 

search ability is very strong, local search ability is 

insufficient.  

SA is an extension of the local search algorithm. It is a 

random combination optimization method, which simulated 

the physical annealing in the thermodynamics process, and 

widely used in optimization problem. It has strong local 

search ability, but it is inefficient in terms of global search. 

 

 
Fig. 3. Flow chart of GA-H-SA. 

 

Aiming at the shortcomings of GA in local search ability 

and SA in the global search ability [15], [16], this paper 

combines them, put forward a new algorithm called GA-H-SA. 

It plays the global search ability of GA and local search ability 

of SA, overcome poor local search ability or premature 

phenomenon of GA and poor global search ability or low 

efficient of SA [17]. In this algorithm, GA finds generally 

good global solutions, SA searches local optimization of 

population generated by GA. The procedure of the algorithm 

is depicted as follows and the flow chart is shown in Fig. 3. 

Step 1. Initialize: population size N , crossover 

probability cP , mutation probability mP , temperature 

coefficient of cooling C , initial temperature of annealing 0T , 

the current temperature T , count of iterations of Metropolis 

algorithm in one temperature phase L, the current count of 

iterations of Metropolis algorithm in one temperature phase j, 

the maximum iterations of temperature cooling K . 

Step 2. Calculate the fitness if  of each individual in the 

population. 

Step 3. At the current temperature T , repeat Step 4 

whilethe number of iterations is less than L . 

Step 4. Selection, crossover and mutation on the current 

population, calculate the fitness +1if  of new individuals. 

Let 1 ,i if f f   accept it with probability 

?1: exp( / )f f T  . 

Step 5. T CT , 1k k  , if k K , go to Step 3, 

otherwise terminate and output the optimal solution. 

B. Chromosome Representation 

To apply GA-H-SA, we use P-positions to represent 

chromosomes which are defined bitwise. After P-positions 

generating by RNCA, we store them used directed graph, then 

give them ID numbers. If gene value of a bit is one, it implies 

that the corresponding P-position is chosen for the placement 

of a relay node, otherwise it is zero. Its length is the number of 

initial P-positions, then use GA-H-SA to optimize them in 

order to output a improved chromosome. Table I depicts an 

example of a WSN with 10 initial P-positions. So the length of 

the chromosome is 10, the number of relay nodes is 6, that is 

6NR  . 

 
TABLE I: CHROMOSOME REPRESENTATION 

ID NO.       1     2     3     4     5     6     7     8     9     10 

Gene value   1      0    1     0      1    1     0     1      0      1  

 

C. Initial Population 

The initial population is a set of randomly generated 

chromosomes, note that, we should guarantee that all the relay 

nodes are chosen from the P-positions which are generated 

from RNCA. Each chromosome represents a possible solution 

to the problem. There will generate infinite number of 

chromosomes, in this paper, we use no more than 500 

chromosomes for convenient analysis, and no less than 100 

for making the result reliable. 

D. Fitness Function 

The three goals of this paper are to minimize the number of 

relay nodes, minimize the energy consumption, and maximize 

the connectivity between relay nodes and sensor nodes to 

employ fault tolerance of WSNs. Firstly we put them in 

mathematical models respectively, then use the weight sum 

approach for the construction of the multi-objective fitness 

function. 

For convenient analysis, we only consider the connectivity 

function and the number of relay nodes in our fitness function. 

We use weights w and (1 )w , where 0 1w   to 

multiply with the objectives respectively and then convert 

objective functions into a single objective function. In our 

experiment, we let 0.2,0.4,0.6,0.8,w   and find their 
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optimal solutions respectively, then we use our energy 

function for every sensor node with these solutions to choose 

the best chromosome, that is the placement of relay nodes 

which we want. The three objective functions are as follows. 

We use connectivity to measure redundancy of relay nodes. 

For every sensor node if the available relay nodes are no 

morethan two, use the number of available path of the sensor 

nodes denotes connectivity directly, otherwise reduce 

proportion of the redundancy in order to avoid distribution of 

redundancy too dense. 
 

                 
2

2 ( 2) 3

i i i

i i i

N n n

N n n

  


      
                 (1) 

 

where in  denotes the number of available path of the sensor 

nodes, the factor   is tuned to be 15%  in this paper, which 

is derived from experimental method. 

The next function which denotes the number of relay nodes 

is given by 

 

                                      ( )N Nf R R                          (2) 

 

where the variable RN denotes the number of relay nodes. 

 

 
Fig. 4. Energy model. 

 

We use a model that is popular in literatures for the radio 

hardware energy dissipation where the transmitter dissipates 

energy to run the radio electronics and the power amplifier, 

and the receiver dissipates energy to run the radio electronics 

[1], as shown in Fig. 4. In this paper, we only consider the 

transmitter, as we only consider energy dissipation of sensor 

nodes. We used both free space fading and multiple channel 

fading depending upon distance between transmitter and 

receivers. We select Thresd  as a threshold distance between 

free space and multi path fading. If a distance between a 

sensor node and its relay node is lager than the threshold, 

multi path fading will be used. It is directly proportional to 
4

lid where lid is the distance between relay node and sensor 

node, otherwise, free space energy consumption formula will 

be applied. It is directly proportional to 
2

lid . Thus, to transmit 

a k-bit packet, the consumption of energy of sensor nodes is as 

follows. 

 

( , ) ( ) ( , )T li T elec T am liE k d E k E k d          (3) 

 


2

4( , ) selec li li Thres

melec li li Thres

k E k d d d

T li k E k d d d
E k d





     

     
  

                             s
Thres

m

d



                                      (4) 

 

It should be noted that this function is applied only for a 

transmitter node. In this paper, we use the energy model to 

calculate the consumption of energy of sensor nodes in order 

to make a fair comparison to select the appropriate value of 

w . 

We can make the fitness function as follows: 

 

                   
1

{ (1 ) ( )}
(n )

N

i

Min w w f R
C

                       (5) 

 

Subject to: , 0 1, 1.li id r w n        

E.  Selection 

For the selection process, we choose chromosomes in an 

existing population with lower fitness value in order to 

produce new offspring used genetic operations described in 

the next paragraph. The chromosomes with lower values have 

higher chances of selection in this paper. There are several 

different selection methods, such as roulette wheel selection, 

rank selection, tournament selection, elitist selection and so 

on. We select roulette wheel selection in our simulations. 

F.  Genetic Operations 

There are two steps of genetic operations, they are 

crossover operation and mutation operation. 

The crossover operation is applied on two randomly 

selected parent chromosomes to generate two child 

chromosomes. The simplest and most popular method of 

crossover is a single-point crossover, which is shown in Fig. 5. 

In this method, two randomly selected parent chromosomes 

exchange part of their information after a random point. Note 

that, we have already defined a crossover rate cP  in the 

beginning of GA-H-SA. 

 

 
Fig. 5. Single-point crossover. 

 

Mutation operation is applied on each chromosome to 

diversify population as is shown in Fig. 6. This happens 

according to a probability called mutation rate denote by mP  

which is given in the start of the algorithm. 

 

 
Fig. 6. Mutation. 

 

G. Simulated Annealing 

Simulated annealing is a random combinatorial 
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optimization method developed in the early 1980s. It 

simulates the thermodynamics process of high temperature 

metal cooling and widely used in applications of 

combinatorial optimization problem. In the optimization we 

set an initial temperature firstly, then generate an initial state 

and calculate the value of fitness function. Change the current 

state and calculate the latest fitness function 1if  , set 

1 ,i if f f   if 0f  , then accept it as a new one. 

Otherwise, accept it with probability exp( )
f

T


. Repeat 

the above steps until the system is refrigerant. 

 

V. EXPERIMENTAL RESULTS 

In this section, we evaluate the performance of our 

algorithm via simulations. There are 200 sensor nodes 

dispersed randomly in a 
2200 200m  square area and the 

BS is taken at the center of the region with coordinate (100, 

100). All nodes have 0.5J energy initially. The 

communication range of each sensor node is 50m , we 

consider an initial population of 100 chromosomes. The 

values of the parameters used in the simulation are shown in 

Table II. 

 
TABLE II: SIMULATION PARAMETERS 

.Para  Value
                              

.Para
 

Value
 

area  200 200  
r  50m  

The BS  

(100,100)  NS  150  

N  100  mP  0.4  

w  0.6  L  30  

k  1000bits  0T  40  

s  

410 / ( . )pJ bit m  CP  0.6  

m  

40.0013 / ( . )pJ bit m
 

K  10  

elecE  50 /nj bit  C  0.6  

 

The simulation result of the proposed RNCA is shown in 

Fig. 7 for 200 sensor nodes. Use this algorithm we can get the 

initial set of P-positions of relay nodes which are yellow 

circles. Fig. 8 shows the selected P-positions which are pink 

circles for w = 0.6 after execution of GA-H-SA. 

 

 
Fig. 7. Initial set of P-positions of relay nodes. 

We also compare the performance of the proposed 

GA-H-SA with GA and Greedy through simulations in terms 

of the number of relay nodes as is shown in Fig. 9. The 

following performance results runs of the same initializations, 

specifically, we set w = 0.4, which is a appropriate value 

obtained from the simulations that ensure most of the sensor 

nodes consume the least amount of energy. 

 

 
Fig. 8. Selected P-positions of relay nodes. 

 

 
Fig. 9. Comparison of GA-H-SA vs GA vs greedy. 

 

Fig. 9 illustrates that, GA-H-SA gives better result than the 

other two algorithms as fewer relay nodes are used for the 

same number of sensor nodes. The number of relay nodes 

increases with the increasing of the number of sensor nodes, 

but when the number of sensor nodes reaches a certain 

number, the rate of growth decreases. The reason is that as the 

network becomes dense, there is no need to add additional 

relay nodes. 

 

VI. CONCLUSION 

In this paper, we present a relay node cover algorithm to 

generate P-positions of relay nodes and a genetic simulated 

annealing hybrid algorithm to optimize them. Our goal is to 

find a good trade-off among the three objectives, that is to 

optimize the placement of relay nodes in order to maximize 

lifetime and achieve better performance in hierarchical 

wireless sensor networks. Then we present the experimental 

results of the proposed algorithms for 0.6w , and we 

choose a appropriate value of w  through comparing the 

results. However, we don’t consider the connectivity of the 

relay nodes, which will be discussed in the further study. 
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