

Abstract—Web service technology provides a platform that

facilitates the development of distributed services. In order to

support business to business interactions within the distributed

environment a crying need is to aggregate web services and

assemble them is a goal oriented infrastructure. With the

emergence of web services, the coordination and interaction

involved between multiple business partners are conducted by

using the web services. Faults can arise at any stage of business

transaction and handling such faults where multiple partners

are involved is both crucial and difficult. Process algebras can

be used to model concurrent and distributed interactive systems.

Compensating CSP is a language defined to model business

transactions within the framework of CSP process algebra. It

has the facility to model faults within a transaction as

compensations. However, the language lacks automated tool

support to verify the service composition. Finite state Process

(FSP), on the other hand, is designed to model the composition

of web services and importantly, it has an automated tool

support for verification of composition of services, however

there is no construct for compensation. By combining the

benefits the both cCSP and FSP, this paper illustrates a

mechanism to model and verify the composition of services and

compensation in FSP by following the mechanism adopted in

cCSP. The verification of composition properties is performed

by LTSA tool.

Index Terms—Compensation, web services, cCSP, FSP.

I. INTRODUCTION

Business transactions involve multiple partners, and need

coordination and interaction with each other. Many business

companies or enterprises publish their applications’

functionalities on the web by using web service. Web

services are defined as self-contained, modular units of

application logic, which provide business functionality to

other applications through an Internet connection. Each

service provider is a self-contained software system having

its own threads of control. Web services technology

facilitates the development of distributed services. There are

various standard protocols namely WSDL [1], UDDI [2],

SOAP [3] that are defined to describe, look for and access the

available services. In this technological era, business

applications like web services allow greater efficiency and

availability for businesses. A web service alone has a limited

functionality which may not be sufficient to respond to the

user's request. Whereas a composition of several web

services can achieve a specific goal. From a user perspective,

the composition might be considered as a simple web service,

even though it is composed (choreographed) of several web

Manuscript received October 25, 2016; revised December 17, 2016.

S. Ripon, F. Sultana, and F. Rahman are with the Department of

Computer Science and Engineering, East West University, Bangladesh
(e-mail: dshr@ewubd.edu).

services. In an essence, the aggregation is a collaboration of

many Web service providers.

Coordination among the web services is particularly

crucial as it describes the logic that makes a set of different

services as a whole system. Hence these coordination models

and languages need through formal study along with proving

their various properties. It has been suggested [4], [5] that

process algebra can be used to formally define the

coordination of web services. Process algebras make it easy

to specify the message exchange between web services.

Business transactions have to deal with faults that can arise

at any stage of transaction. Transactions that require long

period of time to complete is known as Long Running

Transaction (LRT) [6] and separate measures are required to

handle faults in LRT. Compensation is an error recovery

mechanism which is particularly used in LRTs.

Compensation mechanism has to be incorporated within a

transaction so that faults can be handled automatically in

LRTs. Various works suggested to model business

transactions by using process algebras [7]-[10]. However,

very few of them included compensation mechanism within

the language.

Compensating CSP (cCSP) [11]-[13] is a language defined

to model business transactions within the framework of

standard CSP [14] process algebra. In cCSP transactions are

defined as processes. Besides, the language has constructs to

define orchestration of compensation to handle faults when

required. However, the language lacks automated tool

support to verify the service composition. Finite state Process

(FSP) [15], on the other hand, is designed to model the

composition of web services and importantly, it has an

automated tool support to verify the composition of services,

however there is no construct in the language for

compensation. The objective of this paper is to combine the

benefits of both cCSP and FSP. We define a mechanism to

model the composition of services along with corresponding

compensation in FSP by adopting the technique proposed in

cCSP. In particular, the management of compensation is

incorporated into FSP encoding of the service composition.

Verification of service composition, compensation and

various correctness properties is carried out in LTSA tool

[16].

The rest of the paper is organized as follows. A brief

overview of cCSP is illustrated in Section II. In the following

section we give an example of web service composition and

draw the schematic diagram of the service composition. We

also draw message sequence chart of service composition

along with compensation which clearly shows the

compensation handling mechanism that is to be followed in

this paper. In Section IV, we show how the web services are

encoded into FSP. The verification of service composition,

Verification of Service Composition and Compensation by

Using Process Algebra

S. Ripon, F. Sultana, and F. Rahman

Journal of Advances in Computer Networks, Vol. 4, No. 4, December 2016

193doi: 10.18178/jacn.2016.4.4.230

compensation and various properties are also shown here.

The following section illustrates a brief comparison between

cCSP constructs and their corresponding representation in

FSP. Finally, we conclude the paper by summarizing our

work and future plan in Section VI.

II. COMPENSATING CSP

Compensating CSP (cCSP) is a language defined to model

long running business transactions within the framework of

standard CSP [csp] process algebra. Processes in cCSP are

modeled in terms of the atomic events they can engage in.

The processes are categorized into standard and compensable

processes.

A standard process does not have any compensation. The

basic unit of the standard processes is an atomic event (A).

The other operators are the sequential (𝑃; 𝑄), and the parallel

composition (𝑃 || 𝑄), the choice operator (𝑃 □ 𝑄), the

interrupt handler(P ⊳ Q), the empty process SKIP, raising an

interrupt THROW, and yielding to an interrupt YIELD. A

process that is ready to terminate is also willing to yield to an

interrupt. In a parallel composition, throwing an interrupt by

one process synchronizes with yielding in another process.

Compensation is part of a compensable process that is used

to compensate a failed transaction. In a sequential

composition, the compensation is defined in such a way that

the compensations of the completed tasks will be

accumulated in reverse to the order of their original

composition, whereas compensations parallel processes will

be placed in parallel. We use notations 𝑃, 𝑄, .. to identify

standard processes, and 𝑃𝑃, 𝑄𝑄, .. to identify compensable

processes. The basic way of constructing a compensable

process is through a compensation pair (𝑃 ÷ 𝑄), which is

constructed from two standard processes, where 𝑃 is called

the forward behavior that executes during normal execution,

and 𝑄 is the associated compensation that is designed to

compensate the effect of 𝑃 when needed.

𝑆𝐾𝐼𝑃𝑃, 𝑇𝐻𝑅𝑂𝑊𝑊 , and 𝑌𝐼𝐸𝐿𝐷𝐷 are the compensable

counterpart of the corresponding standard processes and they

are defined by pairing an empty compensation with them, e.g.,

𝑆𝐾𝐼𝑃𝑃 = 𝑆𝐾𝐼𝑃 ÷ 𝑆𝐾𝐼𝑃 . cCSP language syntax is

summarized in Table I.

TABLE I: CCSP SYNTAX

III. SERVICE COMPOSITION

We model a car broker web service as a case study. A car

broker web service support customer negotiating car

purchasing and arranges loan for the same. The broker

service utilizes two web services: Supplier to search suitable

quote based on customer demand and LoanStar, a lender

service that arranges loan for customer to buy car. Each web

service is independent and can be combined with any other

web services. Our emphasis is on the coordination of services

and management of compensation mechanism. The

compensations have to be orchestrated in such a way that

whenever there occurs an interrupt appropriate compensation

process will be executed in proper order. Each web service is

modeled as an independent process. Separate processes are

defined to model the corresponding compensations. Finally,

the processes representing all the services are composed in

parallel.

Buyer: First, Buyer gives an order to Broker to find a quote

of a car. Buyer then receives a suitable quote from Broker.

The Buyer can either accept or reject the quote. If the quote is

satisfactory, Buyer either sends a confirmation message to

Broker or reject the quote by throwing a message.

Broker: After receiving the order from the Buyer the

Broker requests the Supplier for available quotes. The buyer

then select a quote from the received quotes and then Broker

simultaneously sends quote to Buyer, gives an order to the

Supplier and requests for loan to the LoanStar assuming

that buyer will accept the final order. Broker accepts all the

positive acknowledgements from Buyer, Supplier and

LoanStar if Buyer accepts the quote, Supplier is able to

provide the requested model and LoanStar approved the

loan then we can say that the order is complete.

Supplier: Supplier is a service that receives request for

quotation from Broker in accordance to the order of a

particular car model by Buyer. Getting the request for

quotation, Supplier collects quotes from all of its associated

partners and passes the accumulated quotes to the Broker.

Supplier receives a final order from Broker while Broker

selects a suitable quote for Buyer. If the Supplier is able to

manage the desired car model ready to supply, it

acknowledges Broker by a positive reply.

LoanStar: LoanStar is assumed as a lender web service

that offers loans to online Buyers. After a detailed assessment

of the loan, LoanStar can either approve the loan or reject it.

If the assessment outcome is positive loan request is granted

and LoanStar sends a positive acknowledgement to Broker.

Architectural view of the example scenario is depicted in Fig.

1.

Fig. 1. Architectural view of Car Broker web service.

If any negative acknowledgement is thrown by any service

it is considered as a fault or error of the system for which

Journal of Advances in Computer Networks, Vol. 4, No. 4, December 2016

194

service cannot be continued anymore. That’s why we have to

handle errors by compensating the services.

Using the compensation mechanism all services can reach

into a state that can be considered as an equivalent to their

initial state from where they have been interrupted. In our

model while a negative acknowledgement is thrown by a

service this message is received by the compensation process

of this service. The reverse actions are performed to

compensate the service from where the interruption occurs.

Simultaneously the compensation process throws an interrupt

to the main compensation handling process and it then throws

a combination of messages that will be received by the

compensation processes of the respective services attached to

the system and runs the compensating actions in parallel. The

message sequence chart (MSC) of the composite services

with and without compensation handler are shown in Fig. 2(a)

and 2(b).

(a)

(b)

Fig. 2. Message sequence chart of overall composition.

IV. FSP REPRESENTATION

FSP stands for Finite State Processes. Finite State

Processes is an algebraic notation to describe process models.

The constructed FSP can be used to model the exact

transition of workflow processes through a modeling tool

such as the Labeled Transition System Analyzer (LTSA),

which provides compilation of an FSP into a Labeled

Transition System. Models are described using state

machines, known as Labeled Transition Systems LTS. These

are described textually as finite state processes (FSP) and

displayed and analyzed by the LTSA analysis tool. The tool

gives an opportunity to test the workflows before

implementing the model. LTS is the graphical form and FSP

is the algebraic form. [5]. FSP consists of Action Prefix,

Process Definition, Choice, Indexed Processes and Actions,

Guarded Actions, properties, Constant and Range

Declarations, Variable Declaration, Process Alphabets and so

on.
In our system there are four major processes which have

their own compensation and each of them has their safety

properties to ensure a good composition.

 Fig. 3. FSP encoding of buyer, broker, supplier and LoanStar.

Buyer: The process starts the service by giving an order

for a car to Broker. When Buyer receives a quote from Broker

rcv_qt it checks whether the quote is suitable or not. If the

quote is suitable then it either sends an acknowledgement

send_b_ack to Broker or denies the quote by throwing a

negative acknowledgement send_b_nak. Buyer’s

/* Buyer */

BUYER =

(order->rcv_qt->reply->(send_b_ack->BUYER|send_b_n

ak->thrwb->END)).

COMP_B = (thrwb->cancel_rcv_qt->cancel_order->END).

MSGB = (thrwb->msgb->END).

/* Broker */

BRK_PHASE1 =

(rcv_order->rfq_to_supp->rcv_qt_supp->select_qt->E

ND).

REQ1 = (select_qt->send_qt_buyer->reply->END).

REQ2 = (select_qt->order_supp->reply->END).

REQ3 = (select_qt->req_loan->reply->END).

RCV1 = (reply->rcv_buyerack->END).

RCV2 = (reply->rcv_suppack->END).

RCV3 = (reply->rcv_loanack->END).

||REQ = (REQ1||REQ2||REQ3).

||RCV = (RCV1||RCV2||RCV3).

||BRK_PHASE2 = (REQ||RCV).

||BROKER = (BRK_PHASE1||BRK_PHASE2).

||COMP_BRK = (BRK_PHASE2_COMP||BRK_PHASE1_COMP).

CMP_REQ1 = (thrwbrk->wdrw_buyer_qt->reqwdrwn->END).

CMP_REQ2 = (thrwbrk->wdrw_s_order->reqwdrwn->END).

CMP_REQ3 = (thrwbrk->wdrw_l_req->reqwdrwn->END).

||BRK_PHASE2_COMP = (CMP_REQ1||CMP_REQ2||CMP_REQ3).

BRK_PHASE1_COMP =

(reqwdrwn->cancel_qt_select->cancel_supp_qt_rcv->

 cancel_rfq_to_supp->cancel_buyer_order->END).

/** Supplier */

SUPPLIER =

(rcv_rfq->send_qt->rcv_brk_order->reply->(send_s_a

ck->SUPPLIER|send_s_nak->thrws->END)).

COMP_S =

(thrws->cancel_brk_order->cancel_qt->cancel_rfq->E

ND).

MSGS = (thrws->msgs->END).

/** Lender */

LOANSTAR =

(rcv_req->reply->(send_l_ack->LOANSTAR|send_l_nak-

>thrwl->END)).

COMP_L = (thrwl->cancel_loan_req->END).

MSGL = (thrwl->msgl->END).

Journal of Advances in Computer Networks, Vol. 4, No. 4, December 2016

195

compensation process is composed of two processes. One

process consists of compensating actions to compensate

Buyer actions and another contains a message which alerts

the main compensation process that an interrupt is thrown

from Buyer. The compensation process COMP_B consists of

compensation actions to be performed by Buyer before

sending a negative acknowledgement. The action thrwb is

the synchronizing action for those processes who tries to

execute it. When COMP_B runs, at the same time another

process MSGB also run in parallel. MSGB throws a message

msgb which is received by the Main Compensation Process.

msgb indicates that Buyer process is not running anymore;

so getting this message Main Compensation Process will take

necessary steps to compensate others. The FSP encoding of

the service composition is illustrated in Fig. 3.

Broker: Broker interacts with other three partner services.

The process works in two phases. Phase one consists of

several sequential actions and Phase two is the concurrent

execution of three parallel processes. Phase one starts by

receiving an order from Buyer labeled as rcv_order.

According to Buyer’s order Broker request for the quotes to

the Supplier. The actions rfq_to_supp. rcv_qt_supp

represents that Broker receives the quotes from Supplier.

Broker finds the best possible quote for the requested car

model by Buyer represented by the action select_qt.

After selecting the quote in Phase two, Broker

simultaneously send quote to Buyer, order to Supplier and

request loan to LoanStar by using the process REQ. The

order will be completed without any error if and only if Buyer,

Supplier and LoanStar send positive acknowledgements to

Broker. These acknowledgements received in the process

RCV and the respective receiving messages are

rcv_buyerack, rcv_suppack, rcv_loanack.

Broker Phase two is the composition of these two processes

REQ and RCV and the composition is titled as

BRK_PHASE2. Finally, the Broker process is the

composition of two phases; BRK_PHASE1, the sequential

part of Broker and BRK_PHASE2, the parallel part of Broker.

Broker’s Compensation Process COMP_BRK consists two

phases. COMP_BRK is composed of two separate processes,

BRK_PHASE2_COMP and BRK_PHASE1_COMP.

BRK_PHASE2_COMP is the compensation process of

Broker’s parallel part. After getting an interrupt from Main

Compensation Process Broker’s phase two compensation

process withdraws all placed request to its partner processes

with the actions wdrw_buyer_qt, wdrw_s_order and

wdrw_l_req. These actions are composed in parallel with

the separate respective processes CMP_REQ1, CMP_REQ2

and CMP_REQ3 in BRK_PHASE2_COMP process.

reqwdrwn indicates that all requests are successfully

withdrawn. Broker’s Phase One Compensation Process

BRK_PHASE1_COMP starts after successfully withdrawing

all requests placed by Broker to its partner processes. Process

BRK_PHASE1_COMP consists a sequence of actions that

cancels every actions performed by Broker after receiving an

order from Buyer till selecting a quote among various quotes

sent by supplier.

Supplier: Supplier receives a request for quotes from the

Broker by rcv_rfq. According to the request, Supplier

sends accumulated quotes to the Broker by send_qt. After

selecting the appropriate quote Broker sends an order for car

and that is received by the action labeled rcv_brk_order

at the Suppliers end. If the Supplier able to deliver the order it

confirms Broker by sending an acknowledgement

send_s_ack otherwise it rejects the order and sends a

negative acknowledgement send_s_nak. Supplier’s

Original Compensation process is composed of two

processes. One is Supplier’s compensation process and

another is a messaging system alerts the Main Compensation

Process that a negative acknowledgement is thrown from

Supplier. COMP_S, the compensation process of Supplier

reverse the actions which are already done by Supplier before

sending a negative acknowledgement. This process is

synchronized through a shared action thrws while Supplier

needs to be compensated. When COMP_S runs, at the same

time another process MSGS also run in parallel. MSGS throws

a message msgs which is received by the Main

Compensation Process. This message indicates that Supplier

process is not able to run anymore and the compensation

process of supplier is running; after getting this message

Main Compensation Process will take necessary steps to

compensate others.

LoanStar: After selecting the quote Broker sends a request

to its business partner LoanStar to arrange a loan for Buyer.

This request is received in LoanStar by the action rcv_req.

Loanstar confirms the approval of the loan by sending an

acknowledgement send_l_ack. Loanstar rejects the loan

request using send_l_nak if it is not able to arrange the

loan for the Buyer. Process COMP_L and MSGL are used to

compensate LoanStar’s activities. While COMP_L runs,

simultaneously a process MSGL runs. COMP_L compensates

LoanStar’s actions those took place before sending a negative

acknowledgement. A shared action thrwl is used to

synchronize with those processes that are willing to execute

the compensation process of LoanStar. MSGL throws a

message msgl which is received by the Main Compensation

Process. msgl indicates that LoanStar rejects the loan

request. So Main Compensation Process has to take

necessary steps to compensate others.

Fig. 4. FSP encoding of compensation process.

CMAIN = (msgb->COMP_EXCPT_BUYER|msgs->

COMP_EXCPT_SUPP|msgl->COMP_EXCPT_LOAN),

COMP_EXCPT_BUYER = FROM_BUYER;END,

COMP_EXCPT_SUPP = FROM_SUPP;END,

COMP_EXCPT_LOAN = FROM_LOAN;END.

BUYERMSG_TO_COMP_BRK = (thrwbrk->END).

BUYERMSG_TO_COMP_S = (thrws->END).

BUYERMSG_TO_COMP_L = (thrwl->END).

||FROM_BUYER = (BUYERMSG_TO_COMP_BRK||

BUYERMSG_TO_COMP_S||BUYERMSG_TO_COMP_L).

SUPPMSG_TO_COMP_B = (thrwb->END).

SUPPMSG_TO_COMP_BRK = (thrwbrk->END).

SUPPMSG_TO_COMP_L = (thrwl->END).

||FROM_SUPP = (SUPPMSG_TO_COMP_B||

SUPPMSG_TO_COMP_BRK||SUPPMSG_TO_COMP_L).

LOANMSG_TO_COMP_B = (thrwb->END).

LOANMSG_TO_COMP_BRK = (thrwbrk->END).

LOANMSG_TO_COMP_S = (thrws->END).

||FROM_LOAN = (LOANMSG_TO_COMP_B||

LOANMSG_TO_COMP_BRK||LOANMSG_TO_COMP_S).

Journal of Advances in Computer Networks, Vol. 4, No. 4, December 2016

196

Compensation Process: When a negative

acknowledgement is given by any partner processes of

Broker, a message is received by the Main Compensation

Process. From the message, the main compensation process

identifies from which process the interrupt is thrown. On the

basis of the sent message a combination of messages is

generated by the Main Compensation Process to compensate

other processes except the process from where the message

was received. The FSP encoding is shown in Fig. 4 and the

transition diagram of the compensation process is shown in

Fig. 5.

Fig. 5. LTSA representation of CMAIN process.

CARBROKERSERVICE Process is the parallel

composition of all engaged processes to the system with all

safety properties. All major services, their compensation

processes, all messages throwing processes, CMAIN the main

compensation process all together composed in

CARBROKERSERVICE. All the services have been

synchronized with each other through the relabeling

functions (Fig. 6).

Fig. 6. FSP encoding of final service composition.

A. Composition Verification

It is mentioned earlier that modeling compensation of each

process is one of the central focuses of this work. In the first

stage of verification, we check whether the compensation of

each process act accordingly whenever an interrupt is thrown

from any process. For each process, a property process is

defined in FSP and then it is composed in parallel with the

main process. It is assumed that interrupt in the form of

negative acknowledgement can be thrown by buyer, supplier

and/or Loanstar and corresponding property processes are

defined for each of them as shown in Fig. 7.

 Fig. 7. Safety property of Buyer, Supplier and LoanStar.

In order to check the main compensation process itself,

four property processes are defined. A process is defined to

confirm that when an interrupt is thrown (negative

acknowledgement) either by Buyer, Supplier or LoanStar, the

main compensation process will run the compensation

process of Broker by throwing appropriate messages.

Another process is defined to confirm that the compensation

handler process runs the compensation process of Buyer by

throwing a message when a negative acknowledgement is

received from Supplier or LoanStar. Similarly, the other two

process are defined to confirm the execution of compensation

of Supplier and Loanstar process when interrupt is thrown

from other respective processes. All these property processes

are then composed into parallel to check the correctness the

compensation processes together (Fig. 8).

property SAFE_MSG_BRK =

(msgb->thrwbrk->SAFE_MSG_BRK

|msgl->thrwbrk->SAFE_MSG_BRK|msgs->thrwbrk->SAFE_M

SG_BRK).

property SAFE_MSG_B =

(msgs->thrwb->SAFE_MSG_B|msgl->thrwb->SAFE_MSG_B).

property SAFE_MSG_S =

(msgb->thrws->SAFE_MSG_S|msgl->thrws->SAFE_MSG_S).

property SAFE_MSG_L =

(msgb->thrwl->SAFE_MSG_L|msgs->thrwl->SAFE_MSG_L).

||CARBROKERSERVICE = (

BUYER||BROKER||SUPPLIER||LOANSTAR||

MSGB||MSGS||MSGL||CMAIN||

COMP_B||COMP_BRK||COMP_S||COMP_L||

SAFE_COMP_B||SAFE_COMP_S||SAFE_COMP_L||

SAFE_MSG_BRK||SAFE_MSG_B||SAFE_MSG_S||

SAFE_MSG_L| SAFE_SYSTEM||SAFE_REQ1||SAFE_REQ2||

SAFE_REQ3)

/{

rcv_order/order, rcv_rfq/rfq_to_supp,

rcv_qt_supp/send_qt, rcv_qt/send_qt_buyer,

rcv_req/req_loan, rcv_brk_order/order_supp,

rcv_buyerack/send_b_ack, rcv_loanack/send_l_ack,

rcv_suppack/send_s_ack

 }.

property SAFE_COMP_B =

(send_b_nak->cancel_rcv_qt->SAFE_COMP_B).

property SAFE_COMP_S =

(send_s_nak->cancel_brk_order->SAFE_COMP_S).

property SAFE_COMP_L =

(send_l_nak->cancel_loan_req->SAFE_COMP_L).

||BSAFE = (BUYER||COMP_B||SAFE_COMP_B).

||SSAFE = (SUPPLIER||COMP_S||SAFE_COMP_S).

||LSAFE = (LOANSTAR||COMP_L||SAFE_COMP_L).

Journal of Advances in Computer Networks, Vol. 4, No. 4, December 2016

197

||CMAIN_CHECK=(CMAIN||COMP_B||COMP_BRK||COMP_S||CO

MP_L||SAFE_MSG_BRK||SAFE_MSG_B||SAFE_MSG_S||SAFE_M

SG_L).
Fig. 8. Correctness check of compensation process.

B. Verifying System Composition

The property process SAFE_SYSTEM is defined to ensure

that Buyer, Broker and Supplier processes synchronize

correctly in their desired synchronizing points in the system

up to selection of quote by broker. After selecting a quote, the

quote is sent to Buyer, a loan request for the quote is placed to

LoanStar and an order is placed to Supplier simultaneously.

These requests are received by those three service processes

using rcv_qt, rcv_brk_order, rcv_req actions.

SAFE_REQ1, SAFE_REQ2 and SAFE_REQ3, these three

safety properties ensures that the requests placed in parallel to

Buyer, Supplier and LoanStar by Broker is successfully

received. Fig. 9 shows the FSP encoding and transition

diagram.

If the property SAFE_SYSTEM and SAFE_REQ1,

SAFE_REQ2, SAFE_REQ3 are composed in parallel with

the processes BUYER, BROKER, SUPPLIER and

LOANSTAR in MAINSYSTEM_CHECK and the traces of

MAINSYSTEM_CHECK does not show any violation in

LTS diagram we can say that our system is verified with the

written SAFE_SYSTEM property process which ensures that

the system has been synchronized successfully.

property SAFE_SYSTEM =

(rcv_order->rcv_rfq->rcv_qt_supp->select_qt->SAFE_

SYSTEM).

property SAFE_REQ1 =

(select_qt->rcv_qt->SAFE_REQ1).

property SAFE_REQ2 =

(select_qt->rcv_brk_order->SAFE_REQ2).

property SAFE_REQ3 =

(select_qt->rcv_req->SAFE_REQ3).

Fig. 9. FSP and LTSA representation of safety property SAFE_REQ1,SAFE_REQ2,SAFE_REQ3.

On the other hand we can also say that the requests are

made by the Broker are successfully received by its partner

services. If there any violation occurs in the traces we can say

that system synchronization might not ok or else there is a

fault in the message passing system. As Including

LOANSTAR in the composition of

MAINSYSTEM_CHECK, it generates too many states. So,

by omitting LOANSTAR from the composition we can

generate the LTSA representation of the process

MAINSYSTEM_CHECK (see Fig. 10).

V. COMPARISON WITH CCSP

Both cCSP and FSP support prefix, sequence, choice,

parallel operations over processes. The main distinction

between these two algebras is the definition of compensation.

In cCSP there is a compensable process that includes

compensation in the process definition. The basic way of

constructing a compensable process is via compensation pair

(𝑃 ÷ 𝑄). It is constructed of two standard processes: P is the

forward process that executed during normal operation and Q

is the attached compensation that is executed to compensate

the actions in P when the forward behavior of P throws an

interrupt. The compensation for sequence and parallel

operations are defined in such a way that when compensation

is required the compensations attached to each process will

execute in reverse to the original operations.

In FSP compensation process and the main process are two

separate processes. The main process and its compensation

process are composed in parallel. If any interrupt occurs in

the main process the process throw a message, that message

is received by the compensation process with the

collaboration of a shared action. Thus both processes

synchronize and the compensation process runs the

compensating actions of those actions that have already took

place by the main process. Here P is the main process also

called forward behavior and Q is its corresponding

compensation process, contains the reverse actions done by P.

P_Q is the parallel composition of the main process P with its

compensation process Q that resembles to the compensation

pair (P÷Q) as referred in cCSP. The cCSP syntax and the

corresponding FSP representation is illustrated in Table II.

||MAINSYSTEM_CHECK =

(BUYER||BROKER||SUPPLIER||LOANSTAR||SAFE_SYSTEM

||SAFE_REQ1||SAFE_REQ2||SAFE_REQ3)

/{rcv_order/order, rcv_rfq/rfq_to_supp,

rcv_qt_supp/send_qt, rcv_qt/send_qt_buyer,

Journal of Advances in Computer Networks, Vol. 4, No. 4, December 2016

198

rcv_req/req_loan, rcv_brk_order/order_supp,

 rcv_buyerack/send_b_ack,

rcv_loanack/send_l_ack,

 rcv_suppack/send_s_ack }

Fig. 10. FSP representation of MAINSYSTEM_CHECK.

TABLE II: COMPARISON BETWEEN CCSP AND FSP

VI. CONCLUSION

Proper management of compensation plays a key role in

handling faults in long running transactions in web services

where traditional fault handling principles do not work

properly. Compensation is included as an integral part within

the definition of processes in cCSP that allows the

compensation to handle faults which might arise at any time

during transaction by invocation of a throw from any

participating process in the composite web services. The

compensations are modeled in such a way that it performs the

compensation task in reverse order to the original transaction.

Due to lack of tool support for cCSP, this paper described a

case study of modeling the choreography of compensable

services in FSP. The compensable processes are designed by

combining a normal process with its compensation process.

By following the approach proposed in cCSP, the overall

orchestration is designed in such a way that appropriate

compensations are executed in proper order that cancel the

actions of already completed process whenever there is an

interrupt thrown from any process within the composition. It

has also been illustrated how cCSP constructs are defined in

FSP. Properties that check the composition and execution of

compensations are also verified by using LTSA model

checker. Such verification strengthens the claim of cCSP and

confirms that the compensation modeling approach can be

applied in long running transactions

REFERENCES

[1] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web

services description language (WSDL) 1.1. W3c note,” World Wide
Web Consortium, March 2001.

[2] OASIS, “Introduction to UDDI: Important feature and functional

concepts,” Technical report, Organization for the Advancement of

Structured Information Standard, 2004.

[3] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S.

Weerawarana, “Unraveling the web services web: An introduction to
SOAP, WSDL, and UDDI,” IEEE Internet Computing, vol. 6, no. 86–

93, 2002.

[4] L. G. Meredith and S. Bjorg. “Contracts and types,” Communications
of the ACM, vol. 46, no. 10, pp. 41–47, October 2003.

[5] G. Sala ün, L. Bordeaux, and M. Schaerf, “Describing and reasoning

on web services using process algebra,” in Proc. the IEEE
International Conference on Web Services, IEEE Computer Society,

June 6-9, 2004.
[6] J. Gray and A. Reuter, Transaction Processing: Concepts and

Techniques, Morgan Kaufmann Publishers, 1993.

[7] M. Berger and K. Honda, “The two-phase commitment protocol in an
extended pi-calculus,” Electronic Notes in Theoretical Computer

Science, vol. 39, no. 1, 2000.

[8] A. P. Black, V. Cremet, R. Guerraoui, and M. Odersky, “An equational
theory for transactions,” in FSTTCS 2003: Foundations of Software

Technology and Theoretical Computer Science, P. K. Pandya and J.

Radhakrishnan, Eds. vol. 2914, pp. 38–49, Mumbai, India, December

15-17, 2003, Springer-Verlag.

[9] L. Bocchi, C. Laneve, and G. Zavattaro, “A calulus for long-running

transactions,” in FMOODS’03, vol. 2884, pp. 124–138,
Springer-Verlag, 2003.

[10] R. Bruni, C. Laneve, and U. Montanari, “Orchestrating transactions in

join calculus,” in CONCUR ’02: Proceedings of the 13th International
Conference on Concurrency Theory, L. Brim, P. Jancar, M.

Kret´ınsk´y, and A. Kucera, Eds. vol. 2421, pp. 321–337, 2002.

[11] M. Butler, T. Hoare, and C. Ferreira, “A trace semactics for
long-running transaction,” in Proc. 25 Years of CSP, A. E. Abdallah, C.

B. Jones, and J. E. Sanders, Eds., vol. 3525, London, 2004,

Springer-Verlag.

Journal of Advances in Computer Networks, Vol. 4, No. 4, December 2016

199

[12] M. Butler and S. Ripon, “Executable semantics for compensating CSP,”

in WS-FM 2005, M. Bravetti, L. Kloul, and G. Zavattaro, Eds. vol.

3670, pp. 243–256, Springer-Verlag, September 1-3, 2005.
[13] S. H. Ripon, “Process algebraic support for web service composition,”

SIGSOFT Softw. Eng. Notes, vol. 35, no. 2, March 2010.

[14] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1985.

[15] J. Magee and J. Kramer, “Concurrency: State models and java

programs,” Text Book, 2nd Edition, John Wiley & Sons, Ltd., 2006.
[16] J. Magee, “Behavioral analysis of software architectures using LTSA,”

in Proc. the 21st international conference on Software engineering

(ICSE '99), ACM, New York, NY, USA, pp. 634-637, 1999.

Shamim Ripon is an Associate Professor in the

Department of Computer Science and Engineering,

East West University, Dhaka, Bangladesh where he
leads Software Engineering and Formal Method

Research Group. Previously, he was a Research

Associate in the Department of Computing Science,
University of York, UK and Research Fellow in the

Department of Computing Science, University of

Glasgow, UK. He also served as a lecturer in
Khulna University, Bangladesh.

Dr. Ripon holds a B.Sc. degree in computer science and engineering

from Khulna University, MSc degree in computer science from National
University of Singapore and PhD in Computer Science from University of

Southampton, UK. His research interests focus on the requirement

engineering, software product line, semantic web, natural language
processing, data mining. His current research examines the formal

representation and verification of knowledge based requirement

specification.

Journal of Advances in Computer Networks, Vol. 4, No. 4, December 2016

200

