


Abstract—Many Internet of Things (IoT) technologies have

been used in applications to makes our life more convenient.

The EasyConnect IoT management system characterizes an

IoT device by its “features” (e.g., acceleration, temperature,

and etc.) that are manipulated by the network applications. If a

network application handles the individual device features

independently, then we can write a software module for each

device feature, and the network application can be simply

constructed by including these brick-like device feature

modules. Based on the concept of device feature, brick-like

software modules can provide an efficient control mechanism

to simply develop a universal remote to control IoT devices.

Index Terms—Remote controller, internet of things (IoT),

machine-to-machine (M2M), wearable device, wireless

communications.

I. INTRODUCTION

In the recent years, Internet of Things (IoT) has become

very popular, which provides interconnection of uniquely

identifiable computing devices within the existing Internet

infrastructure. The IoT is expected to provide connectivity

of devices, systems, and services, which goes beyond

machine-to-machine communications with a variety of

protocols, domains, and applications [1]. With fast advance

of communications and IC fabrication technologies, many

new sensors and communication modules for IoT devices

have been quickly created for new IoT products.

An IoT device can be characterized by its functionalities

or “features”. For the purpose of description, this paper

defines a feature as a specific input or output “capability” of

the IoT device. For example, a smartphone with the

accelerator sensor has the input device feature (IDF) called

“Acceleration”. A blub has the output device feature (ODF)

called “Luminance”. An IoT device may be connected to the

network (i.e., Internet) using wireless communications

directly or indirectly. If so, the corresponding software

called network application is developed and executed by a

server in the network side, which receives or sends the

messages from/to the IoT device. When the values of the

IDFs are updated, the IoT device will inform the network

application to take some actions, and the network

application may send the result to the ODF of an IoT device.

With this view, the IoT devices interact with each other

through their features, and we say that the network

application “maps” the IDFs to the ODFs.

Fig. 1 (a) illustrates 5 IoT devices D1, D2, D3, D4, and

Manuscript received March 20, 2016; revised December 18, 2016.
Yun-Wei Lin is with the Department of Computer Science National

Chiao Tung University Hsinchu, Taiwan, R.O.C. (e-mail:

jyneda@gmail.com).

D5, where the left-hand side of the figure illustrates the

IDFs of the devices and the right-hand side of the figure

illustrates the ODFs of the devices. The smartphone D1 has

two input device features Microphone (Mic) and

Acceleration (Acc). The MorSensor [2] D2 has two input

device features Acceleration (Acc) and Temperature (Tmp).

The bulb D3 has an output device feature Luminance (Lum).

The Fan D4 has one output device feature Fan speeds (Fan).

The iRobot D5 has one output device feature Movement

(Mov) which is used to control the moving direction of

iRobot, and its ODF is Mov with two parameters (y1, y2)

representing movement in two dimensions.

Input Device

Features

Output Device

Features

Mic

Acc

Lum

Fan

MovAcc

Tmp

D1

D2

D3

1

2

3

4

NA1

NA3

D4

D5

NA2

a. Connections among D1, D2, D3, D4, and D5

Acc

Network Application

NA3

Acc-IDF

Module

Mov-ODF

Module

D1 D5

Mov

b. Software module for Acceleration to Movement mapping NA3

Fig. 1. IoT devices, device features, and the network applications.

Lines (1)-(4) in Fig. 1 (a) illustrate how these IoT devices

interact, where a line connecting an IDF to an ODF

represents interactions between the corresponding device

features in input and output IoT devices. Such interactions

are implemented in network applications. In Fig. 1 (a),

network application NA1 implements interactions (1) for D1

and D3, NA2 implements interactions (3) for D2 and D4,

and NA3 implements interactions (2) and (4) for D1, D2,

and D5. Consider Line (2) as an example. This line links Acc

(the accelerator of D1) to Mov (the Movement of D5), which

means that NA3 processes the acceleration value sent from

smartphone D1, and then controls the moving direction of

iRobot D5.

If a network application handles the individual device

features independently, then we can write a software module

for each device feature, and the network application can be

simply constructed by including these brick-like DF

modules. For example, the building blocks for Line (4) in

Develop a Universal Remote Using the EasyConnect IoT

Management System

Yun-Wei Lin

Journal of Advances in Computer Networks, Vol. 4, No. 4, December 2016

189doi: 10.18178/jacn.2016.4.4.229

Fig. 1 (a) are shown in Fig. 1 (b), where the network

application NA3 handles Acceleration of D1 and the

Movement of D5. This IDF module computes, e.g., the

acceleration, and passes the result to the Movement Module.

This ODF module translates the received value to the

movement direction. Then NA3 outputs this movement

direction to drive the movement mechanism of D5. If the

IDF and the ODF modules are independent of each other,

then these software modules can be reused to build the

network applications, and effectively speed up the

development of the IoT applications. Fig. 1 (a) shows that

different IoT devices may have similar IDFs/ODFs. For

example, D1 and D2 have similar input device features

Acceleration. Therefore, NA3 can reuse same software

modules to implement the tasks for these similar DFs.

Traditionally, a remote is specifically corresponding to a

controllable device. In the modern living room, there

normally exist several IoT devices which can be controlled

by their corresponding remotes, and that causes a lot of

remotes are placed around the living room. A user should

spend some time to look for a correct remote for the desired

IoT device. If there exists a universal remote can control all

of the IoT devices in the living room, then the life can be

more convenient. In this paper, we show that based on the

concept of device feature, brick-like software modules can

provide an efficient control mechanism to manipulate IoT

devices. Specifically, we develop a multipurpose remote

based on EasyConnect [3] to remotely control IoT devices.

A user can manipulate a single IoT device, for example,

smartphone to remote control home appliances (e.g., TV, air

conditioner, lighting, etc.) or other IoT devices through

EasyConnect. The user can simply draw a link from an input

IoT device to an output IoT device in the EasyConnect GUI

(Graphical User Interface), and then she/he can use the input

IoT device to remote control the output device.

The paper is organized as follows. Section II discusses the

related work. Section III shows the implementation details

of this work. Section IV shows how to configure the

connections of the appliances/IoT devices through

EasyConnect. Section V concludes our work with future

research directions.

II. RELATED WORK

Most IoT management platforms, such as Philips hue [4]

and IoT.est [5], focus on home automations or sensor

networks. Philips hue is a personal wireless lighting system

which can only be controlled by a specific smart device (e.g.,

a smartphone). A smartphone is used as the remote

controller to manipulate the colors and luminance of the

light bulbs. IoT.est is a test-driven IoT service creation

environment, which tests the behavior of IoT devices and

services. As an example, consider a motion induction light

device (an output IoT device) with a built-in control

program. When this program receives a motion event from a

motion sensor, it turns on the light. To test this output IoT

device, IoT.est simulates the motion detector by sending a

motion event to the control program. Then it examines the

program execution flow, and checks whether the control

program will turn on the light or not. In this way, IoT.est

verifies if the control program works correctly. Like Philips

hue, IoT.est does not focus on how to connect multiple input

IoT devices to multiple output IoT devices. Also, the

functions of these platforms are not as modularized and re-

useable. Therefore, it is not easy to quickly rebuild a new

control mechanism based on the existing software to control

other IoT devices.

Arduino Yun [6] is a microcontroller board based on the

ATmega32u4 and the Linino AR9331, which provide good

communication capabilities to be a proxy between

appliances or IoT devices. Appliances, such a fan, an air

conditioner, and an iRobot, may only control by IR remote

controllers. In this case, these appliances can only

communication to each other through a proxy. The IR

signals can be generated by ATmega32u4 (Fig.2 (a))

transmitted through an output pin (Fig. 2 (b)) connected

with an IR led. ATmega32u4 is suitable to control electronic

components and logic circuits. To communication with

other IoT devices, Linino AR9331 (Fig. 2 (c)) offers WiFi

communication capabilities (Fig. 2(d)) to connect with other

IoT devices or communicate with network servers. The

embedded Linux OS is running on AR9331, which allows

users to develop applications with various programming

languages, such as Python. Linino AR 9331 and

ATmega32u4 can communicate with each other through the

Bridge (Fig. 2 (e)) which provides a data storage function.

ATmega

32u4

Linino

AR 9331
Bridge

Rx

Tx Rx

Tx

WiFi
Interface

I/O

Pins

a

b

c

d

e

Fig. 2. The bridge communication of Arduino Yun.

III. SYSTEM ARCHITECTURE

A. Operating Environment

Assume a smart house with several appliances which can

be controlled from networks as shown in Fig. 3. Each

appliance connects to an IoT management system installed

in the WiFi access point. In this work, we use EasyConnect

as the IoT management system. Since the WiFi access point

is a very common device in the home environment, a user

does not need a new device to execute EasyConnect.

Access Point

(with EasyConnect

inside)

Air conditioner

iRobot

TV

Fan

Lighting

Smartphone

Connecting Connecting

Fig. 3. Operating environment.

Journal of Advances in Computer Networks, Vol. 4, No. 4, December 2016

190

B. EasyConnect

EasyConnect is installed and executed on an Intel Edison

Breakout Board [7]. Meanwhile, this Intel Edison Breakout

Board also acts as the WiFi access point; therefore, all IoT

devices naturally connect to this board. Fig. 4 illustrates the

EasyConnect architecture. EasyConnect (Fig. 4 (a)) consists

of four systems. The Creation, Configuration and

Management system (abbreviated as the CCM; Fig. 4 (b))

systematically categorizes the features of the IoT devices,

manages the functions to automatically configure

connectivity of IDFs and ODFs, and stores all related

information in the Database system (abbreviated as the

Database; Fig. 4 (c)). The Communication SubModule

system (abbreviated as the CSM; Fig. 4 (d)) provides HTTP

based RESTful APIs [8] for the Device Application system

(abbreviated as the DA; Fig. 4 (g)) to deliver/retrieve the

IDF/ODF information. When an IoT device

connects/disconnects to/from the EC, the DA instructs the

CSM through RESTful APIs to change the device status in

the EC. In this thesis, the IoT devices are physically

connected to the DA, and then transparently communicate

with each other through the CSM of EasyConnect. The

Execution SubModule system (abbreviated as the ESM; Fig.

4 (e)) is responsible for execution of network applications

for the connected IDFs and ODFs. The GUI (Fig. 4 (f))

provides a friendly web-based user interface to quickly

establish the connections and meaningful interactions

among the IoT devices. Through this GUI, a user instructs

the CCM to execute desired tasks through CCM procedures

to create or set up device features, DF functions, and

connection configurations.

The DA (Fig. 4 (g)) is responsible for appliances/IoT

devices to communicate with EasyConnect, which is

installed in a mobile device (e.g., a smartphone) or an MCU

board (e.g., Arduino Yun). It consists of two software

components. The Device Application to the Network (DAN;

Fig. 4 (h)) communicates with EasyConnect for the IoT

Device Application (IDA; Fig. 4 (i)) registration and data

exchange through Wi-Fi. The DA is a Python program

which is running on Linino AR 9331. The IDA is an

Arduino program and executed on ATmega32u4. The IDA

connects to EasyConnect indirectly through the Device

Application to IoT device (DAI; Fig. 4 (j)). For Arduino Yun,

the IDA to the DAI communicates through the Bridge (Fig.

4 (k)).

DAI DAN

HTTP

(WiFi)

HTTP

EasyConnect
IDA

Arduino Yun

GUI

DA
HTTP

CSM

ORM API

CCM

Database

ESM

a

b

c

d

e

f

g

h

i

j

Linino AR 9331

ATmega32u4

Bridge

Intel Edison

k

Fig. 4. The EasyConnect architecture.

EasyConnect manages IoT devices with scalability and

flexibility, where every IoT device is identified by its device

name and device model. For example, D1 in Fig. 1 is the

device name of the smartphone device model. Since

different IoT devices of a device model may involve in a

connection configuration, device names are needed to

distinguish these same-model devices. By considering a

device model as a set of device features, EasyConnect

effectively manages these device features.

C. Device Applications

The DA is a Python program and executed on Linino AR

9331 of an Arduino Yun board. EasyConnect (Fig. 5 (a))

can control the Arduino program (the IDA; Fig. 5 (b)) on

ATmega32u4 through the DA (Fig. 5 (c)) on AR 9331. The

DA consists of three components. The DAN (Fig. 5 (d))

communicates with EasyConnect for the DAI (Fig. 5 (e))

through csmapi (Fig. 5 (f)). The csmapi is a Python module

provided by EasyConnect to assist the DA development.

The DA is in charge of four processes, device registration,

ODF extraction, IDF decoder, and device deregistration.

The details are elaborated as follows.

1) Device registration

The device registration progress (Fig. 5 (g)) is used to

register an appliance/IoT device in EasyConnect, where the

appliance/IoT device is controlled by the IDA. To register

the appliance/IoT device, the function register_device() (Fig.

5 (h)) in the DAN is called. This function then calls

detect_ec_ip() (Fig. 5 (i)) to get the IP address of the

EasyConnect server. The EasyConnect server periodically

broadcasts a string “EasyConnect” on UDP port 17000. The

function detect_ec_ip() listens UDP port 17000 and extracts

the server IP from this broadcast packet. Once the server IP

is obtained, the IP is appended to ENDPOINT of csmapi

(Fig. 5 (j)). Then functions in the csmapi know the server IP

when the csmapi is called. The function get_mac_addr()

(Fig. 5 (k)) is called to get the WiFi mac address. The

csmapi uses the mac address as the unique name to register

(Fig. 5 (l)) in EasyConnect. The built-in LED on the

Arduino Yun (control by pin 13) is turned on by the process

Pin13_LED (Fig. 5 (m)) in the IDA to announce the

successful registration. Then the appliance/IoT device has

been registered in the EasyConnect and can be controlled by

network applications.

2) ODF extraction

The ODF extraction process (Fig. 5 (n)) is used to retrieve

data in EasyConnect. This process periodically calls the

function pull_data() (Fig. 5 (o)) in the DAN to retrieve the

data for the appliance/IoT device. The function extract_data()

(Fig. 5 (p)) is a JSON parser to extract the required data

form a JSON packet retrieved by the function pull() (Fig. 5

(q)). Then the ODF extraction process delivers the data to

the output device feature process (Fig. 5 (r)) in the IDA

through the Bridge. Then the output device feature process

controls the behaviors of the appliance/IoT device based on

the received data.

3) IDF decoder

The IDF decoder process (Fig. 5 (s)) decodes the received

data from the input device feature process (Fig. 5 (t)). The

input device feature process sends the data inputted form

Arduino Yun, where the data can be the sensed data from

sensors. Then the data are sent to EasyConnect by functions

push_data() (Fig. 5 (u)) in the DAN and push() (Fig. 5 (v))

in the csmapi.

Journal of Advances in Computer Networks, Vol. 4, No. 4, December 2016

191

4) Device deregistration

The device deregistration process (Fig. 5 (w)) is executed

when the appliance/IoT device intends to disconnect from

EasyConnect. Functions deregister_device() (Fig. 5 (x)) in

the DAN and deregister() (Fig. 5 (y)) in the csmapi are

called to disconnect from EasyConnect.

Arduino Yun

Intel Edison

ATmega32U4

AR 9331

EasyConnnect

DA

csmapi

DAN

DAI

IDA

register() pull() push()

detect_ec_ip()
extract_data()

register_device()

Device
Registration

ODF
extraction

deregister()

push_data()

IDF
decoder

deregister_device()

Device
Deregistration

Pin13_LED
Output device

feature

pull_data()

ENDPOINT

get_mac_addr()

Bridge

Input device
feature

a

c

b

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r t

s

u

v

w

x

y

Fig. 5. The functional block diagram of the DA

IV. CONFIGURING THE CONNECTIONS FOR THE

APPLIANCES/IOT DEVICES

This section shows how to dynamically connect IoT

devices D2 to D3, D4, and D5 to create the universal remote

application. EasyConnect provides a web-based project page

(Fig. 6) for a user to connect the device models. The

connection configuration of the device models is then saved

as a project. When configuring the connection, actual

devices need not exist. When the user executes the project

(activates the connection), all appliances/IoT devices of the

connected device models must register to EasyConnect.

Then the input devices can be the remotes to control the out

devices.

The left-hand side of the GUI (Fig. 6 (a)) shows the input

devices (MorSensor in this case) and the right-hand side

(Fig. 6 (b)) shows the output devices. The connection

configuration can be set by clicking “Join 1” (Fig. 6 (c)).

The details for connection configuration are elaborated in

[3]. The user can click the pull-down menu “Model” (Fig. 6

(d)) to add the device models MorSensor (Fig. 6 (e)) and

iRobot (Fig. 6 (f)). Then the user clicks the input device

feature Acceleration of MorSensor (Fig. 6 (g)) and the

output device feature Movement of iRobot (Fig. 6 (d)) to

draw a link. Then the user can use the acceleration of

MorSensor to control the movement direction of iRobot.

Through the similar way, the user can create the link

between MorSensor and Fan, TV, or light to control them,

and the MorSensor becomes the universal remote.

iRobot

MovementAcceleration

PIR

a bInput devices Output devices

d

c

f

g h

e

Fig. 6. The GUI for connection configuration.

V. CONCLUSION

This paper described the design and implementation of

universal remote using EasyConnect, a device feature

management system that effectively and flexibly links the

IoT devices. In our approach, an IoT device is characterized

by its “features” (e.g., temperature, vibration, display, etc.)

that are manipulated by the network applications. By

considering a device model as a set of device features,

EasyConnect effectively classifies these device features, and

manipulates them through network applications. Therefore,

a user can manipulate a single IoT device, for example,

smartphone to remote control home appliances (e.g., TV, air

conditioner, lighting, and etc.) or other IoT devices through

EasyConnect. The user can simply draw a link from an input

IoT device to an output IoT device in the EasyConnect GUI,

and then she/he can use the input IoT device to remote

control the output device.

REFERENCES

[1] J. Höller, V. Tsiatsis, C. Mulligan, S. Karnouskos, S. Avesand, D.

Boyle, From Machine-to-Machine to the Internet of Things:

Introduction to a New Age of Intelligence, Elsevier, 2014.
[2] MorSensor 2016. [Online]. Available: http://www.narlabs.org.tw

[3] Y. B. Lin, Y. W. Lin, C. Y. Chih, T. Y. Li, C. C. Tai, Y. C. Wang, F.

J. Lin, H. C. Kuo, C. C. Huang, and S. C. Hsu, “Easyconnect: a
management system for IOT devices and its applications for

interactive design and art,” IEEE Internet of Things Journal, no. 99,

2015.
[4] Philips hue (2016). [Online]. Available: http://www.developers.

meethue.com/

[5] S. De, F. Carrez, E. Reetz, R. Tonjes, and W. Wang, "Test-enabled
architecture for iot service creation and provisioning," The Future

Internet Lecture Notes in Computer Science, vol. 7858, pp. 233-245,

2013.
[6] Arduino Yun. (2016). [Online]. Available: https://www.arduino.cc/en/

Main/ArduinoBoardYun

[7] Intel Edison. (2016). [Online]. Available:

http://www.intel.com/content/ www/us/en/do-it-yourself/edison.html

[8] Representational state transfer (REST). (2016). [Online]. Available:

https://en.wikipedia.org/wiki/Representational_state_transfer

Yun-Wei Lin received the B.S. degree in computer

and information science from Aletheia University,
Taipei, Taiwan, in June 2003, and the M.S. and Ph.D.

degrees in computer science and information
engineering from National Chung Cheng University,

Chiayi, Taiwan, in 2005 and 2011, respectively. His

current research interests include mobile ad hoc
network, wireless sensor network, vehicular ad hoc

networks, and M2M communications.

Journal of Advances in Computer Networks, Vol. 4, No. 4, December 2016

192

