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Abstract—Recently, parallel processing systems are 

enthusiastically studied, and many topologies for their inter- 

connection networks have been proposed. A hypercube was one 

of such popular topologies for interconnection networks, and it 

still provides fundamental structures for practical super- 

computers such as the NASA Pleiades and the NOAA Zeus and 

theoretical hierarchical topologies based on it. In this paper, we 

propose a link-fault-tolerant routing algorithm in hypercubes 

based on routing probabilities. The probability represents 

routing ability of a node for an arbitrary node located at a 

specific distance. Each node selects one of its neighbor nodes to 

send the message by considering their routing probabilities. We 

also conducted a computer experiment to evaluate performance 

of our algorithm. 

 

Index Terms—Routing probability, fault tolerance, 

dependable computing, interconnection network, parallel 

processing.  

 

I. INTRODUCTION 

Recently, parallel processing systems are enthusiastically 

studied since sequential processing is reaching its 

performance limitation. There are many topologies proposed 

for interconnection networks of parallel processing systems. 

A hypercube was one of the most popular topologies for 

interconnection networks of parallel processing systems [1]. 

Its symmetric and recursive structure and the low diameter 

compared to its degree have attracted much attention. As a 

result, several commercial and research parallel systems have 

adopted this topology [2]-[6]. Although, latest parallel 

computers do not adopt a hypercube for their topologies, a 

hypercube provides fundamental structures for practical 

supercomputers such as the NASA Pleiades and the NOAA 

Zeus [7] and theoretical hierarchical topologies based on it 

[8]-[12]. 

In a parallel processing system, many nodes collaborate 

together by communication among nodes based on message 

passing. Therefore, efficiency of message passing has huge 

impact on performance of parallel processing. The role of a 

routing algorithm is to specify the path to send a message 

from a source node to a destination node. Hence, efficient 

message routing is one of the most important issues in parallel 

processing systems. 

Because the sizes of applications addressed by parallel 
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processing systems are increasing, higher performance 

systems connecting more nodes are needed. However, 

according to increase of the number of nodes in the system, 

the probability of existence of faulty elements also increases. 

Therefore, it is necessary to design routing algorithms with 

assumption that there exist faulty elements in a parallel 

processing system. For a source node and a destination node, 

a fault-tolerant routing algorithm attempts to find a fault-free 

path between them whose length becomes as short as possible. 

Although there are several approaches to address this problem, 

an efficient routing algorithm must satisfy the following 

conditions. 

First, for a pair of the source and destination nodes, the 

algorithm must find a fault-free path between them. Second, if 

a node has knowledge about faulty elements in the network, it 

can select the optimal path. Because of resource limitation, 

that is, time and space complexities, each node cannot identify 

all faulty elements. Instead, each node stores small amount of 

information, which is called limited global information. When 

the system is started or rebooted, at each node, the limited 

global information is collected by exchanging status 

information with its neighbor nodes and it is stored in the 

node. 

Fault-tolerant routing in the state-of-the-art hypercube- 

based hierarchical topologies makes use of fault-tolerant 

routing in a hypercube [13]. Therefore, in this paper, we 

assume that an n-dimensional hypercube Qn has faulty 

elements, and propose a link-fault-tolerant routing algorithm 

that finds a fault-free path for an arbitrary pair of nodes. In the 

algorithm, time and space complexities of information stored 

in each node must be the polynomial orders of n. In general, a 

link-fault-tolerant routing algorithm is more generic than a 

node-fault-tolerant routing algorithm since a faulty node can 

be treated by regarding all of the links incident to a faulty 

node as faulty. 

The rest of this paper is structured as follows. First, in 

Section II, we survey the related works. Next, we define the 

requisite terminology and notations for discussion in Section 

III. Then, in Section IV, we introduce the routing probability, 

its approximate value, and a simple calculation method for 

approximate values. In addition, in Section V, we propose a 

link-fault-tolerant routing algorithm based on routing 

probabilities. In Section VI, we evaluate performance of the 

algorithm by a computer experiment. Finally, we give 

conclusion and a future work in Section VII. 

 

II. RELATED WORKS 

In these two decades, research on node-fault-tolerant 

routing in hypercubes attracts much attention, and many 

research activities for this problem have been reported. Chiu 

and Wu proposed an efficient node-fault-tolerant routing 
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algorithm by recursively classifying each non-faulty node into 

a safe, ordinary unsafe, or strongly unsafe node based on the 

classification of its neighbor nodes [14]. To improve this 

algorithm, Chiu and Chen introduced routing capabilities, 

which are obtained by classifying safe nodes according to the 

Hamming distances to destination nodes [15]. Wu also 

proposed a similar node-fault-tolerant routing algorithm 

independently by introducing safety vectors [16]. In addition, 

Kaneko and Ito proposed a node-fault-tolerant routing 

algorithm based on classification of ordinary and strongly 

unsafe nodes with respect to Hamming distances and an 

efficient calculation method for classification [17]. 

All of the above approaches are based on information 

whether a message will be surely delivered to the destination 

node or not. On the other hand, Al-Sadi et al. and Duong and 

Kaneko proposed node-fault-tolerant routing algorithms 

based on the probability that a message will be delivered from 

the source node to the destination node with the path whose 

length is equal to the Hamming distance between the nodes 

[18]-[20]. Although these algorithms are based on distinct 

approaches, their results are very similar. In addition, Duong 

and Kaneko improved their algorithm by introducing directed 

probabilities, which at each node make use of the information 

of the neighbor node from which the message is sent to the 

node [21]. 

Unfortunately, all of the related works are intended for 

node-fault-tolerant routing in a hypercube. Hence, in this 

research, we enhance the node-fault-tolerant routing 

algorithm by Duong and Kaneko [20] so that it can tolerate 

link faults. Moreover, we carry out a computer experiment to 

evaluate its performance. 

 

III. PRELIMINARIES 

In this section, we define a hypercube and introduce 

necessary notations. For two nodes a = (a1, a2, ..., an) and b = 

(b1, b2, ..., bn), the Hamming distance between them H(a, b) is 

defined by the number of positions at which the 

corresponding bits ai and bi (1 ≤ i ≤ n) are different. 

A. Hypercubes Definition 

An n-dimensional hypercube Qn is an undirected graph, 

and it consists of 2
n
 nodes. Each node a is an n-bit sequence 

(a1, a2, ..., an) where ai ∈ {0, 1} (1 ≤ i ≤ n), and ai is called the 

bit of (i  1)th dimension. For two nodes a and b in Qn, there is 

a link between them (a, b) if and only if the Hamming distance 

between them H(a, b) is equal to 1. The neighbor node of a 

along a dimension j (0 ≤ j ≤ n  1) is a ⊕ 2
j
. 

Fig. 1 shows a 4-dimensional hypercube Q4. 

 

 
Fig. 1. A 4-dimensional Hypercube Q4. 

In general, a path in a graph is represented by an alternating 

sequence of nodes and links a1, (a1, a2), a2, ..., ak  1,(ak  1, ak), 

ak. For simplicity, we use the notation of a1→a2→...→ak in 

this paper. The length of a path, P, is the number of links 

included in the path, and it is denoted by L(P). If Qn is 

fault-free, the length of a shortest path between two nodes a 

and b is equal to H(a, b). 

B. Faulty Link Set Definition 

For a node a in Qn, the set of node N(a) defined by 

N(a)={n | n ∈ Qn, H(a, n) = 1} 

is called the set of neighbor nodes of a. 

In a hypercube Qn with a set of faulty links F, for a source 

node s and a destination node d, a fault-tolerant routing 

algorithm finds a fault-free path between s and d. To represent 

link faults, we introduce a function γ that is defined as follows 

for two adjacent nodes a and b: 
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We assume that each non-faulty node a in Qn can identify 

γ(a, n) in constant time for an arbitrary neighbor node n. 

C. Neighbor Nodes 

In Qn, for two nodes a and b, a set of preferred neighbor 

nodes of a for b is denoted by N0(a, b), and it is defined by 

N0(a, b) = {n | n ∈ N(a), H(n, b) = H(a, b)  1}. In addition, a 

set of spare neighbor nodes of a for b is denoted by N1(a, b), 

and it is defined by N1(a, b) = {n | n∈N(a), H(n, b)=H(a,b)+1}. 

Note that N(a) = N0(a, b) ⊎ N1(a, b) holds where the operator 

⊎ represents the direct sum of two sets. 

Fig. 2 illustrates the set of preferred neighbor nodes and the 

set of spare neighbor nodes. In Qn, the number of nodes with 

Hamming distance h from a node a is equal to nCh. Moreover, 

for two nodes a and b in Qn, if H(a, b) = h, |N0(a,b)|=h and 

|N1(a, b)| = n  h hold. For example, in a 4-dimensional 

hypercube Q4 shown in Fig. 1., the set of preferred neighbor 

nodes of a node 0010 for a node 1100 is N0(0010, 1100) = 

{0000, 0110, 1010}, and the set of spare neighbor nodes of 

0010 for 1100 is N1(0010, 1100)={0011}. The Hamming 

distance between these two nodes 0010 and 1100, H(0010, 

1100) = 3, and it is equal to |N0(0010,1100)|. 

 

 
Fig. 2. Neighbor nodes. 

 

IV. ROUTING PROBABILITIES 

In this section, we give the concept of routing probabilities. 

In an n-dimensional hypercube Qn with a set of faulty links F, 

let us consider that a node a has a message. Then, Ph(a), the 
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routing probability of a with respect to a Hamming distance h, 

represents the probability of existence of a fault-free path of 

length h between a and b for an arbitrary node b such that 

h=H(a, b). 

Since it is difficult to calculate the routing probabilities 

exactly, we use the following approximate values. 

A. Routing Probability with Hamming Distance 

For a node a in an n-dimensional hypercube Qn with a set of 

faulty links F, the approximate value of Ph(a), a routing 

probability of a with respect to a Hamming distance h, is 

defined as follows: 

1

( ),| | h
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Definition (1) for Ph(a) has the following meanings. First, 

an arbitrary node can deliver a message to itself with 

probability 1. Next, from N(a), the set of neighbor nodes of a 

node a, pick up a set of h nodes I, and calculate the maximum 

value of the approximate routing probabilities with respect to 

a Hamming distance (h  1) of the elements of I. Their 

expected value is the approximate routing probability of the 

node a with respect to the Hamming distance h where we 

regard the approximate routing probabilities of the neighbor 

nodes of a connected to a by faulty links zero by introducing 

function γ. 

In the rest of this paper, we call an approximate routing 

probability just a routing probability. To introduce a 

simplified calculation method, we prove the following 

theorem. 

B. Routing Probability Calculation 

In an n-dimensional hypercube Qn with a set of faulty links 

F, for a node a and a Hamming distance h (1 ≤ h ≤ n), 

  
1
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Holds where p1 ≤ p2 ≤ ... ≤ pn are obtained by sorting γ(a, a 

⨁ 20
) Ph  1(a ⨁ 20

), γ(a, a ⨁ 21
) Ph  1(a ⨁ 21

), ..., γ(a, a ⨁ 2n 

 1
) Ph  1(a ⨁ 2n  1

) in ascending order. 

(Proof) In (1), there is a definition of Ph(a), pk = maxn ∈ 

I{(a, n) Ph  1(n)} holds if and only if pk ∈ ∪n ∈ I{(a, n) Ph  

1(n)} where ∪n ∈ I{(a, n) Ph  1(n)} ⊂ {p1, p2, …, pk} holds. 

Therefore, the number of occurrences that pk becomes the 

maximum value is equal to k-1Ch-1. Thus, the theorem holds. 

From equation (2), we can obtain Procedure RP to 

calculate routing probabilities. Fig. 3 shows the procedure. 

Each node runs a program based on Procedure RP 

simultaneously, and calculates its routing probabilities. 

For example, given a 4-dimensional hypercube Q4 with a 

set of 4 faulty links (0000, 1000), (0100, 0110), (0110, 1110), 

and (1001, 1011) shown in Fig. 4, Table I shows the product 

of the values of the function γ and the routing probabilities 

that each node collects from neighbor nodes. From Table I, 

because nodes 0100 and 1110 are connected to a node 0110 

by faulty links, their routing probabilities are stored in the 

node 0110 as zero. Let us consider a case where a message is 

sent from the node 0010 to the node 1100. Then, the 

Hamming distance between the node 0010 and the node 1100 

is equal to 3, and the set of the preferred neighbor nodes is 

N0(0010, 1100)={0000, 0110, 1010}. 

 

procedure RP(a) 

 begin 

 P0(a) := 1; 

 send P0(a) to each x∈N(a); 

 for h := 1 to n do begin 

  for each x∈N(a) do 

   receive γ(a, x)Ph  1(x); 

  sort γ(a, x)Ph-1(x)  (x∈N(a)) 

   to obtain p1 ≤ p2 ≤ ... ≤ pn; 

  Ph(x) := 
1 1 1

n

kk k h n h
C p C

   ; 

  send Ph(a) to each x∈N(a) 

 end; 

 for each x∈N(a) do 

  receive γ(a, x)Pn(x); 

end 
Fig. 3. Procedure to calculate values of routing probabilities. 

 

For the node in the set of the preferred neighbor nodes, the 

products of the routing probabilities with respect to the 

Hamming distance 2 and the values of the function γ are 

γ(0010, 0000)P2(0000) = 0.96, γ(0010,0110)P2(0110) = 0.83, 

γ(0010, 1010)P2(1010) = 0.88. Hence, it is appropriate to 

send the message to the node 0000, which has the maximum 

value. On the other hand, if the message is sent to the node 

0110 without using the information, it would be impossible to 

send the message to the destination node 1100 with a shortest 

path because every shortest path to 1100 includes a faulty 

link. 

The following theorem is useful in link-fault-tolerant 

routing based on routing probabilities. 

C. Theorem of Routing Nodes Existence 

In an n-dimensional hypercube Qn with a set of faulty links 

F, for two arbitrary nodes s and d such that h = H(s, d), if there 

exists a fault-free path between s and d, there exists a node a 

such that Ph1(a) > 0 in N0(s, d), the set of the preferred 

neighbor nodes of s for d, or there exists a node b such that 

Ph+1(b) > 0 in N1(s, d), the set of the spare neighbor nodes of s 

for d. 

(Proof) Let c0→c1→...→cm be a fault-free path between s 

and d where c0 = s, cm = d, ci ≠ ci + 1 (0 ≤ i ≤ m  1), ci 1 ≠ ci + 

1 (1 ≤ i ≤ m  1), and h ≤ m. If c1 ∈ N0(s, d), consider a sub path 

c0→c1→...→ch. Then, from (1), P0(ch) > 0 holds. Moreover, 

for an arbitrary r (0 ≤ r ≤ h  1), if Ph  r  1(cr + 1) > 0, 

1
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holds. Hence, Ph  1(c1) > 0 holds. If c1 ∈ N1(s, d), consider a 

sub path c0→c1→...→ch + 2. Then, from similar discussion to 

the case of c1 ∈ N0(s, d), Ph + 1(c1) > 0 holds.  
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From this theorem, for two arbitrary nodes s and d such that 

h = H(s, d), if there is not a node a (∈ N0(s, d)) such that 

Ph1(a) > 0 nor a node b (∈ N1(s, d)) such that Ph+1(b) > 0, 

there is no fault-free path between s and d. 

TABLE I: AN EXAMPLE OF ROUTING PROBABILITIES IN Q4 

a N(a) 
h for γ(a, n).Ph(n) where n∈N(a) 

 

a N(a) 
h for γ(a, n).Ph(n) where n∈N(a) 

0 1 2 3 4 0 1 2 3 4 

0000 

0001 1.00 1.00 0.96 1.00 1.00 

1000 

1001 1.00 0.75 0.96 0.99 1.00 

0010 1.00 1.00 0.96 0.99 1.00 1010 1.00 1.00 0.88 1.00 0.99 

0100 1.00 0.75 0.96 0.99 1.00 1100 1.00 1.00 0.88 1.00 0.99 

1000 0.00 0.00 0.00 0.00 0.00 0000 0.00 0.00 0.00 0.00 0.00 

0001 

0000 0000 1.00 0.75 0.96 0.96 

1001 

1000 1.00 0.75 0.96 0.94 1.00 

0011 0011 1.00 1.00 1.00 1.00 1011 0.00 0.00 0.00 0.00 0.00 

0101 0101 1.00 1.00 1.00 1.00 1101 1.00 1.00 1.00 0.99 1.00 

1001 1001 1.00 0.75 0.96 0.99 0001 1.00 1.00 0.96 1.00 1.00 

0010 

0011 0011 1.00 1.00 1.00 1.00 

1010 

1011 1.00 0.75 1.00 0.99 1.00 

0000 0000 1.00 0.75 0.96 0.96 1000 1.00 0.75 0.96 0.94 1.00 

0110 0110 1.00 0.50 0.83 0.99 1110 1.00 0.75 1.00 0.94 1.00 

1010 1010 1.00 1.00 0.88 1.00 0010 1.00 1.00 0.96 0.99 1.00 

0011 

0010 0010 1.00 1.00 0.96 0.99 

1011 

1010 1.00 1.00 0.88 1.00 0.99 

0001 0001 1.00 1.00 0.96 1.00 1001 0.00 0.00 0.00 0.00 0.00 

0111 0111 1.00 1.00 1.00 1.00 1111 1.00 1.00 0.96 1.00 1.00 

1011 1011 1.00 0.75 1.00 0.99 0011 1.00 1.00 1.00 1.00 1.00 

0100 

0101 0101 1.00 1.00 1.00 1.00 

1100 

1101 1.00 1.00 1.00 0.99 1.00 

0110 0110 0.00 0.00 0.00 0.00 1110 1.00 0.75 1.00 0.94 1.00 

0000 0000 1.00 0.75 0.96 0.96 1000 1.00 0.75 0.96 0.94 1.00 

1100 1100 1.00 1.00 0.88 1.00 0100 1.00 0.75 0.96 0.99 1.00 

0101 

0100 0100 1.00 0.75 0.96 0.99 

1101 

1100 1.00 1.00 0.88 1.00 0.99 

0111 0111 1.00 1.00 1.00 1.00 1111 1.00 1.00 0.96 1.00 1.00 

0001 0001 1.00 1.00 0.96 1.00 1001 1.00 0.75 0.96 0.99 1.00 

1101 1101 1.00 1.00 1.00 0.99 0101 1.00 1.00 1.00 1.00 1.00 

0110 

0111 0111 1.00 1.00 1.00 1.00 

1110 

1111 1.00 1.00 0.96 1.00 1.00 

0100 0100 0.00 0.00 0.00 0.00 1100 1.00 1.00 0.88 1.00 0.99 

0010 0010 1.00 1.00 0.96 0.99 1010 1.00 1.00 0.88 1.00 0.99 

1110 1110 0.00 0.00 0.00 0.00 0110 0.00 0.00 0.00 0.00 0.00 

0111 

0110 0110 1.00 0.50 0.83 0.99 

1111 

1110 1.00 0.75 1.00 0.94 1.00 

0101 0101 1.00 1.00 1.00 1.00 1101 1.00 1.00 1.00 0.99 1.00 

0011 0011 1.00 1.00 1.00 1.00 1011 1.00 0.75 1.00 0.99 1.00 

1111 1111 1.00 1.00 0.96 1.00 0111 1.00 1.00 1.00 1.00 1.00 

 

 
Fig. 4. A 4-dimensional Hypercube Q4 with faulty links. 

 

V. FAULT-TOLERANT ROUTING ALGORITHM 

In this section, we show an algorithm to find a fault-free 

path in a hypercube with a set of faulty links. Routing is based 

on the routing probabilities of neighbor nodes stored in each 

node. 

In an n-dimensional hypercube with a set of faulty links, we 

assume that each node a stores the routing probabilities of all 

neighbor nodes n (∈ N(a)) with respect to all Hamming 

distances h (0 ≤ h ≤ n). Then, for a source node s and a 

destination node d, we propose a stochastic routing algorithm 

(SRA) that establishes a fault-free path between them. 

Algorithm SRA takes a current node c and a destination node 

d as its arguments. In the initial state, SRA is called with a 

source node and a destination node. The final result will be a 

faulty-free path between node s and node d. 

Algorithm SRA, first, calculates the Hamming distance 

h=H(c, d). If h = 0, the message is delivered to the current 

node c, and the algorithm terminates. Otherwise, that is, if h>0, 

algorithm SRA looks up the set of preferred neighbor nodes of 

the current node for the destination node to find the node n
*
0 

that has the maximum value of routing probabilities with 

respect to (H(c, d)  1). If the routing probability is positive, 

the message is sent to the node. 

 

procedure SRA(c, d) 

begin 

 h := H(c, d); 

 if h = 0 then begin 

  deliver the message to c; 

  exit 

 end; 

 n
*
0 := arg maxn ∈ N0(c, d){ (c, n)Ph (n)}; 

 if γ(c, n
*
0)Ph (n

*
0) > 0 then begin 

  SRA(n
*
0, d); 

  exit 

 end; 

 n
*
1 := arg maxn ∈ N1(c, d){ (c, n) Ph (n)}; 

 SRA(n
*
1, d) 

end 
Fig. 5. Stochastic routing algorithm SRA. 
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If all of the routing probabilities of preferred neighbor 

nodes are zero, the spare neighbor nodes are checked to find 

the node n
*
1 that has the maximum routing probability with 

respect to (H(c, d) + 1), and the message is sent to the node. 

Fig. 5 shows a pseudo code for the algorithm where the 

exception handling for the case of h = n is omitted. From 

theorem of existence, if a fault-free path between the current 

node and the destination node exists, Ph1(n
*
0)>0 or Ph+1(n

*
1)>0 

holds. Therefore, routing always fails with an infinite loop. 

 

VI. PERFORMANCE EVALUATION 

A. Time and Space Complexity 

As mentioned above, each node a runs a program based on 

Procedure RP shown in Fig. 5 simultaneously, and calculates 

routing probabilities in synchronization with neighbor nodes. 

In this sub section, we estimate the time and space 

complexities consumed at each node. We assume that it takes 

O(1) time to send a value of routing probability to one 

neighbor node. In addition, we assume that a value of routing 

probability can be stored in one machine word. 

The time complexity of Procedure RP at a node a in Qn is 

O(n
2
log n). 

(Proof) It takes O(1) time to calculate P0(a) in Procedure 

RP at a node a, and it takes O(n) time to send it to all neighbor 

nodes. To obtain Ph(a) for a Hamming distance h (1 ≤ h ≤ n), 

it is necessary to receive γ(a, n) Ph  1(n), sort them in 

ascending order, and calculate 
n
k  1 k-1Ch-1/nCh. These 

operations take O(n), O(n log n), and O(n) time.  

Therefore, to obtain Ph(a) for all h (1 ≤ h ≤ n), it takes 

O(n
2
log n) time. Finally, it takes O(n) time to receive γ(a, n) 

Pn(n) from all neighbor nodes n. In total, the time complexity 

of Procedure RP is O(n
2
 log n). 

In addition, the space complexity of Procedure RP at a 

node a in Qn is O(n
2
). 

(Proof) At each node a, it is necessary to store Ph(n) for all 

neighbor nodes n(∈N(a)) and all Hamming distances h 

(0≤h≤n). Therefore, the space complexity of Procedure RP is 

O(n
2
) in total. 

B. Computer Experiment 

procedure GRA(c, d) 
begin 

 h := H(c, d); 

 if h = 0 then begin 

  deliver the message to c; 
  exit 

 end; 

 if ∃n
*
0∈N0(c, d) and γ(c, n

*
0) = 1 then begin 

  GRA(n
*
0, d); 

  exit 

 end; 

 if ∃n
*
1∈N1(c, d) and γ(c, n

*
1) = 1 then begin 

  GRA(n
*
1, d); 

  exit 

 end; 

 error("Routing Failed") 

end 
Fig. 6. Greedy routing algorithm GRA. 

In this section, we give the detail of the result of a computer 

experiment we conducted to evaluate our algorithm. We 

carried out the computer experiment in Qn (n = 7, 8, 9, 10) 

with the ratios of faulty links α from 0.0 to 0.9. We measured 

the ratios of successful routings and the path lengths of our 

stochastic routing algorithm SRA with a simple greedy 

algorithm GRA shown in Fig. 6. 

Specifically, we first randomly selected faulty links in Qn 

with the ratio of α. Next, we selected a source node s and a 

destination node d randomly. Finally, after checking the 

connectivity of s and d, we applied the link-fault-tolerant 

routing algorithm. If s and d are not connected, that is, if there 

is no fault-free path between them, we restarted from the 

selection of faulty links. For each pair of n and α, we 

conducted at least 100,000 times of attempts. 

Fig. 7-Fig. 10 show the ratios of successful routings in Q7, 

Q8, Q9, and Q10, respectively, by our link-fault- tolerant 

routing algorithm SRA and the greedy routing algorithm GRA. 

In addition, Fig. 11-Fig. 14 show the average path lengths in 

Q7, Q8, Q9, and Q10, respectively. From Fig. 7-Fig. 10, we can 

observe that in Q7, Q8, Q9, and Q10, the ratios of successful 

routings of SRA are improved by at most 0.20 (α = 0.39), 0.20 

(α = 0.43), 0.21 (α = 0.43), and 0.21 (α = 0.41), respectively, 

compared to GRA. 

 

 
Fig. 7. Ratio of successful routings in Q7 with faulty ratio of links α. 

 

 
Fig. 8. Ratio of successful routings in Q8 with faulty ratio of Links α. 

 

Note that, in all the figures, if the ratios of faulty links 

exceed certain criteria around 0.8, trivial pairs of the source 

and destination nodes are frequently adopted and the ratios of 

successful routings increase rapidly. Also, from Fig. 11-Fig. 

14, we can observe that in Q7, Q8, Q9, and Q10, the average 

path lengths of SRA are increased by at most 0.786 (α = 0.70), 
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0.946 (α = 0.76), 1.14 (α = 0.77), and 1.32 (α = 0.80), 

respectively, compared to GRA. 

 

 
Fig. 9. Ratio of successful routings in Q9 with faulty ratio of links α. 

 

 
Fig. 10. Ratio of successful routings in Q10 with faulty ratio of links α. 

 

 
Fig. 11. Average path lengths for successful routing in Q7 with faulty ratio of 

links α. 

 
Fig. 12. Average path lengths for successful routing in Q8 with faulty ratio of 

links α. 

As mentioned above, if the ratios of faulty links exceed 

certain criteria around 0.8, trivial pairs of the source and 

destination nodes are frequently adopted and the average path 

lengths also decrease rapidly. 

Consequently, we can conclude that our stochastic link- 

fault-tolerant routing algorithm SRA attained high ratios of 

successful routings with a small cost. 

 

 
Fig. 13. Average path lengths for successful routing in Q9 with faulty ratio of 

links α. 

 
Fig. 14. Average path lengths for successful routing in Q10 with faulty ratio 

of links α. 

 

VII. CONCLUSION 

We have proposed a stochastic link-fault-tolerant routing 

algorithm that finds a fault-free path in a hypercube with a set 

of faulty links. The algorithm collects information called 

routing probabilities from neighbor nodes to make use of 

them for routing. We have conducted a computer experiment 

in which we compared our algorithm with a simple greedy 

algorithm. As a result, we have verified the effectiveness of 

our algorithm.  

Now, we are interested in applying our approach to variants 

of a hypercube or hierarchical interconnection networks 

based on a hypercube. 
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