
  

 

Abstract—Virtual machine(VM) live migration is a core 

feature of virtualization which enables dynamic resource 

requirements to be matched with available physical resources, 

leading to better performance and reduced energy consumption. 

A group of pages have been mapped writable in response to the 

migration algorithm, however there lacks a algorithm to choose 

the matching algorithm dynamically based on the upper 

running features. This paper propose FBA algorithm which can 

first divide all the migrations into two types “sluggish dirty 

page” and “swifting dirty page” by monitoring the value of 

skip_to, moreover this paper present corresponding corrective 

strategies for migrating the two types of application. Finally via 

simulation and experiments with real system prototypes, the 

results show that when it belongs to “swifting dirty page”, 

compared with existing pre-copy algorithm FBA algorithm 

improve the bandwidth utilization and reduce the total 

migration time; while for the “sluggish dirty page”, the 

pre-copy algorithm will fail and FBA algorithm makes a 

beneficial supplement. 

 

Index Terms—VM live migration, FBA algorithm, swifting 

dirty page, sluggish dirty page.  

 

I. INTRODUCTION 

Virtualization technology has become commonplace in 

modern data centers and cluster systems due to its capability 

of isolation, consolidation and migration workload [1]. In 

particular, the capability of virtual machine(VM) live 

migration which can transfer an active VM from one 

physical host to another without perceivable interruptions 

brings multiple benefits such as load balancing, improved 

manageability and fault tolerance [2]. 

However, the resource consumption and latency of VM 

live migration reduce these benefits to much less than their 

potential. For this reason, the optimization of VM live 

migration is highly desirable [3]. 

Existing live migration algorithm like pre-copy algorithm 

[4], its overriding goal is to keep downtime small by 

minimizing the amount of VM state that needs to be 

transferred during downtime. However downtime and 

application performance are likely to be affected in different 

ways for different applications due to varying memory 

usages and access patterns, so this algorithm not applicable 

to all scenarios and may fail or cause lower performance in 

some special scenarios [5]. 

 
Manuscript received December 26, 2015; revised May 27, 2016. This 

work was supported in part by National Key Basic Research Program of 

China (973 Program) (2011CB302506). And National Natural Science 

Foundation under grant 61170274. 

The authors are with State Key Laboratory of Networking & Switching 

Technology, Beijing University of Posts and Telecommunications, Beijing, 

China (e-mail: shuangk@bupt.edu.cn, 15650713360@163.com). 

Aiming at addressing this need, this paper propose FBA 

(Flexible Bandwidth Allocation) algorithm. This algorithm 

first put forward Application Recognition Strategy which can 

divide all the migrations into two types “sluggish dirty page” 

and “swifting dirty page” by monitoring the value of 

to_skip , then for the “swifting dirty page”, pre-copy 

algorithm take effect, but the low bandwidth utilization and 

redundant data transmission will reduce the performance of 

migration. So this paper present Bandwidth Adaptive 

Allocation strategy and Page Judgment strategy which can 

optimize the pre-copy algorithm by improving the bandwidth 

utilization and delay the transmission of the dirty pages 

which turn dirty frequently. For the “sluggish dirty page”, 

pre-copy algorithm will fail, while this paper come up with 

corresponding strategy for this type of migrating, and make a 

beneficial supplement for the pre-copy algorithm. 

Finally, one prototype system is implemented based on 

Xen virtualization platform according to FBA algorithm [6]. 

The algorithm has been verified through experiments on 

various types of load, and results show that compared with 

pre-copy algorithm, the FBA can matching different 

strategies according to different upper applications, 

moreover the corresponding strategies can reduce total 

amount of data, iterative rounds and total migration time 

during the transmission effectively. 

 

II. RELATED WORK 

The algorithm for VM live migration can be divided into 

two types pre-copy and copy [7]. The copy can ensure the 

duplication of each memory page at most once which can 

avoid occupation of the bandwidth by the redundant data 

fundamentally, but when the VM runs on the destination host 

and access to the page which is not synchronized, this 

algorithm will result in lower performance and longer delay 

[8]. So the pre-copy algorithm is a predominantly used 

approach by most existing virtualization platform [9]. 

The optimization of pre-copy algorithm attracts significant 

attention from the research community. Sohan [10] propose 

a Balloon drive mechanism during the preparation phase, it 

can reduce the idle memory to shorten the time of the first 

round of iteration, but it will cause the waste of some 

bandwidth. Gao [11] proposed the page slicing algorithm to 

overcome the repeatedly copy of the same dirty page during 

the iteration, but it will cause large resources. Jin [5] 

proposed data compression algorithm to send every round of 

pages compressed, but it will cause more time due to the 

compression and decompression process additional. Sun [12] 

using Markov prediction model to optimize the selection of 

working set in pre-copy mechanism, in order to reduce the 

Flexible Bandwidth Allocation Algorithm for Virtual 

Machine Live Migration 

Shuang Kai and Chen Yan 

Journal of Advances in Computer Networks, Vol. 4, No. 2, June 2016

92doi: 10.18178/jacn.2016.4.2.210



  

transmission of redundant data, but this method limited to 

the high rate of dirty pages only. Riteau [13] proposed a 

mechanism called Shrinker, through examination of memory 

pages to avoid repeatedly sending copies of the same content, 

thus reducing the amount of data and time during the 

migration, but this method can not change bandwidth 

allocation dynamically according to business characteristics. 

Based on the work above, this paper propose FBA 

(Flexibility Bandwidth allocation) algorithm which can 

divide the migrations into two types according to a key value 

to_skip . One type called “sluggish dirty page”, the other 

called “swifting dirty pages”. For the two different types this 

paper also give different strategies. Finally, the paper builds 

the prototype system based on Xen source code, and the 

results show that compared with existing pre-copy algorithm, 

FBA algorithm have better performance and make a useful 

supplement in some scenarios where the pre-copy algorithm 

may fail. 

 

III. FBA ALGORITHM DESIGN 

FBA(Flexible Bandwidth allocation) algorithm focus on 

the optimization of VM live migration, this paper first 

propose Application Recognition strategy which can divide 

all the migrations into two types “swifting dirty page” and 

“sluggish dirty page”. Then this paper comes up with 

corresponding strategies for each of the types. 

A. Application Recognition Strategy  

skip_to  collects the identification of dirty pages from 

the end of the last iteration to the start of a new iteration, 

which is related to the upper application type. By observing 

skip_to  bitmap marked 1 (refers to the page turn dirty), it 

can divide the live migration of VM into two types. 

The first type called “swifting dirty page”, the decline 

trend of bitmap marked 1 is stable and obvious so the 

number of second round iteration is less than the first round. 

The second type called “sluggish dirty page”, the bitmap 

marked 1 keep a very slow downward trend as whole, in 

some scenarios it will produce even larger fluctuations. So 

the number of second round is more than the first round. 

Therefore through comparison between the number of 

skip_to  bitmap marked 1 in the first and second round, 

this paper can judge the type of upper application. 

Steps are as follows: 

1) Collecting the skip_to  bitmap marked 1 at two key 

moments:  

 Before the first round of copy called 

iter_first_skip ; 

 The beginning of the second round called 

iter_ondsec_skip ; 

2) Analyze the changing trend of skip_to  bitmap 

marked 1. 

The critical formula is: 

1 N

M
iter_first_skipiter_ondsec_skip 

 (1) 

If  

1 N

M
iter_first_skipiter_ondsec_skip  , 

the migration is the first type called “swifting dirty pages”. 

If  

1 N

M
iter_first_skipiter_ondsec_skip  , 

the migration is the second type called “sluggish dirty page”. 

The following two are the corresponding strategies for 

each of the types. 

B. Strategy for “Swifting Dirty Page” 

“Swifting dirty page”, as the analysis above, the rate of 

dirty pages is not very high and produce a stable decline 

gradually, in this situation the existing pre-copy algorithm 

take effect. 

There are two phase in the pre-copy algorithm, “Push” 

phase and “Stop-and-copy” phase. The migration process is: 

the VM transmit the memory pages from the source host to 

the destination host in “Push” phase until the following four 

rules are all satisfied then enter into “Stop-and-copy” phase 

[5]. 

1) Non-proliferation: the dirty pages transmitted this round 

( iter_this_sent ) exceeds the last round 

( iter_last_sent ) and the transmission rate exceeds 

the maximum value of RATE_MBIT_MAX . 

2) Limited cycle: no more than the maximum number of 

iterations ITER_MAX . 

3) Focus: the dirty pages transmitted of current round less 

than 
maxP . 

4) Non redundant: the total transmission pages is no more 

than 3 times of the amount of memory for the client 

operating system [14]. 

When entering into “Stop-and-copy” phase, the VM stop 

running and transmit all the pages left behind to the 

destination host at one time. Later start the VM in the new 

VM and release the resources in the old VM after running 

normally. This is the whole process of the migration [5]. 

The pre-copy algorithm is: every iteration is adjustment 

granularity, the bandwidth of a new iteration is the previous 

dirty rate plus 50Mbit/sec. The dirty rate refers to the total 

dirty pages produced in the transmission process divided by 

the duration of this iteration copy. When reaching the default 

upper limit, the bandwidth is no longer growth. Therefore, in 

the “Stop-and-copy” phase the bandwidth is maximum while 

the first iteration is minimum. The core formula is [10]: 

5011   iii TDirtyPagesB
  

       (2) 

The existing problems are as follows: 

(1) The bandwidth is monotonically increasing, it can not 

change according to the non-monotonic variation of dirty 

rate, so the bandwidth utilization is low. 

(2) This algorithm can not distinguish the pages which 

turn dirty frequently, so it transmit this pages many times 

resulting in a larger amount of data transmission. 

(3) The amount of data transmitted in the first iteration 

Journal of Advances in Computer Networks, Vol. 4, No. 2, June 2016

93



  

accounts for a large proportion, but the bandwidth is 

minimum. While in the “Stop-and-copy” phase the amount 

of data is small but the bandwidth is maximum. Therefore, 

the allocation of the bandwidth is not reasonable, result in 

longer transmission time. 

In this section, this paper proposes two strategies to 

address these problems. 

1) Bandwidth adaptive allocation 

The constant values used in the VM live migration include: 

M , The memory size allocated by the client operating 

system; 
maxT , Maximum number of migration times;  , 

when the number of dirty pages of one round below  , the 

phase of “Push” will stop; 
maxI , Maximum number of 

iteration times. 

The variables values used in the VM live migration 

include: 
idirtyPages , No i the dirty pages produced in the 

No i iteration; 
iB , the bandwidth of migration in the No i 

iteration; it , the time cost by the No i iteration; 
iP , the rate 

of dirty pages in the No i iteration, reference formula: 

iii tdirtyPagesP 
         

    (3) 

Thus, the time of the No i iteration is: 

i

ii
iii

B

tp
BdirtyPagest 1

1





      (4) 

Because the number of memory in the first round is almost 

M, so: 

min

11
B

M
BMt 

   

         (5) 

After successive approximation, the expression of ti can be 

obtained: 







1

1

i

k
k

k

i

i
B

p

B

M
t

           

(6) 

The whole process is made up of “Push” phase and 

“Stop-and-copy” phase, so the time is: 

phasestopphasepushcopypre TTT  
        

(7) 





 







 
n

i i

k k

i

k kn

i iphasepush

B

p
MtT

1

1

1

1

1

     

(8) 

maxB

dirtyPages
BdirtyPagesT n

nnphasestop 

  

(9) 

From the formula (6) and (8), the ratio of the dirty page 

rate and the bandwidth is the key factor that affects the 

performance of the “Push” phase. For the “Stop-and-copy” 

phase, the downtime is proportional to the number of dirty 

pages in the last iteration. While the dirty pages produced 

this iteration affected by the ratio also. So 
B

P  is the key 

factor that affect the performance of the migration. 

Due to the Non-proliferation and Focus rule, the number 

of dirty pages should be descended to   before NO 
maxI  

round at latest. So the critical formula is: 

  11 maxmax II tP
           

(10) 

Substitute the formula (4) to
maxIt , this inequality turn to: 






1

1

maxI

k
k

k

B

p
M

          

(11) 

Therefore controlling Bi can get the best fit relationship 

between
B

P : 

1 N

MB
P 

            
(12) 

According to the formula (12), adjust the bandwidth for 

each round of the iteration, make 
B

P  less than 1N

M


, 

So the bandwidth resource cost by per-round is dynamically 

changed according to the change of the dirty rate . 

101   NN

Mt

dirtyPages

M
pB 




   (13) 

At initial phase, the bandwidth of the first round can be 

calculated according to the formula (13), avoid the data 

transmitted of the first round is far greater than that of the 

following, but the bandwidth allocated is less than the 

successive rounds. This strategy reduce the difference 

between the amount of data in the front and rear rounds, as 

well as the total migration time. 

2) Page judgment 

The “pre-copy” algorithms is unable to distinguish the 

pages which turn dirty frequently, which result in the 

transmission of redundant data and longer migration time. 

While this paper put forwards page judging, the core idea is 

distinguish those pages and delay its transmission in order to 

reduce the total amount of data and the time of migration. 

The principle of pages judging such as shown in Fig. 1, 

according to three bitmap skip_to  (the dirty pages 

produced in the current iteration which can be skip over 

without transmission), send_to  (the dirty pages produced 

last iteration), and fix_to  (the pages which will not be 

transmitted until the “Stop-and-copy” phase) to decide which 

page should be transmitted in this round. 

 At beginning, set send_to  to 1 that is to say that all 

the pages should be transmitted and clear the bitmap of the 

shadow page .When it is time for the first round of iteration, 

firstly collect the new dirty page bitmap to skip_to  and 

then judging the pages, filtering the pages which turn dirty in 

a short time. Because this pages update frequently so it may 

become dirty in the next round of iteration ,and it may also 

turn dirty in this short period and need to be transmitted next 

round of iteration. 

Journal of Advances in Computer Networks, Vol. 4, No. 2, June 2016

94



  

0 1 1 1 0 1 1 0 0 ..

0 0 0 0 0 0 0 0 0 ..

1 1 1 1 1 1 1 1 1
..
.

 Clear dirty page 
bitmap

Shadow page bitmap

Bitmap of to_send

Initial state

0 0 0 0 0 0 0 0 0 ..

1 1 1 1 1 1 1 1 1 ..Bitmap of to_skip

Dirty page bitmap update

Copy the dirty page bitmap

Start of the 
first iteration

Sent_this_iter Skip_this_iter

Shadow page bitmap

 
Fig. 1. Page judgment. 

 

From the second round, the steps are as follows: 

Obtain the value of send_to  at the end of No 1i  

round of iteration, regard it as the complete works of the 

target pages which will be transmitted, namely the 

send_to  bitmap marked 1. After that, clear the bitmap of 

the shadow page. 

(1) Obtain the value of skip_to  at the beginning of the 

No i  round, identifying the pages become dirty once again 

from the end of the No 1i  round to the start of No i  

round. Because this pages may turn dirty frequently so can 

not be transmitted this round of iteration. 

(2) For the pages marked 1 in send_to  bitmap, if it is 

marked 1 also in skip_to  bitmap, that is to say it turns 

dirty in a short time, so it will not be transmitted in the 

current round. Then record it in iter_this_skip . If 

skip_to  is 0, then transmit it this round and record it in 

iter_this_sent . 

From the analysis above, these two strategies can allocate 

the bandwidth more reasonable and avoid redundant data 

transmission in order to reduce the total migration time and 

the amount of data transmission. To some extend it solve the 

problems exist in the pre-copy algorithm. 

C. Strategy for “Sluggish Dirty Page” 

Most migrations belong to the “swifting dirty page”, but 

when the migration belongs to “sluggish dirty page” the rate 

of dirty page may be very high, even if the bandwidth is 

maximum, it is unable to catch up with the speed of dirty 

pages’ changing so the pre-copy algorithm will fail. 

Therefore in this scenario this paper come up with another 

strategy to solve this problem, there are two methods can be 

used as follows: 

(1) Adjust bandwidth, accelerate the end of “Push” phase 

In the second round of iteration, adjust the bandwidth 

directly to maximum in order to minimize the dirty pages 

produced, then enter the “Stop-and-copy” phase and transmit 

the rest dirty pages in memory. 

(2) Adjust weight of CPU, reduce the read/write speed of 

memory. 

Jin [5] proposed that through adjusting the allocation 

strategy of virtual CPU appropriately, it can reduce the 

memory read/write speed of the VM. 

Virtual CPU scheduling refers to the determination made 

by the virtual monitor that which client operating system can 

use physical CPU. Virtual CPU scheduling requires making 

full use of the CPU resources and allocate CPU accurately at 

the same time. 

By establishing a model, this paper puts forward: 

          
(14) 

where 0w  is the weight of the VM, e  is the percentage of 

the time of virtual CPU assigned to the VM, for the sake of 

avoiding affecting the upper application, this paper pointed 

out that the e  cannot be less than 20%. 
nw,...,w1

 are the 

weights of the other virtual machines. 

According to the formula above, adapting the weight of 

virtual CPUs can reduce the read/write speed of the VM to 

some extent. Then the pre-copy mechanism take effect, 

combine the Bandwidth Adaptive Allocation and Page 

Judgment strategies with pre-copy algorithm, better results 

can be achieved. 

Therefore, this strategy can be used when the pre-copy 

algorithm fails in some special scenarios. So it make a 

beneficial supplement. 

 

IV. SYSTEM IMPLEMENTATION 

A. Architecture of Prototype System 

The monitor layer of Xen realizes the algorithm of the 

migration. This paper adds Application Recognition module, 

Bandwidth Adaptive Allocation module and Page Judgment 

module to distinguish two types of migration and give 

strategies for different type of migration. The data 

acquisition and analysis module are added to support the 

strategy. Shown as Fig. 2 [15]. 

 

Control

Panel

Device

Manager
App

Native

Driver

Back-end

Driver

XenLinux XenLinux Windows

Domain 0 VM 1 VM 2

App

Front-end

Driver

App

Front-end

Driver

Hypervisor
Hypercall/Even

t

Dynamic 

migration 

module

Data 

collection
Data 

analysis

Data 

layer

Adaptive 

bandwidth 

algorithm of 

Xen

Bandwidth flexibility 

allocation principle

page 

judgment 

principles

Algorithm layer

Application feature recognition module

Virtualization 

hardware layer
Virtual CPU Virtual I/O Virtual MMU

Trouble 

recovery

Configuratio

n 

management

Log 

management

Managem

ent plane

Hardware with Intel VT
 

Fig. 2. Architecture of prototype system. 

B. Testing Environment  

Eight Dell PowerEdge r410 server are deployed in the test 

platform, four of which work as test hosts, one as a shared 

storage server, one as a monitor server and the rest two work 

as SpecWeb installation server. The configuration is shown 

in Table I. 

Test environment is shown in Fig. 3, two LAN switches 

connect with an convergence layer switch, constitute two 

independent LAN sub-net, one of the switch connecting 

several experimental virtual servers, constitute a small 

experimental data center, another switch connect testing 

service hosts in Benchmark system. 

Journal of Advances in Computer Networks, Vol. 4, No. 2, June 2016

95



  

TABLE I: TESTING ENVIRONMENT 

Type Equipment type 

Hardware 

 Version Memory Network 

DELL R410 2G*4 
Gigabit 

interface *4 

Software 

Host OS Version 
Virtualization 

Platform 

Cent OS 2.6.18 Xen-4.1.2 
Prototype 

System 

Two layer 

switch 

Version Bandwidth Interface 

WS-C2960S-24TS-S Gigabit 24 

 

convergence layer 

switch

 second layer 

switch
 second layer 

switchSniffer 

Tester

Monitor data / information 

flow

NF

S

File data 

stream

Prototype system 

1

Prototype system 

2

Prototype system 

3

Prototype system 

4

migration data 

stream

migration data 

stream

SpaceWeb 

Client Management server of 

SpaceWeb

Web data 

stream Signaling 

flow

 
Fig. 3. Test environment. 

 

C. Performance Statistical Tools  

The monitoring of the testing platform includes two 

aspects, on the one hand it needs to monitor the occupation 

of the underlying resources during the migration, such as 

computing resources, memory and disk storage resources, 

and bandwidth consumption etc.; on the other hand 

monitoring the use of LAN network resources, and the 

resources allocation of the exchange equipment and the 

distribution of traffic to analyze the affects made by the VM 

migration to the network [16].  

Here select two standard analysis tools, one is a 

component of the Linux performance monitoring tool, the 

other is a sniffer flow detection software, shown as Tables II, 

III. 

 
TABLE II: PERFORMANCE MONITORING TOOL OF LINUX SYSTEM 

Tool Function Performance index 

mpsts 

Multi processor 

state statistics 

mpstat [-P {|ALL}] 

[internal [count]]: 

 

 occupation time of 

user state  

 Hard disk IO waiting 

time 

 Hard interrupt time 

 Soft interrupt time 

 Idle time of CPU 

 Number of interrupt 

per second received 

by CPU 

vmsts 

Status of physical 

memory and virtual 

memory  

Details of memory,swap 

iosts 
Use of external 

storage devices  

 TPS and Throughput 

information 

 Equipment usage, IO 

response time 

TABLE III: PERFORMANCE MONITORING TOOL OF LINUX SYSTEM 

Function Description Index 

Dashboard 

Ratio of maximum 

bandwidth for transmission 
Network utilization 

 Transmission speed 
Data packets per 

second 

Error rate  Per second error 

Protocol 

Distribution 

The occupancy percentage of 

each protocol packet  

The use of network 

protocols 

Host Table 
The number of incoming and 

outgoing packets of the host 

Traffic details of 

each host 

Matrix 

The information of each host  

and the data size transmitted 

between two addresses 

Network connection 

 

V. PERFORMANCE EVALUATION 

A. Evaluation of “Swifting Dirty Page” 

When the upper application belongs to “swifting dirty 

page”, FBA algorithm can identify it and apply pre-copy 

mechanism in the first two rounds.  

1) Test Plan 

Create VM on the virtualization platform, the number of 

vCPU is 2 ~4, Run the CPU intensive application on the VM. 

Shown as Table IV. 

 
TABLE IV: TEST PLAN FOR “SWIFTING DIRTY PAGE” 

No 
VM Configuration 

Migration 

algorithm  

System Image vCPU Memory / 

01 
Linux 

CentOS 
10G 2 1024M FBA/Pre-copy 

02 
Linux 

CentOS 
10G 

2,2 threads run 

simultaneously, 

CPU occupation 

reached 200% 

1024M FBA/Pre-copy 

03 
Linux 

CentOS 
10G 

4,4 threads run 

simultaneously, 

CPU occupation 

reached 400% 

1024M FBA/Pre-copy 

 

2) Test result 

a) The relationship between bandwidth and the rate of 

dirty pages 

For the pre-copy algorithm the bandwidth is 

monotonically increasing refers to the formula (1), and it can 

not change according to the non-monotonic variation of the 

rate of dirty pages. So the bandwidth utilization is low. 

While for the FBA algorithm, the Bandwidth Adaptive 

Allocation strategy put by this paper solve this problem 

appropriately. The bandwidth is calculated by applying the 

formula (13) in FBA realize the changing of bandwidth 

together with the dirty pages, so the utilization of the 

bandwidth can be increased . 

Fig. 4 and Fig. 5 are the relationship between the 

bandwidth and the rate of dirty pages of FBA algorithm and 

pre-copy algorithm. In the figure the abscissa represents the 

number of iterations, the vertical coordinates represents the 

number of pages. As shown in Fig. 4, pre-copy algorithm, 

the rate of dirty page of the fifth round is 50, the sixth round 

is 185, while the bandwidth is 100 unchanged; the 9th round 

Journal of Advances in Computer Networks, Vol. 4, No. 2, June 2016

96



  

is 402, the 10th round is 278, the bandwidth is 207,459 and 

it did not decrease with the reduce of the dirty pages rate, but 

increased, reducing the bandwidth utilization. As shown in 

Fig. 5, FBA algorithm, the rate of dirty page of the eighth 

round is 404, the 9th round is 289, the 10th round is 911 and 

the bandwidth allocation is 500,374,500, obviously the 

bandwidth can change together with the rate of dirty pages, 

reducing the waste of bandwidth resources and improve the 

bandwidth utilization. 

0

500

1000

1500

1 3 5 7 9 11

Bandwidth

Rate of dirty

page

 
Fig. 4. Relationship between bandwidth and dirty page rate of pre-copy. 

0

200

400

600

800

1000

1 3 5 7 9

Bandwidth

Rate of dirty page

 
Fig. 5. Relationship between bandwidth and dirty page rate of FBA. 

 

b) The proportion of pages in each transmission 

1

2

3

4

5

6

7

8

9

10
 

Fig. 6. The proportion of pages for each transmission of Pre-copy. 

 

1

2

3

4

5

6

7

8

9

10

11
 

Fig. 7. The proportion of pages for each transmission of FBA. 

 

The pre-copy algorithm as shown in Fig. 6, the first round 

of iteration accounted for 98%. However, the first round uses 

the minimum bandwidth, in subsequent iterations increase 

the bandwidth gradually to transmit fewer pages, finally the 

“Stop-and-copy” stage uses a maximum bandwidth to 

transmit a small number of pages, so the total migration time 

is long. 

In this paper, the initial bandwidth of the first round is 

obtained by the formula (13) in FBA algorithm, which 

reduce the first round proportion only accounts for 67%. As 

shown in Fig, 7, compared to the pre-copy, FBA can reduce 

the total migration time. 

c) Total transmission data 

The pre-copy algorithm can not identify the dirty pages 

changed frequently, caused transmission of the redundant 

data. While the strategy Page Judgment in the FBA 

algorithm can delay the transmission of these pages, reduce 

the amount of data ,and solve this problem appropriate. 

Fig. 8 shows the total transmission data of pre-copy 

algorithm and FBA algorithm. The abscissa represent the 

round of iteration, the vertical coordinates represent the 

number of pages. For the pre-copy algorithm the total 

number of pages is 480848 while the FBA algorithm is 

340097, thus the FBA algorithm can effectively reduce the 

redundancy of data transmission, reducing the total data 

transmission. 

0

50000

100000

150000

200000

1 2 3 4

Transmission data of "pre-copy" algorithm

Transmission data of FBA algorithm

 
Fig. 8. Total transmission data. 

 

d) The migration time 

As shown in Table V, the migration time of the two 

algorithm is tens of seconds of magnitude, FBA is about 15 

seconds less than pre-cop; downtime is in 10 milliseconds 

magnitude, FBA is 3 milliseconds less than pre-copy; the 

iterative rounds of FBA is about 1 or 2 rounds less than 

pre-copy. 

 
TABLE V: THE MIGRATION TIME OF “SWIFTING DIRTY PAGE” 

Migration 

Algorithm 
/ 

migration 

time 

Iteration 

time 
Downtime Rounds 

Pre-copy 

01 83001ms 82989ms 11ms 7 

02 82259ms 82099ms 11ms 7 

03 82393ms 82383ms 7ms 11 

FBA 

01 67765ms 67756ms 10ms 6 

02 67583ms 67575ms 8ms 5 

03 65390ms 65379ms 3ms 10 

 

B. Evaluation of “sluggish dirty page” 

When the upper application belongs to the “sluggish dirty 

pages” type, the pre-copy mechanism failed, the FBA 

algorithm can identify it and apply the strategy put forward 

before. 

Journal of Advances in Computer Networks, Vol. 4, No. 2, June 2016

97



  

1) Test Plan 

Create VM on the virtualization platform, the memory is 

1024MB, equal to K41025 pages. Run the memory 

intensive applications on the VM. Shown as Table VI. 
 

TABLE VI: TEST PLAN FOR “SLUGGISH DIRTY PAGE” 

No 
VM Configuration 

Migration 

aglorithm  

System Image vCPU Memory / 

01 
Linux 

CentOS 
10G 4 

1024MB, 100MB 

read/write 

circularly for 100 

times 

FBA/Pre-

copy 

02 
Linux 

CentOS 
10G 4 

1024MB, 500MB 

read/write 

circularly for 100 

times 

FBA/Pre-

copy 

 

2) Test Result  

a) The relationship between bandwidth and 

transmission pages for each round 

The pre-copy algorithm will fail in this scenario like Fig. 8 

shows that the bandwidth is not adjusted to the peak until the 

third round. While the FBA algorithm as shown in Fig. 9 the 

bandwidth is adjusted to the peak immediately, then the 

“Push” phase stop. Compared with the pre-copy algorithm, 

transmission pages of FBA algorithm in the second round 

and third round are reduced by 20%-35%, so the FBA 

algorithm make a useful supplement. 

173830

124304

155953

26761

109

500500

100

0

100

200

300

400

500

600

1 2 3 4

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Transmission
pages

Bandwidth

 
Fig. 8. The relationship between bandwidth and transmission pages of 

Pre-copy. 

 

173830

64962

85953

15352

500 500500

199

0

100

200

300

400

500

600

1 2 3 4

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Transmission pages

Bandwidth

 
Fig. 9. The relationship between bandwidth and transmission pages of 

FBA. 

 

b) The migration time 

As Table VII shows, for memory intensive applications, 

the total migration time of the two algorithms is tens of 

seconds of magnitude, FBA algorithm is about 15 second 

less than pre-copy algorithm;the downtime is in the order of 

tens of milliseconds, FBA algorithm is about 6 ms less than 

pre-copy algorithm; FBA algorithm is about 1 or 2 rounds 

less than pre-copy algorithm. 

 
TABLE VII: THE MIGRATION TIME OF “SLUGGISH DIRTY PAGE” 

Migration 

Algorithm 
/ 

migration 

time 

Iteration 

time 
Downtime Rounds 

Pre-copy 
01 75353ms 75302ms 51ms 5 

02 48232ms 47019ms 74ms 4 

FBA 
01 60222ms 60177ms 44ms 3 

02 31731ms 31641ms 70ms 3 

 

VI. CONCLUSION 

Aiming at the existing VM live migration algorithms 

being unable to select different algorithms according to 

different features of upper applications. This paper propose 

FBA algorithm which can divide all the live migrations into 

two types called “swifting dirty page” and “sluggish dirty 

page” by monitoring the value of to_skip . When it 

belongs to “swifting dirty page”, this paper come up with 

two optimal strategies based on the pre-copy mechanism, the 

first is “Bandwidth Adaptive Allocation” which avoid the 

monotonous change of the bandwidth compared with the 

pre-copy algorithm. The second is Page Judegment which 

avoid the transmission of redundant data compared with the 

pre-copy algorithm. While when it belongs to“sluggish dirty 

page”, the pre-copy mechanism will fail, and the strategy 

come up by this paper can solve this problem appropriately. 

Finally, the prototype system is implemented in the open 

source code of the Xen virtualization platform, and the FBA 

algorithm is verified by various types of scenarios. The 

results show that compared with pre-copy algorithm, the 

FBA algorithm not only avoid the failure in some cases that 

do not suit to the pre-copy mechanism, but also reduce the 

amount of transmitted data by 20% ~ 35%, shorten the VM 

rounds 1 to 2, reduce total migration time by more than 15s 

so it optimize the migration performance. 

Future work will focus on the optimization of migration in 

more complex network environment. In this paper, the 

realization of the prototype may have other problems 

possibly not found already, in the future will improved 

algorithm and optimize the migration performance 

constantly. 

REFERENCES 

[1] C. Jo, E. Gustafsson, J. Son et al., “Efficient live migration of virtual 

machines using shared storage,” ACM Sigplan Notices, vol. 48, no. 7, 

pp. 41-50, 2013. 

[2] H. Liu, H. Jin et al., “Live virtual machine migration via 

asynchronous replication and state synchronization,” IEEE 

Transactions on Parallel & Distributed Systems, vol. 22, no. 12, pp. 

1986-1999, 2011. 

[3] C. Clark, K. Fraser et al., “Live migration of virtual machines,” in 

Proc. Acm/usenix Symposium on Networked Systems Design & 

Implementation, 2005, vol. 2, pp. 273-286. 

[4] A. Strunk and W. Dargie, “Does live migration of virtual machines 

cost energy?” in Proc. IEEE International Conference on Advanced 

Information Networking and Applications, 2013, pp. 514-521. 

Adjust the bandwidth 

 to peak quickly 

Journal of Advances in Computer Networks, Vol. 4, No. 2, June 2016

98



  

[5] H. Jin, L. Deng, S. Wu et al. “Live virtual machine migration with 

adaptive, memory compression,” in Proc. International Conference 

on Cluster Computing & Workshops, 2009, pp. 1-10. 

[6] Z. Xiang, H. Zhigang, M. Jie et al., “Exploiting data deduplication to 

accelerate live virtual machine migration,” in Proc. the 2010 IEEE 

International Conference on Cluster Computing, Heraklion, Crete, 

2010, pp. 88-96. 

[7] J. Zheng, T. S. E. Ng, K. Sripanidkulchai et al., “Pacer: A progress 

management system for live virtual machine migration in cloud 

computing,” IEEE Transactions on Network & Service Management, 

vol. 10, no. 4, pp. 369-382, 2013. 

[8] M. Nelson, “Virtual machine migration,” US Patent 8260904 B2, 

2012. 

[9] D. Haikney, S. P. Mullen, and J. W. Walker, “Virtual machine 

migration,” US Patent 20120159634 A1, 2012. 

[10] R. S. Rice, A. Moore, and A. W. A. Hopper, “Predicting the 

performance of virtual machine migration,” in Proc. the Modeling, 

Analysis & Simulation of Computer and Telecommunication Systems, 

Florida, USA, 2010, pp. 37-46. 

[11] G. Xiang, “The optimization of virtual machine migration based on 

Xen,” HIT, 2010. 

[12] G. F. Sun, “The optimization of VM live memory migration based on 

pre-copy mechanism,” Computer Engineering, vol. 37, no. 13, pp. 

36-39, 2011. 

[13] P. Riteau, C. Morin, and P. T. Shrinker, “Efficient live migration of 

virtual clusters over wide area networks,” Concurrency Computat: 

Pract. Exper., vol. 25, pp. 541-555, 2013. 

[14] M. R. Hines and K. Gopalan, “Post-copy based live virtual machine 

migration using adaptive pre-paging and dynamic self-ballooning,” in 

Proc. ACM Sigplan/SIGOPS International Conference on Virtual 

Execution Environments, 2009, pp. 51-60. 

[15] M. Zhao and R. J. Figueiredo, “Experimental study of virtual machine 

migration in support of reservation of cluster resources,” in Proc. the 

2nd International Workshop on Virtualization Technology in 

Distributed Computing, ACM, 2007, pp. 1-8. 

[16] V. Shrivastava, P. Zerfos, K. W. Lee et al., “Application-aware virtual 

machine migration in data centers,” in Proc. INFOCOM, 2011, pp. 

66-70. 

 

 

Shuang Kai graduated in computer science and 

technology from Beijing University of Posts and 

Telecommunication and received his Ph.D. degree. 

He is currently working as an associate professor at 

State Key Laboratory of Networking & Switching 

Technology. His research interests include cloud 

computing, mobile Internet and big data. 

 

 

 

Chen Yan majors in computer science and technology and did her master 

program at the State Key Laboratory of Networking & Switching 

Technology. Her researches interests include cloud computing and mobile 

Internet.  

 

 

 

Journal of Advances in Computer Networks, Vol. 4, No. 2, June 2016

99


