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Abstract—A GPS time series prediction model is presented, 

based on Complete Ensemble Empirical Mode Decomposition 

(CEEMD), which has the advantage of improving the prediction 

accuracy greatly. CEEMD is a new and improved version of 

Empirical Mode Decomposition, which decomposes a non-linear 

and non-stationary time series into a finite and often small 

number of Intrinsic Mode Functions (IMFs) and a residual. For 

each IMF and the residual, appropriate models are 

recommended to model them respectively. Due to the 

reversibility of the decomposition, the final predicted result of 

the GPS time series is available by summing up predicted results 

of all IMFs and the residual. Experiment results show that the 

proposed model behaves much better than the classical time 

series prediction model. 

 
Index Terms—GPS, time series, complete ensemble empirical 

mode decomposition, intrinsic mode functions.  

 

I. INTRODUCTION 

Recent years have witnessed increasing interest in Global 

Positioning System (GPS) [1]–[6]. In most cases, GPS can be 

used for monitoring geophysical phenomena, such as 

coseismic and tectonic plates movements [7]. Usually, the 

challenge in above applications is improving the positioning 

accuracy. 

Positioning errors in the GPS, however, are probably 

inevitable due to ionosphere errors, multipath errors, antenna 

phase deviation, etc. [8]. Several strategies have already been 

proposed to eliminate the positioning errors such as Wavelet 

models [9], FIR filters [10], adaptive filters [11], the Bayesian 

methods [12], GPS/Pseudolites (PLs) positioning technology 

[13], the Kalman filter [14], the carrier phase-difference 

model [15], the fractional Brownian motion (fBm) [16], 

autoregressive moving average (ARMA) model [17], etc. 

ARMA, a time series prediction model, is widely employed 

in GPS time series analysis [17]–[20], which can develop 

proper techniques for automatic recognition and calibration 

of the positioning errors in GPS time series [17], [21]. 

However, ARMA which is directly adopted to analyse the 

GPS time series can not always achieve a good prediction 

accuracy. This is mainly because ARMA aims to analyse 

stationary time series while the GPS time series is virtually a 

non-linear [22] and non-stationary [23] process with different 

components, for example, white noise, pink noise and random 

work. Therefore, several improved ARMA models were 

presented to eliminate prediction errors in GPS time series 
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analysis [18], [24]. 

In fact, the inherent non-linear and non-stationary 

characteristic in the GPS time series can be described 

effectively by a fully data adaptive decomposition method, 

such as Empirical Mode Decomposition (EMD) [1], 

[25]–[28], Ensemble Empirical Mode Decomposition 

(EEMD) [27] and Complete Ensemble Empirical Mode 

Decomposition (CEEMD) [28]. These methods are powerful 

time series analysis tools showing great promise for 

non-linear and non-stationary time series analysis. 

In this paper, a GPS time series prediction model is 

proposed, which is based on Complete Ensemble Empirical 

Mode Decomposition (CEEMD). First, the GPS time series is 

decomposed into Intrinsic Mode Functions (IMFs) and 

residual components using CEEMD. Then we calculate 

autocorrelation function (ACF), partial autocorrelation 

function (PACF), and the Hurst index for each IMF and the 

residual. Based on model identification rules, appropriate 

models, e.g., AR, ARMA or Gaussian processes, are 

recommended to model each IMF and the residual separately. 

Finally, based on the reversibility of the decomposition, the 

final predicted result of the GPS time series can be calculated 

by summing up predicted results of all IMFs and the residual. 

Experiment results show that the proposed model behaves 

much better than the classical time series prediction model. 

Empirical Mode Decomposition (EMD) has drawn more 

and more attention recently. Several improved empirical 

mode decomposition methods were proposed. Section II 

provides a detail description. Section III explains the core 

algorithm of the proposed model step by step based on a 

practical GPS time series. A convincing comparison between 

the proposed model and the classical time series prediction 

model is presented in Section IV. Finally, conclusions with 

ideas for future work are discussed in Section V. 

 

II. SUMMARY OF EMD 

Empirical Mode Decomposition (EMD) is a developed 

technique for the decomposition of non-linear and 

non-stationary time series. The most distinguished 

characteristic is that this decomposition is data adaptive and 

fully reversible. Subsequently, detailed explanations of 

different empirical mode decomposition methods are 

provided. 

A. Empirical Mode Decomposition 

Huang et al. [25], [26] first proposed the adaptive 

time-frequency data analysis technique, named Empirical 

Mode Decomposition (EMD). It decomposes a time series 

into several Intrinsic Mode Functions (IMFs) or modes and 

residual components. Importantly, this decomposition is 

reversible. That is to say, the original time series can be 
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reconstructed directly by summing up all IMFs and the 

residual with a negligible error. 

Given a time series, X(n), the decomposition of X(n) is 

operated via the study of consecutive local minima and 

maxima. X(n) can be expressed as 
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where imfj(n) denotes the j
th

 IMF components constrained to 

be zero-mean, rk stands for a residual trend after k 

decomposition. Each IMF is defined to have the number of 

extrema (maxima and minima) and number of zero-crossing 

equal or differing by one. And the envelope of each IMF is 

strictly symmetric based on the local maxima and minima 

respectively. The effective algorithm of EMD can be 

summarized as follows: 

1) Find all extrema (minma and maxima) of X(n).  

2) Locate the maximum (minimum) envelope max(n) 

(min(n)) of X(n) by passing a natural cubic spline through 

the local maxima (minima). 

3) Compute mean values with: m(n)=(max(n) +min(n))/2. 

4) Remove details with: d(n)=X(n)-m(n). 

5) Iterate steps 1) to 4) on d(n) until it is zero-mean 

according to the stopping criterion; the obtained d(n) is 

referred to as an IMF, imfj(n). 

6) Compute the residual with: X(n)=X(n)-imfj(n). 

7) Iterate steps 1) to 6) until no more IMFs are available. 

EMD has been successfully used in a broad range of 

research areas by means of extracting useful signals from 

collected time series generated by noisy non-linear and 

non-stationary processes. As useful as EMD proved to be, it 

still suffers from “mode mixing”. The mode mixing can be 

defined as the appearance of oscillations of completely 

different amplitude in an intrinsic mode function, or the 

appearance of similar oscillations in different intrinsic mode 

functions. The undesired consequence is that the individual 

IMF is far away from physical meaning. 

B. Ensemble Empirical Mode Decomposition 

To alleviate mode mixing from presence, a new 

noise-based analysis technique is proposed, Ensemble 

Empirical Mode Decomposition (EEMD) [27]. In EEMD, the 

true intrinsic mode function was defined as the amalgamation 

of the time series and a white noise with a finite amplitude. By 

means of adding finite noise, EEMD mitigate mode mixing 

dramatically. 

EEMD is developed as follows: 

1) Find Add a white noise w(n) to the time series: 

X
．
(n)=X(n)+w(n).  

2) Decompose X
．
(n) into IMFs. 

3) Iterate steps 1) and 2), and use different white noise each 

time. 

4) Calculate means of all IMFs as the final result. 

Notably, the amplitude   of the added white noises should 

decrease with the following statistical rule 
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where N is the number of ensemble members, n  is the 

difference between the time series and IMFs. 

In fact, by increasing the ensemble members and keeping 

the amplitude of the added white noises, the added white 

noises is always cancelled each other out (or reduced to a 

negligibly small level). Several examples have demonstrated 

that EEMD does significantly alleviate the chance of mode 

mixing. 

C. Complete Ensemble Empirical Mode Decomposition 

EEMD solves the mode mixing problem in EMD, however 

it introduces new ones [28]. In order to conquer these 

situations, a variation of EEMD, Complete Ensemble 

Empirical Mode Decomposition (CEEMD) was proposed. 

CEEMD is a new and improved version with more robust 

design for “mode mixing”. In CEEMD, a particular white 

noise is added at each step of the decomposition. The 

CEEMD is described as follows: 

1) Add a white noise )T…,2,1)(( jnw j  to the time series: 

)()()( nwnXnX jj  .  

2) Decompose )T…,2,1)(( jnX j  and compute: 
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3) Calculate the residue: )()()( 11 nimfnXnr  . 

4) Decompose )T…,2,1))((()( 111  jnwEnr j  and compute: 
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. The operator )(jE  

means the j
th

 mode obtained by EMD. 

5) For s = 2, 3,…, S, compute the s
th

 residual: 

)()()( 1 nimfnrnr sss   . 

6) Decompose )T…,2,1))((()(  jnwEnr j
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7) Iterate steps 5) and 6) for next s. 

Observe that the )T…,2,1( ss  can be used to select 

proper SNR at each step. CEEMD solves the mode mixing 

problem thoroughly and does better in reducing the sifting 

iterations. Theoretical analysis and experiments demonstrate 

that CEEMD provides an exact reconstruction of time series 

and a better spectral separation of the IMFs than the other two 

empirical mode decomposition methods, with a numerically 

negligible error. Therefore, CEEMD is adopted in this paper. 

 

III. THE PROPOSED MODEL 

The GPS time series is in fact a non-linear [22] and 

non-stationary [23] process. Therefore, the traditional time 

series prediction models which directly employ the GPS time 

series may reduce the prediction accuracy. In this paper, we 

first decompose the GPS time series using CEEMD into a 

finite set of IMFs and a residual. For each IMF and the 

residual, then we implement the model verification based on 

autocorrelation function (ACF), partial autocorrelation 

function (PACF), and the Hurst index. Next, appropriate 

models, e.g., AR, ARMA or Gaussian processes, are 
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recommended to model all IMFs and the residual respectively. 

Based on the reversibility of the decomposition, finally, 

different models are employed to predict each IMF and the 

residual separately and by summing up predicted results of all 

IMFs and the residual, we get the final predicted result of the 

GPS time series. 

To conclude, in this paper a GPS time series prediction 

model is proposed which is based on CEEMD. The main 

flowchart of the proposed model is provided in Fig. 1. 

Subsequently, a practical GPS time series is used as an 

example to step by step show the core algorithm of the 

proposed model. 

 
Fig. 1. Flowchart of the propose model. 

 

Step 1: Record the GPS time series using a certain type of 

GPS receivers. We collect lots of GPS time series from 

Thursday, March 5, to Sunday, March 8, in 2015 with 100 

msec. sampling. Then the GPS time series is preprocessed to 

get absolute errors for x-coordinate (X), y-coordinate (Y) and 

z-coordinate (Z) respectively. Next, X is employed to explain 

the algorithm process. Step 2 to Step 6 can be applied to Y and 

Z as well. 

Step 2: Decompose X by CEEMD into a finite set of IMFs 

and a residual. In this paper, X is decomposed into fifth IMFs 

and a residual. Fig. 2 gives all IMFs and the residual. 

Step 3: Test for the unit root using Augmented Dickey 

Fuller (ADF) test. For each IMF and the residual, the unit root 

test is implemented to verify the stationarity. Results show 

that all IMFs are stationary time series without drift while the 

residual is stationary time series with drift. 

Step 4: Calculate values of autocorrelation function (ACF), 

partial autocorrelation function (PACF) and the Hurst index. 

For each IMF and the residual, ACF and PACF are 

implemented to identify the autoregressive (AR) and moving 

average (MA) parts of ARMA model. Based on model 

identification rules, if ACF is trailing and PACF is truncated, 

the time series can be concluded for the AR model. If ACF is 

truncated and PACF is trailing, the time series can be 

described as the MA model. And if both ACF and PACF are 

trailing, ARMA model is proper for the time series. The 

calculation results are presented in Fig. 3. Fig. 3 shows that 

ACF of IMF4 and IMF6-IMF15 is trailing and PACF of IMF4 

and IMF6-IMF15 is truncated. Therefore, according to model 

identification rules, the AR model is recommended to model 

IMF4 and IMF6-IMF15. The residual, with a trailing ACF and 

a trailing PACF, can be modeled by an ARMA model. Since 

ACF and PACF of IMF1-IMF3 and IMF5 are both truncated, 

AR, MA, or ARMA are not fit to them. So, the Hurst index is 

considered. The Hurst index can be used to distinguish the 

gaussian process from the long-range dependence process. 

Calculation results of IMF1-IMF3 and IMF5 are presented in 

Table I. Table I shows that IMF1-IMF3 and IMF5 behave as 

gaussian processes. Furthermore, Montillet et al. [4] showed 

that summation of the IMFs whose Hurst index is less than 0.5 

can be estimated by a gaussian process. Therefore, 

IMF1-IMF3 and IMF5 are modeled by a gaussian process. 

 
TABLE I: THE HURST INDEXES OF IMF1-IMF3 AND IMF5 

IMFs Hurst Mean Std 

IMF1 0.11 -3.70e-05 0.03 

IMF2 0.37 -5.06e-05 0.01 

IMF3 0.14 -4.97e-05 0.02 

IMF5 0.41 -3.55e-05 0.02 

Total 0.30 -7.33e-05 -4.45e-02 

 

 
(a) IMF1 to IMF8. 

 

 
(b) IMF9 to IMF15 and the residual. 

Fig. 2. CEEMD decomposition of x-coordinate time series. 
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(a) ACF of IMFs and the residual. 

 

 
(b) PACF of IMFs and the residual. 

Fig. 3. ACF and PACF of IMFs and the residual. 

 

Step 5.1: Parameterize AR models for IMF4 and 

IMF6-IMF15 and parameterize an ARMA model for the 

residual. Denote AR4, AR6-AR15 and ARMA16 as their 

corresponding models. 

Step 5.2: Parameterize a gaussian process for IMF1-IMF3 

and IMF5. Denote G(mu, sigma) as the corresponding model, 

where mu is the mean value and the standard deviation is 

sigma. 

Step 6: Predict X by summing up the predicted result of all 

IMFs and the residual. This is on account of the fact that 

CEEMD is fully reversible. Specifically, we have 

)))245.4,533.7(
~

15

6

164 
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i

i ARMAARAReeGX . 

 

IV. EXPERIMENTAL RESULTS 

In this section, ARMA and the proposed model are 

employed to predict the GPS time series. For each coordinate 

(x-coordinate, y-coordinate and z-coordinate) of the GPS 

time series, the first 1000
1
 epoches of the coordinate time 

series are employed to construct the proposed model step by 

step (Section III). Similarly, ARMA is also parameterized 

based on the first 1000 epoches. Then we predict the next 

100
2
 epoches. 

Fig. 4(a) presents the prediction results of the x-coordinate 

 
1The value 1000 is modifiable by users on the basis that the recommended 

AR or ARMA models can be parameterized. 
2The value 100 is modifiable by users. 

time series. Obviously, the proposed model behaves much 

better than the classical time series prediction model, ARMA. 

Similarly, the prediction results for the y-coordinate time 

series and z-coordinate time series are provided in Fig. 4(b) 

and Fig. 4(c) separately. It is obvious that the proposed model 

improves the prediction accuracy greatly. 

 

 
(a) x-coordinate. 

 

 
(b) y-coordinate. 

 

 
(c) z-coordinate 

Fig. 4. Comparison between the measured x(y, z)-coordinate time series and 

predicted results using the proposed model and ARMA model. 

 

V. CONCLUSIONS 

This paper introduces a GPS time series prediction model 

based on Complete Ensemble Empirical Mode 

Decomposition (CEEMD). It has the advantage of improving 

the prediction accuracy greatly. CEEMD is a robust extension 
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of Empirical Mode Decomposition (EMD) method with more 

robust design for “mode mixing”. By decomposing a real GPS 

time series into Intrinsic Mode Functions (IMFs) and residual 

components using CEEMD, we find it is more convenient to 

model the individual IMF and the residual than to directly 

model the whole GPS time series. Naturally, a much better 

prediction accuracy is achieved. 

Our future work will focus on generalizing the use of the 

proposed model. For example, the proposed model can be 

used to study financial time series, fuzzy time series, etc. 
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