

Abstract—The paper presents the WSN-PN tool, which aims

at modelling and verifying Wireless Sensor Networks (WSN)

using Petri nets (PN). Especially, WSN-PN allows for

congestion detection on a WSN setting. Moreover, WSN-PN

supports users to abstract components, which can be either

sensors or channels, on the verified PN. This abstraction is

possible due to the observation that in a practical situation, a

reason that causes a WSN to be congested is only depending on

either sensors or channels. As a result, once abstracted

properly, the verification speed is improved significantly, as

illustrated in our experiments.

Index Terms—WSN, WSN-PN tool, Petri nets, congestion

detection.

I. INTRODUCTION

A Wireless Sensor Network (WSN) is a collection of

hundreds or thousands of Sensor Nodes (SNs), or sensors.

A SN component consists of sensing, computing and

communicating elements. They are connected to each other

by a wireless interface. Nowadays, SNs can be considered

as cheap, low energy, limited memory and capacity of

processing [1]. Battery is the primary power resource of

SNs. Some sensors also have a secondary power resource

which is harvested from the light.

WSNs are deployed according to a dense or a sparse

mode to cover a lot of application systems. Environmental

systems used to monitor the weather, the temperature, the

pressure and habitat, systems such as animals monitoring

and tracking are usually implemented using a dense

network topology [2]. Some applications need sensors

spread over a large geographical area in a sparse

deployment such as a sensing system at a city intersection

for tracking transportation or habitat monitoring [3].

In the wireless environment, the network which is

established by wireless connection is unstable than that of

wired networks. Due to the unstable connection, packets are

transmitted for several times and may cause network

congestion. Moreover, applications such as multiple-objects

tracking which are usually deployed with dense topology,

generate countless data transmissions, and thus may suffer

from this problem [2].

Manuscript received September 6, 2015; revised January 22, 2016.

Khanh Le, Thang Bui, and Tho Quan are with University of
Technology, Ho Chi Minh, Vietnam (e-mail:

lnkkhanh@@cse.hcmut.edu.vn, thang@cse.hcmut.edu.vn,

qttho@cse.hcmut.edu.vn).
Laure Petrucci and E t́ienne Andre ́ are with Universite ́ Paris 13,

Sorbonne Paris Cite ,́ LIPN, CNRS Villetaneuse, France (e-mail:

laure.petrucci@lipn.univ-paris13.fr, etienne.andre@lipn.univ-paris13.fr).

Generally, congestion can be easily detected in dense

deployments. However, it still occurs in sparse mode [4],

[5]. In dense mode, congestion occurs due to the overload

of buffer size in sensor nodes and the collision of packets

over the transmission medium. However, congestion occurs

more frequently at the channel in sparse mode due to

interference [4]. Based on the scenarios given from

experimentations in CODA [4], the causes of congestion in

WSNs can be: i) buffer overload on sensors in dense WSNs;

ii) packet collision on channels in dense WSNs; and iii)

interference on communication channels in sparse WSNs.

Thus, to detect congestion in a concrete situation, one only

needs to examine information on a specific type of

component, either sensors or channels, instead of the whole

WSN, which should be costly due to its complexity.

The paper makes this idea feasible by introducing a tool

named WSN-PN. This tool allows users to model a WSN

(using a domain specific input for WSNs), which will then

be translated into a Petri net (PN) [6]; then WSN-PN

verifies congestion on the PN model by means of model

checking. In WSN-PN, users do not need to work with the

details of the PN model. Instead, they only need to specify

the topology and parameter setting of a WSN; the

corresponding PN will then be generated automatically.

Also, WSN-PN supports component abstraction of a WSN.

That is, users may choose to abstract sensors or channels in

the PN model and verify the remaining part. This approach

thus significantly reduces the verification complexity when

performing congestion checking. Our experiments show

that several WSN models for which traditional verification

approaches suffered timeout have been successfully verified

for congestion when abstracted properly using WSN-PN.

It is notable that, even though WSN-PN relies on Petri

net (a general and popular modelling language) to perform

model checking, this tool is specifically intended for WSNs,

for the following reasons.

 WSN-PN supports specifying parameters of a WSN,

as illustrated in the following sections. Based on the

parameters given, a corresponding Petri net will be

automatically produced.

 WSN-PN supports abstracting certain items of a WSN,

such as sensors and channels. Note that users can

choose to abstract WSN items, not a sub-Petri net on

the generated model. That is, this tool does not require

users to have advanced knowledge of Petri nets.

Outline: The rest of the paper is organized as follows.

Section II discusses related works. Section III introduces

our tool WSN-PN, and explains how to model a WSN and

to generate PN model. Section IV shows in details how the

tool detects congestion. More extensive experiments are

reported in Section V. Finally, Section VI draws

conclusions and outlines future work.

Congestion Verification on Abstracted Wireless

Sensor Networks with the WSN-PN Tool

Khanh Le, Thang Bui, Tho Quan, Laure Petrucci, and E t́ienne Andre ́

Journal of Advances in Computer Networks, Vol. 4, No. 1, March 2016

33doi: 10.18178/jacn.2016.4.1.200

II. RELATED WORKS

A. Congestion Detection Algorithms

Most congestion detection algorithms use a buffer/queue

as main key for computation. Siphon [7] is a congestion

mitigation scheme which detects congestion by using queue

length. But instead of using any rate adjustment technique,

it uses traffic redirection to mitigate congestion.

Congestion Detection and Avoidance (CODA) [4], uses

both buffer threshold and buffer weight for detection, and

combines them with a bottleneck-node-based method to

control the sending/receiving packets. WSN-PN adopts this

approach.

In Fusion [5], congestion is detected in each sensor node

based on a measurement of the queue length. The node that

detects congestion sets a congestion notification bit in the

header of each outgoing packet. Once the congestion

notification bit is set, neighbouring nodes can overhear it

and stop forwarding packets to the congested node so that it

can drain the backlogged packets.

B. Congestion Detection Tools

To understand congestion detection activity, most

algorithms were simulated on a simulator. A simulator is a

tool used to simulate performance or validate some

properties of networks such as delay, packet loss,

congestion and so on. The current simulators widely used

include ns2
1
 or OMNeT++ [8]. In another aspect, Simulink

2

is a commercial software that generally allows user to

model a system from basic blocks and write code in various

programming languages to simulate the model operations.

The tool also supports analysis of the simulation results

applicable for WSN modelling.

In these simulators, a WSN is modelled by its sensors

and channels first, after that users can analyze the properties

such as QoS constraints or simulate the action of protocols.

All activities are done by the supporting of an appropriate

framework. For example, in OMNeT++, the mf framework

was used first, and then changed to the inet framework. In

mf framework, the routing protocol is specified in Network

layer, where as in inet, this is described in Application and

Transport layers. Obviously, the changing of supported

framework affects the using of framework significantly as

users must completely change all their predefined models

even though the WSN topology and parameters remain the

same. Moreover, network programmers need time to adapt

and learn how to use the framework to write their

experiments.

In our approach, we use a Petri net to model a WSN and

perform formal verification to detect possible congestion.

This approach can overcome the problem of simulation, but

theoretically suffers from a huge computational cost. We try

to handle this by allowing users to abstract elements of a

WSN, i.e. sensors or channels, when they are not the cause

of congestion. The immediate advantages of such an

approach are twofold:

1) It alleviates the dependence on the simulator

framework since the WSN is modelled at a higher

1
http://www.isi.edu/nsnam/ns/

2
https://fr.mathworks.com/products/simulink/index.html?s tid=gn locdrop/

level of abstraction, which only includes sensors and

channels. Thus, the WSN model is always the same,

independent of the framework being used.

2) It defines all scenarios and verifies the properties by

model checking a logic formula while simulators must

be done by programming.
As a result, our tool can verify some real WSN settings,

which the conventional formal approach fails to handle due

to the state space explosion.

III. VERIFYING WSNS WITH WSN-PN

This section presents the WSN-PN tool to analyze the

congestion of a WSN through its PN model.

Fig. 1. WSN-PN architecture

A. Architecture of WSN-PN

Fig. 1 gives the architecture of WSN-PN, which consists

of the following modules:

1) Editor

It helps users to describe a WSN by its topology as well

as to set the initial parameters for the specified network.

Then, the corresponding PN is generated automatically.

2) Abstraction

This module abstracts the original PN into an abstracted

PN, as explained in the next section. Users can choose to

produce sensor-abstracted model or channel-abstracted

model using this module.

3) Congestion Verification

This module is in charge of verifying whether congestion

occurs in a concrete or abstracted PN. It relies on the PAT

model checking library [9]. The congestion condition is

specified as an LTL formula, and the PAT model checking

library is then employed to perform the verification.

B. WSN Modeling and Parameter Setting

As discussed, a WSN consists of several sensors that can

communicate with each other using Wi-Fi signals. There

are three types of sensors: source, sink and intermediate

node. The role of intermediate nodes is to receive and

Journal of Advances in Computer Networks, Vol. 4, No. 1, March 2016

34

forward packets, as depicted in the oil monitoring

application reported by [10]. In some applications, the role

of source and intermediate sensors are the same, i.e. they

both can generate and send packets. In that case, it could be

modeled as a combination of a source node and an

intermediate node in WSN-PN. These sensors can be

connected in unicast, multicast or broadcast mode, each of

which specifies whether certain pairs of sensors can

exchange information or not. If two sensors can

communicate, we say that there is a channel established for

these sensors. Information on sensors and channels forms

the topology of a WSN. An example of a network topology

is given in Fig. 2, illustrating a WSN consisting of 10

sensors. These sensors play the roles of intermediate nodes,

conveying information from a source (denoted as double-

lined circle) to a sink (denoted as a full circle).

Fig. 2. A WSN with 10 nodes in unicast mode.

C. Component Encoding and Operational Semantics

In our approach, each physical sensor is encoded as a

tuple of {B, Q, p, s}, where B is a buffer storing incoming

packets, Q is a queue keeping processed packets ready to be

sent out, p is processing rate specifying the rate of packets

being transferred from B to Q, whereas s is the sending rate

of packets being sent from Q to the channels connected to

the sensor. We adapt the idea of buffer and queue to [11]

The processing rate indicates the number of packets a

sensor can handle (transfer from buffer to queue) over a

given period of time, while the sending rate specifies the

number of packets sent by a sensor to its connected

channels. The idea of processing rate and sending rate are

extracted from MICA, famous sensor node architecture to

achieve high communication bandwidth with the flexibility

to efficiently implement novel communication protocols

[12]. These parameters are configurable in WSN-PN.

Fig. 3. A Petri net automatically generated for a simple WSN.

Meanwhile, each channel is also encoded as a pair {Bc, t},

where Bc the buffer storing packets being processed in the

channel, and t is the transmission rate of packets that the

channel can manage to process (i.e. sending out to

connected sensors). The transmission rate of a channel

connecting two sensors can be estimated based on the

sensors estimation, as introduced in [13]. Subsequently, the

sending rates are randomized as a range suggested by the

empirical study in [4]. Table I gives an example of

parameters set for Source and Sink sensors in Fig. 3.

TABLE I: EXAMPLE OF PARAMETERS SETTING FOR A SIMPLE WSN

Node Source Sink

Sending rate 2-3 packets/ms N/A

Buffer size 50 packets 100 packets

Packet size 1KB 1KB

Processing rate 2-3 ms/packet 1-2 ms/packet

The operational semantic rules of the encoded sensors and

networks are presented in Table II.

As discussed, each sensor and channel is modeled a

component Petri Net, which is further abstracted as an

abstract PN if needed. Thus, the same encoding mechanism

and operational semantic rules are applied for the PN model

of a WSN and its abstracted counterparts. This allows us to

verify the abstracted models for congestion, instead of the

original models.

TABLE II: OPERATIONAL SEMANTIC RULES OF THE MODELLED WSN

Rules Explanation
{ } { }

[sensor-to-channel]

This rule is applied when a sensor

sends packet to connected channel

{ } { }

[channel-to-sensor]

This rule is applied when a packet is
transmitted to a sensor via a channel

{ }

 (

)

[sensor-proccessing]

This rule is applied when a packet is

internally processed within a sensor

D. Petri Net Generation

WSN-PN supports generating a Petri net from a WSN,

whose topology is specified by the user. Sensors and

channels are first modelled individually as component Petri

nets. Fig. 4 depicts the component Petri Nets.

To model a whole WSN, WSN-PN automatically

generates component Petri nets for each sensor and channel

described in the topology and combines them together to

obtain the corresponding PN of the complete WSN. For

example, Fig. 4 presents the PN automatically generated for

a simple WSN consisting of one Source and one Sink,

which are connected via a channel C. The sensors and

channel are represented by their corresponding component

PNs. When the numbers of sensors and channels increase,

the resultant PN also does, as in Fig. 5. It urges us to

propose the abstraction approach as subsequently discussed.

(a) Source node (b) Sink node

(c) Intermediate (d) Broadcast channel

Journal of Advances in Computer Networks, Vol. 4, No. 1, March 2016

35

(e) Unicast channel (f) Multicast channel

Fig. 4. Corresponding component Petri net models of sensors and channels.

E. Abstraction

As discussed in Section I, in many cases we do not need

to consider a full WSN for congestion detection, but only

either sensors or channels. WSN-PN supports the

abstraction of the non-necessary components in a WSN for

a more efficient verification. For example, in Fig. 6, Source

and Sink are abstracted as individual places, depicted larger

and dashed, in case we only need to consider channels of

the WSN for verification. Similarly, in Fig. 7, Channel is

abstracted as an abstracted transition. For the full example

modelled by the Petri net of Fig. 5, Fig. 8 and Fig. 9

illustrate the cases where the sensors and the channels are

abstracted, respectively.

Fig. 5. The PN generated from the WSN in Fig. 3.

Fig. 6. The PN in Fig. 4 sensor-abstracted.

Fig. 7. The PN in Fig. 4 channel-abstracted.

Note that our abstraction method is an under-

approximation, in the sense that a congestion case detected

in the abstracted model always corresponds to a congestion

occurring in the original model (i.e. no false positive

occurring). This is because the abstracted WSN elements do

not affect the probability of congestion in the verified

situation, as stated by studies of WSN presented in Section I.

F. Component-Based Concurrent Processing

WSN-PN uses model-checking approach to verify

congestion on a PN-modeled WSN. This technique verifies

whether a property holds on a model by exploring all of

possible states of the model to check whether the property

holds at any state or not.

Typically, the traditional way to model-check a PN

model is to explore all markings of the model, each of

which is treated as a state. However, in the case of WSN

verification, WSN-PN needs to ensure that the WSN model

works properly in terms of timing. To better illustrate this,

let us consider the following running example depicted in

Fig. 10, which is a simple WSN whose corresponding

sensor-abstracted PN model is given in Fig. 11. The

marking given in Fig. 12(a) presents a situation when

Sensor 1 sends packets to Sensor 2 and Sensor 3 in

broadcast mode. From here, there are several possible

markings can be generated. In Fig. 12(b) is the marking

presenting the situation that Sensor sends packets to Sensor

4, and then Sensor 4 further forwards the packets to Sensor

5 as illustrated in Fig. 12(c).

However, in the real situation, as Sensor 2 and Sensor 3

received packets from Sensor 1 and then continue sending

those packets to Sensor 4 at almost the same time, Sensor 4

should only send packets to Sensor 5 after receiving packets

from both Sensor 2 and Sensor 3. In other words, the

marking introduced in Fig. 12(c) is not feasible and should

not be verified.

As a PN model in WSN-PN is composed from

components, we deal with this situation by enforcing the

Journal of Advances in Computer Networks, Vol. 4, No. 1, March 2016

36

concurrent mechanism as follows. At a certain state

corresponding to a marking, a new state is introduced by

firing all of currently-enabled transitions in all components.

This simulates the real operational mechanism that all

components are working concurrently in the real situation.

Thus, at the marking presented in Fig. 12(a), as there are

two enabled transitions in two channels (note that channels

are the only remained components on the model after the

sensors are abstracted) connecting Sensor 2 and Sensor 3 to

Sensor 4, both transitions are then needed to be fired to

introduce a new state corresponding the marking illustrated

in Fig. 12(e). The order for firing these transitions thus does

not matter. After that, Sensor 4 continues sending packets to

Sensor 5, introducing a new state as depicted in Fig. 12(f).

Fig. 8. The PN in Fig. 5 sensor-abstracted.

Fig. 9. The PN in Fig. 5 channel-abstracted.

Fig. 10. Another WSN example.

Fig. 11. PN generation in broadcast mode (sensor-abstracted) of Fig. 10.

Journal of Advances in Computer Networks, Vol. 4, No. 1, March 2016

37

(a) Marking when Sensor 1 sends packets to Sensor 2 and Sensor 3 simultaneously (feasible marking).

(b) Marking when Sensor 2 sends packets to Sensor 4 (feasible marking but not introducing new state).

(c) Marking when Sensor 4 sends packets to Sensor 5 before receiving packets from Sensor 3 (infeasible marking since such a situation should not occur in

a real WSN).

(d) Marking when Sensor 3 sends packets to Sensor 4 (feasible marking but not introducing new state).

(e) Marking when Sensor 4 received packets from both Sensor 2 and Sensor 3 (feasible marking introducing new state since all of enabled transitions in

each component have been fired).

(f) Marking when Sensor 4 sends packets to Sensor 5 after receiving packets from both Sensor 2 and Sensor 3 (feasible marking introducing new state).

Fig. 12. Markings of Fig. 10 in broadcast mode (sensor abstraction).

IV. CONGESTION DETECTION

Basically, WSN-PN can check any property on a WSN,

as long as the property can be expressed as an LTL formula.

Thus, to check the congestion, one can develop an LTL

formula as follows.

#assert WSN() |= []<> Congestion

where []<> Congestion stands for the LTL operations of □◊

(which means always eventually) and the condition

Congestion implied a property of whether a congestion

occurs or not. The valuation of whether Congestion holds or

not at a certain checked state is simulated by C# code as

follows. To detect congestion on a sensor, our simulated

code counts the number of received packets at the sensor. If

this number reaches a threshold (i.e. greater than 70%

buffer size, based on CODA conclusions), the guard

condition lets the flow reach a special state making

Congestion hold. A similar method is applied for detecting

congestion in channels. Simulated code to check buffer

overload The C# source code to check whether a sensor’s

buffer is full (i.e. causing congestion) is as follows.

public bool isFullSensor (int id){

return (sensors[id].PBuffer.Count >=

sensors[id].BufferMaxSize);

}

Journal of Advances in Computer Networks, Vol. 4, No. 1, March 2016

38

Using this method, WSN-PN can detect whether

congestion occurs in the WSN using the simulation code as

previously discussed. The WSN with the parameters given

in Table I is congestion-free. However, if one modifies the

Buffer size parameter of Source from 100 to 150 packets,

congestion will occur, due to buffer overload. This

congestion is detected by WSN-PN. Moreover, instead of

verifying the full WSN in Fig. 4, this congestion can also be

detected on the channel-abstracted version given in Fig. 7.

Note that when a congestion is detected in the channel-

abstracted version, WSN-PN cannot tell exactly whether the

root cause is due to collision or interference, but only able

to confirm that there is possible congestion on the channels

of the investigated WSN.

TABLE III: EXPERIMENTAL RESULTS
Number of Sensors Number of Packets Bandwidth/Buffer Model Property Used

memory
Total transitions Visited states Result

5

50

300

No Abstraction

deadlockfree

chk-channel-

congestion chk-sensor-

congestion

Timeout at
34837s

9185.56

9582.648

125923

158294

27940

35320

Not
valid

Not

valid Channels Abstraction deadlockfree

chk-sensor-congestion

12776.632

9740.36

178666

3683

37297

9008

Valid

Not
valid

Sensors Abstraction deadlockfree

chk-channel-congestion

25829.008

11349.368

531062

1984

18045

3450

Valid

Not
valid

5

100

600

No Abstraction

deadlockfree

chk-channel-

congestion chk-sensor-

congestion

Timeout at
36971s

9933.424

14514.352

125032

158865

29072

45093

Not
valid

Not

valid Channels Abstraction deadlockfree

chk-sensor-congestion

20821.152

11624.52

364759

5792

75269

12049

Valid

Not
valid

Sensors Abstraction deadlockfree

chk-channel-congestion

47986.464

9741.568

994011

3054

35329

5299

Valid

Not
valid

10

50

300

No Abstraction

deadlockfree

chk-channel-

congestion chk-sensor-

congestion

Timeout at
35558s

142192.96

19821.544

5946

5623

16230

22256

Not
valid

Not

valid Channels Abstraction deadlockfree

chk-sensor-congestion

167027.568

11585.496

1221071

3979

965520

1219

Valid

Not
valid

Sensors Abstraction deadlockfree

chk-channel-congestion

117253.056

114344.544

4661915

1438

380458

2209

Valid

Not
valid

10

100

600

No Abstraction

deadlockfree

chk-channel-

congestion chk-sensor-

congestion

Timeout at
37628s

12940.056

24823.76

59432

1027607

20093

35458

Not
valid

Not

valid Channels Abstraction deadlockfree

chk-sensor-congestion

87368.256

164568.32

6962674

416270

662923

20873

Valid

Not
valid

Sensors Abstraction deadlockfree

chk-channel-congestion

1800147.2

189815.616

28519305

188055

364272

12045

Valid

Not
valid

V. EXPERIMENTS

We conducted experiments to demonstrate the efficiency

of our abstraction, which can significantly reduced the

computational cost of congestion verification. The

experiments were run using WSNs modelled by WSN-PN,

whose numbers of sensors range from 1 to 10. The

parameters of these sensors are set to enforce the congestion.

Unlike other approaches using simulation, the network

congestion in our experiments can be verified merely based

on network topology and sensor configurations. That is, one

does not need to bother the routing protocols actually used

to transfer packets among the sensors. This makes our

verification result still remained valid even though if the

sensors are upgraded with new routing protocols in the

future.

We also verify other property deadlock-free of the

modelled WSN. For congestion checking, we separately

verify the properties of chk-sensor-congestion or chk-

channel-congestion (check whether the congestion occurs in

Sensors or Channel or not). Table III shows our

experimental results. In all cases, our abstraction leads to a

decrease in the computation time and memory usage, but

still guarantees the soundness of congestion verification.

Some configurations could not even be analyzed with the

complete model (suffering time-out status), but could using

abstractions. The memory usage is also one order of

magnitude smaller when using abstractions, which shows

the efficiency of our approach.

At the moments, the number of sensors in simulated

networks is still limited at 13, but once combined with

appropriate networks as suggested in Section III.F, we can

increase this number significantly. This opens an interesting

direction for our future work.

The tool, the user manual, all experiments and full

datasets are available on WSN-PN website
3
.

VI. CONCLUSION

This paper presents WSN-PN, a tool for modelling and

verifying Wireless Sensor Networks using Petri nets. WSN-

PN allows for formally verifying properties such as

deadlock or reachability of a WSN using model checking,

and more specifically the possibility of congestion in the

WSN. For a better efficiency, the tool supports abstraction

of components of a WSN, focusing either on sensors or

channels. It thus significantly reduces the state space

generated for congestion verification, as shown in our

experimental results.

Future Works: WSN-PN will be extended to verify other

characteristics of WSNs, such as congestion mitigation or

packet-loss recovery. We also consider using high-level

3
http://cse.hcmut.edu.vn/∼save/project/kwsn/start

Journal of Advances in Computer Networks, Vol. 4, No. 1, March 2016

39

Petri nets (e.g. coloured Petri nets [8]) to avoid network

simulation by code. Time Petri nets are also a good

candidate to simulate delay-sensitive events of WSN.

ACKNOWLEDGMENT

This research was partially supported by Saigon

University, Ho Chi Minh City Vietnam.

REFERENCES

[1] F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: A survey,” Computer Networks, vol. 38,

no. 4, pp. 393–422, 2002.

[2] S. Moon, S. Lee, and H. Cha, “A congestion control technique for
the near-sink nodes in wireless sensor networks,” in Proc. Third

International Conference in Ubiquitous Intelligence and Computing,

2006, pp. 488–497.
[3] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data mules: Modeling

and analysis of a three-tier architecture for sparse sensor networks,”

Ad Hoc Networks, vol. 1, no. 2-3, pp. 215–233, 2003.
[4] C. Wan, S. B. Eisenman, and A. T. Campbell, “CODA: Congestion

detection and avoidance in sensor networks,” in Proc. the 1st

International Conference on Embedded Networked Sensor Systems,
2003, pp. 266–279.

[5] B. Hull, K. Jamieson, and H. Balakrishnan, “Mitigating congestion

in wireless sensor networks,” in Proc. the 2nd International
Conference on Embedded Networked Sensor Systems, 2004, pp.

134–147.

[6] K. Jensen and L. M. Kristensen, Coloured Petri Nets — Modelling
and Validation of Concurrent Systems, Springer, 2009.

[7] C. Wan, S. B. Eisenman, A. T. Campbell, and J. Crowcroft, “Siphon:

Overload traffic management using multi-radio virtual sinks in
sensor networks,” in Proc. the 3rd International Conference on

Embedded Networked Sensor Systems, 2005, pp. 116–129.

[8] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in Proc. the 1st International Conference on

Simulation Tools and Techniques for Communications, Networks

and Systems & Workshops, 2008, p. 60.
[9] Y. Si, J. Sun, Y. Liu, J. S. Dong, J. Pang, S. J. Zhang, and X. Yang,

“Model checking with fairness assumptions using PAT,” Frontiers

of Computer Science, vol. 8, no. 1, pp. 1–16, 2014.
[10] Y. Luo, L. Pu, M. Zuba, Z. Peng, and J. Cui, “Challenges and

opportunities of underwater cognitive acoustic networks,” IEEE

Transaction Emerging Topics Computer, vol. 2, no. 2, pp. 198–211,
2014.

[11] M. Zheng, J. Sun, Y. Liu, J. S. Dong, and Y. Gu, “Towards a model

checker for nesc and wireless sensor networks,” in Proc. 13th
International Conference on Formal Engineering Methods, 2011, pp.

372–387.

[12] J. L. Hill and D. E. Culler, “Mica: A wireless platform for deeply
embedded networks,” IEEE Micro., vol. 22, no. 6, pp. 12–24, 2002.

[13] Q. Shi, S. Kyperountas, F. Niu, and N. S. Correal, “Location

estimation in multi-hop wireless networks,” in Proc. IEEE
International Conference on Communications, 2004, pp. 2827–2831.

Khanh Le is a lecturer in the Faculty of Information

Technology, Saigon University, Vietnam. She

received the bachelor degree in mathematics and

computing from Natural Science HCM in 2005 and

received her master degree in computer networking

from Paris VI University in 2009. Now, she is a PhD
student in University of Technology. Her current

researches include quality of services for wireless

sensor network, system modeling and system
verification.

Thang Bui is currently a lecturer in the Faculty of
Computer Science & Engineering, Ho Chi Minh

City University of Technology, Vietnam and a

member of the Laboratory for Systems Analysis and
Verification (SAVE), which aims at developing

automated techniques for analyzing and reasoning

on computer-based systems. His research focuses on
software verification, particularly model checking,

which is to model the real world application and to

check for any violation of desired properties. Thang holds a bachelor

degree in computer engineering from Ho Chi Minh City of University of

Technology in 1997, a master degree in computer science & engineering

from Asian Institute of Technology, Thailand in 2001, and a PhD degree in
computer science & engineering from University of New South Wales,

Australia in 2010.

Tho Quan is an associate professor in the Faculty of

Computer Science and Engineering, Ho Chi Minh
City University of Technology, Vietnam. He

received his B.Eng. degree in information

technology from HCMUT in 1998 and received the
PhD degree in 2006 from Nanyang Technological

University, Singapore. His current research interests

include formal methods, program
analysis/verification, the semantic web, machine

learning/data mining and intelligent systems. Currently, he heads the

Department of Software Engineering of the Faculty. He is also serving as
the chair of Computer Science Program (undergraduate level).

Laure Petrucci has been a full professor since 2003.
Her research interests concern on formal modelling

and verification of complex systems, using models

such as Petri nets or automata. She has a strong
expertise in modular, compositional and parametric

verification, in order to tackle large systems. She is

currently the director of the LIPN. She received the
PhD degree From University Paris 6, France in

1991. She published more than 90 publications in

international conferences and journals (including CAV, Petri Nets,
ATVA).

Journal of Advances in Computer Networks, Vol. 4, No. 1, March 2016

40

