

Abstract—Two algorithms computing the all-terminal

reliability are compared. The first algorithm uses the pathsets

and cutsets of the network to find lower and upper bounds

respectively. The second algorithm uses decomposition and is

able to give an exact outcome. The latter approach is

significantly faster and able to calculate the exact value.

However, for some large networks the decomposition algorithm

does not give results while the path- and cutset algorithm still

returns bounds. The low computation times of the proposed

decomposition algorithm make it feasible to incorporate the

repeated calculation of the all-terminal reliability in new types

of network analysis. Some illustrations of these analyses are

provided.

Index Terms—All-terminal network reliability,

decomposition, network availability, pathwidth.

I. INTRODUCTION

The definition of reliability as given in [1] is the

„probability that an item will perform a required function

under stated conditions for a given time interval‟. Within the

sphere of networks it is taken to be the probability that the

network remains functioning when parts of the network are

subject to failure. In this paper we consider the case of

(independent) failures of links in the network. The most

general version of this metric is the k-terminal reliability of

the network, i.e. the probability that a set of nodes K is

connected. The problem of finding this reliability is well

known to be NP-hard [2]. Two common instances of the

k-terminal reliability are the two-terminal and all-terminal

reliability where |K| = 2 and |K| = n respectively, where n

denotes the number of nodes in the network. In this paper we

will focus on the all-terminal reliability of networks with

undirected links that can have different availabilities, which is

also NP-hard [3].

Reliability is an important indicator of the resilience of

networks and plays an important role in the design and

maintenance of networks, such as computer, communication

Manuscript received July 9, 2015; revised November 29, 2015. The work

of Teresa Gomes has been supported by the Fundação para a Ciência e a

Tecnologia (FCT) under project grant UID/MULTI/00308/2013

Willem Pino is with the Netherlands Organization for Applied Scientific

Research (TNO), the Hague, the Netherlands, he is also with the Department

of Information and Computing Sciences, Utrecht University, Utrecht, the

Netherlands (e-mail: willem.pino@tno.nl).

Teresa Gomes is with the Department of Electrical and Computer

Engineering, University of Coimbra, Coimbra, Portugal, she is also with

INESC, Coimbra, Portugal (e-mail: Teresa@deec.uc.pt).

Robert Kooij is with the Netherlands Organization for Applied Scientific

Research (TNO), the Hague, the Netherlands, he is also with the Faculty of

Electrical Engineering, Delft University of Technology, Delft, the

Netherlands (e-mail: robert.kooij@tno.nl).

and power networks. Network communications are a critical

infrastructure of today‟s society. Financial transactions

require a reliable and secure communication infrastructure.

With the introduction of the smart power grid, the correct

operation of the energy distribution network also becomes

dependent on the existence of a resilient communication

network. The communications reliability requirements for

smart power grids are discussed in [4]. The focus in that paper

is on all-terminal reliability. First responders also depend on

reliable communication services: they must be able to

communicate with the control center and also among

themselves. In [5] the complexity and challenges of providing

reliable services in an evolving communications

infrastructure are discussed. In [6] a set of principles for

designing resilient networks is put forward, and techniques

for network resilience analysis are detailed.

Techniques to find the reliability of a network give either

exact answers or approximations. In the exact case the main

methods used have traditionally been either path- and cutset

enumeration, which uses the inclusion-exclusion principle to

obtain a value for the reliability [7], or reductions followed by

a factoring process [8]. These reductions are the same as those

discussed in Section II of this paper. The factoring process

chooses a link and splits the problem in two problems, one in

which the link works and one in which it does not. Doing this

creates a binary tree which can become prohibitively large.

The approximation algorithms often use either Monte Carlo

simulations [9] or artificial neural networks [10].

The first approach discussed in this paper is a modification

of the path- and cutset enumeration to find bounds instead of

an exact value. The second approach finds exact values for the

all-terminal reliability using a decomposition of the problem.

The paper is organized as follows. In the next section we

will talk about reductions of the network, which will be used

by both approaches. In Section III we explain the method used

in [11] and [12] that uses iterative path- and cutset

enumeration. In Section IV the decomposition method

proposed in [13] and [14] will be explained. In Section V the

results of the two algorithms will be compared with each other

and some extra analysis will be done on two illustrative

networks. In the conclusion additional remarks about the

algorithms will be made and another useful exact approach

using binary decision diagrams (BDD) [15], [16] will be

given some attention.

II. NETWORK REDUCTIONS

Consider a network G(V,E) where V is a set of nodes and E

is a set of links () with . We denote |V| = n

and |E| = m. For each l E, al is the link availability. We

A Comparison between Two All-Terminal Reliability

Algorithms

Willem Pino, Teresa Gomes, and Robert Kooij

Journal of Advances in Computer Networks, Vol. 3, No. 4, December 2015

284doi: 10.18178/jacn.2015.3.4.183

assume the link failures are independent events. Let R(G)

denote the reliability of network G, i.e. the probability that the

network is connected.

Before an algorithm to calculate reliability is applied to the

network it is possible to make some reductions [8], [17].

These reductions are transformations of the network that

adjust its topology and probabilities. The resulting network

retains all information crucial to calculating the reliability.

Apart from adjusting the topology and probabilities they also

introduce a global multiplicative factor Ω such that R(G) = Ω

× R(G') where G' is the network after the transformations. The

reductions remove all spurs, or pendants, from the network.

They also remove all edges adjacent to nodes of degree 2. The

result is a network with minimum degree 3. Series-parallel

networks fully collapse, i.e. reduce to a single edge, under

these transformations [17]. This means that the reliability of

series-parallel networks can be computed in linear time.

III. ITERATIVE PATHSET AND CUTSET GENERATION

A pathset is a minimal subset of components whose

operation implies system operation and a cutset is a minimal

subset of components whose failure implies system failure [3].

In [11] and [12] an algorithm is proposed for calculating

lower and upper bounds for the all terminal reliability
1
. This

algorithm uses an ordered subset of the cutsets to calculate the

reliability upper bound and an ordered subset of the pathsets

(spanning trees) to calculate the reliability lower bound. This

means that, unlike in the exact method, it is not necessary to

enumerate all cutsets or pathsets, which quickly becomes

prohibitively slow. A more thorough description of this

approach can be found in [11], [12].

A complete enumeration of the path- or cutsets could be

used to compute the exact reliability of a network. If the

probability that all links in a pathset i are operational is Pr(Pi)

and the probability that all links in a cutset j have failed is

Pr(Cj) then we have:

 () (), (1)

 () (),

where r is the number of pathsets and u is the number of

cutsets. It is possible to obtain the union of events as the sum

of the probability of disjoint events.

 () (),

 () (̅ ̅ ̅ ̅), (2)

 () () (̅) (̅ ̅ ̅),

with ̅i being the complement of Pi. Now it is possible to

iteratively obtain lower bounds for the reliability:

 () (),

 () () (̅), (3)

 () () (̅ ̅ ̅).

1 These papers use the terms minpath and mincut to denote what we here

call pathset and cutset respectively.

The same, with some slight adjustments, can be done with

cutsets to obtain an upper bound. The objective is to find fast

converging bounds. In order to achieve this, the algorithm

generates pathsets iteratively, by decreasing probability, to

obtain lower bounds. To obtain upper bounds it generates

cutsets iteratively, also by decreasing probability. To find the

pathsets and cutsets with the highest probability the

algorithms in [18] and [19] can be used.

The algorithm keeps generating increasingly tight upper

and lower bounds until the desired difference between the two

is obtained, a time limit is reached or some topologically

based conditions are verified (see [11], [12] for more details).

In [11] the calculation of the probability of disjoint events was

done using algorithm KDH88 [20]. Every sequentially

selected cutset and pathset is considered in this algorithm. A

more effective algorithm is presented in [12] where, similarly

to the approach in [21], the pathsets and cutsets that do not

contribute significantly to reducing the reliability gap are

ignored. Also in [12] the maximally disjoint pathsets are first

considered, followed by the pathsets generated by decreasing

probability. Additionally a binary decision diagram (BDD)

[22] was used for the calculation of the reliability lower bound

instead of KDH88. This resulted in a lower execution time

and an improved lower bound.

IV. DECOMPOSITION

In [13] and [14] the idea is proposed to use decomposition

to obtain the reliability of a network. The main concept of this

approach is that the network is divided into two parts

separated by a boundary set, see Fig. 1.

Fig. 1. Two parts of a graph G separated by a boundary set.

In Fig. 1, H= (V‟, E‟) is any sub-network of G, and L= (V”,

E”) is the complement of H in G. The set of vertices F= V‟ ∩

V” is called the boundary set of H [23].

It is assumed that part H forms the processed part of the

graph, implying that all relevant information from part H for

computing the reliability of the network, can be saved in a

state which pertains to the boundary set F. By adding and

removing nodes from this boundary set and computing a new

state from the previous state, the processed part can be

expanded until the whole network is processed. In the

beginning of the algorithm the whole network is unprocessed,

i.e. V = L. When the algorithm is done the whole network is

processed, i.e. V = H.

The state of the algorithm can be understood by looking at

instances of H, situations where each link is either available or

failed. There is a probability associated with every instance.

In an instance of H there are several connected components. A

connected component that is not connected to the boundary

set can never be connected to the other components (this

could only happen by means of a connection through L).

Journal of Advances in Computer Networks, Vol. 3, No. 4, December 2015

285

Instances that have such a connected component therefore are

failed instances. These can all be discarded. Because all

connected components in the relevant instances are connected

to the boundary set, all instances can be categorized by giving

the connected components associated to each node in the

boundary set. This also means that all instances that have the

same partition of the boundary set, i.e. that have a similar

division of nodes of the boundary set among connected

components, are equivalent. The state now consists of all

possible partitions of the boundary set and an associated

probability for each of these partitions. These probabilities

are obtained by adding the probabilities of all instances with

this partition of the boundary set. This state can be denoted by

a set of pairs (π, Pπ) where π is a partition on the boundary set

and Pπ is the associated probability. For examples concerning

the state of the algorithm the reader is referred to Section IV

in [13].
Each state of the algorithm can be computed from a

previous state. In [23] this is done by processing either a node

activation, an edge activation or a node deactivation. An

activation of node v extends all partitions in the state by a

singleton and does not change the probability:

*()+ *(* +)+. (4)

A deactivation of node v first looks if v is the last node in

the boundary set. If this is the case then the probability of the

single possible partition gives the all-terminal reliability,

since the whole network is processed. If this is not the case

then all partitions where v is a singleton are removed and the

rest of the partitions are adjusted in the following manner:

⋃ *()+ *(∑)+ () () (5)

Here () is the set of all partitions that can be obtained

from the partition σ by inserting v in one of the subsets of the

partition σ. When a link * + is activated equation (6) is

used, where is the partition that results when the blocks

with v and w are merged.

*()+ *(()) ()+(6)

The algorithm now uses these rules (equations (4) – (6)) to

process the whole network, see the pseudo code in

Decomposition Algorithm. The decomposition series referred

to in the algorithm is a way of representing the path

decomposition. It indicates what node has to be added, or

removed, from the boundary set or which link has to be

processed for each step in the algorithm.

Fig. 2. An example network.

For added clarity a step in a small example will be shown.

Consider the graph in Fig. 2. Assume that at some point part H

of the graph consists of the nodes {1,2,3,4,5} and the links

between nodes {1,2,3,4}. No links to node 5 have been

processed since node 5 has just been activated. Part L is the

complement of part H and therefore consists of the links of the

network that are not in part H and the nodes at their endpoints,

i.e. {3,4,5,6}. This means the boundary set at this point is

{3,4,5}. Assume the corresponding state at this point is

{(3/4/5, Pr1), (34/5, Pr2)}. The first part of this state, (3/4/5,

Pr1), signifies that the probability that nodes 3, 4 and 5 are not

in the same connected components, while all connected

components are connected to the boundary set, in an instance

of part H, is Pr1. The next step in the decomposition series is

the activation of link l = (3,5). After this step, the boundary set

remains the same but the state has changed according to

equation (6) and now is: {(3/4/5, (1-al) × Pr1), (34/5, (1-al) ×

Pr2), (35/4, al × Pr1), (345, al × Pr2)}. In Section II of [23]

this example network is completely processed step by step.

Decomposition Algorithm

Input: a connected network, edge availabilities, a

decomposition series

Output: the all-terminal reliability (allTerminalReliability)

state = { ({∅},1) }

foreach step in decompositionSeries

 if step is node activation

 v = node that is activated

 use equation (4) to update the state

 else if step is node deactivation

 if step is final step

 /* Only one probability remains /*

return final probability

else

v = node that is activated

remove all partitions where v is a singleton

use equation (5) to update the state

 end

else if step is link activation

(v,w) = link that is activated

use equation (6) to update the state

end

end

The total amount of steps from state to state in the

algorithm is 2n + m and therefore linear in the input. The

complexity of the algorithm depends most heavily on the size

of the state, more specifically on the amount of partitions

possible on the number of nodes in the boundary set, also

known as the Bell number. This means that the algorithm is

exponential in the maximum size of the boundary set.

Therefore, it is important to find a decomposition of the graph

that has a maximum boundary set which is small. A

decomposition of a graph in the way needed for this algorithm

is known as a path decomposition. More formally a path

decomposition of a graph G is a sequence of subsets Xi of

nodes of G, with two properties [24]. It must be the case that

for each edge of G, there exists an i such that both endpoints

of the edge belong to subset Xi and for every three indices

 . The width of this decomposition is

Journal of Advances in Computer Networks, Vol. 3, No. 4, December 2015

286

 The minimum width over all path

decompositions is defined as the pathwidth of a graph [24].

Because the algorithm is exponential in the maximum size of

the boundary set and this is determined by the pathwidth, this

algorithm will work well on networks with a small pathwidth.

However, finding the pathwidth of a network (and a

decomposition belonging to this pathwidth) is NP-hard [25].

Because of this, we use a heuristic to find an effective path

decomposition. The heuristic used is suggested in [23]. It is a

greedy heuristic that works as follows. Let the neighborhood

N(X) of a set X be all the nodes not in X that have a neighbor

in X. Start with a vertex v and choose a vertex w N({v}) that

minimizes the boundary set between {v, w} and the rest of the

graph. Continue until all nodes are included. Repeat this with

every node as start node and find the solution with the

minimal pathwidth.

In the analysis in [23] it is shown that the algorithm runs in

 (() ()), where p(n) is a polynomial function and

f(pw) is an exponential function depending only on the

pathwidth of the network. The general thought of this analysis

is given in the previous paragraph. The fact that the algorithm

runs in (() ()) means that if the pathwidth is fixed,

then the algorithm is linear in the size of the input. This is

known as fixed parameter tractable (FPT) [26].

V. RESULTS

A. Comparison of the Two Algorithms

In order to compare the two different algorithms we used

the same networks as tested in [11], [12] and also four

additional networks (sun, giul39, zib54 and brain). These are

networks from the SNDlib [27]. This is a library with several

realistic telecommunication network design instances. Some

information about the networks can be found in Table I. Note

that in the case of sun, giul39 and brain each pair of directed

arcs was replaced by an undirected edge; also a duplicated

edge in zib54 was ignored. The last two columns in Table I

give the amount of nodes and edges after the reductions of the

network as described in Section II.

The link availability al of link l is given by the following

equation [28]:

 ⁄ (7)

where dl is the length in kilometers of link l. This corresponds

to an assumed availability of 99.987% for an end-to-end

connection of 250 miles in an optical network. This comes

down to planned and unplanned downtimes up to a total of

around 68 minutes per year. The length of each edge in the

considered networks was calculated as the distance between

its end nodes GPS coordinates (given in the SNDlib).

The results for the iterative path- and cutset algorithm were

obtained using an Intel(R) Core(TM) i7-3770M CPU @

3.40GHz processor desktop with 16G of RAM. The results

for the decomposition algorithm were obtained using an

Intel(R) Core(TM) i5-4310M CPU @ 2.70GHz processor

laptop with 8G of RAM. The desired gap between the upper

and lower bound for the iterative path- and cutset algorithm

used as one of the stopping criteria was 1E-6. This value was

used because it allows to determine six digits for the network

reliability, which is, in most practical cases, accurate enough.

In Table II the numerical results for both algorithms can be

found. The exact outcomes from the decomposition algorithm

do indeed fall within the bounds provided by the iterative

path- and cutset algorithm for each case. In Table II, it can

also be seen that [12] does achieve a reliability gap less than

1E-6 for the majority of the considered networks.

Furthermore, it is noteworthy that in almost every case the

upper bound coincides with the exact value. This is in

agreement with the fact that the cutset stop condition usually

becomes true after a small number of iterations, while the

algorithms continues to improve its lower bound generating

spanning trees (the pathsets).

TABLE I: SNDLIB NETWORKS

Network Nodes Edges Nodes

Reduced

Edges

Reduced

polska 12 18 10 16

atlanta 15 22 7 11

newyork 16 49 15 47

nobel-germany 17 26 7 12

geant 22 36 10 21

france 25 45 11 21

nobel-eu 28 41 16 26

pioro40 40 89 40 89

germany50 50 88 39 73

ta2 65 108 36 69

sun 27 51 25 49

india35 35 80 31 75

giul39 39 86 39 86

zib54 54 80 17 31

brain 161 166 6 9

TABLE II: RELIABILITY RESULTS

Network Path- and cutset Decomp.

 Lower Bound Upper

Bound

Exact Value

polska 0,99999997 0,99999999 0.99999999

atlanta 0,99995326 0,99995341 0.99995341

newyork 0,99998748 0,99998801 0.99998801

nobel-germany 0,99999992 0,99999999 0.99999999

geant 0,99999405 0,99999469 0.99999469

france 0,99992539 0,99992557 0.99992557

nobel-eu 0,99999886 0,99999953 0.99999953

pioro40 0,99900339 0,99999999 0.99999999

germany50 0,99999975 0,99999999 0.99999999

ta2 0,99835925 0,99860460 0.99860459

sun 0,99995719 0,99998650 0.99998649

india35 0,99999297 0,99999982 0.99999982

giul39 0,99882553 0,99999969 0.99999969

zib54 0,99832331 0,99832866 0.99832866

brain 0,99675410 0,99675413 0.99675413

In Table III, the computation times for both algorithms are

compared. For the small networks the algorithms run in the

same order of magnitude but it is evident that for the larger

instances the decomposition algorithm outperforms the

iterative path- and cutset algorithm, being three orders of

magnitude faster. Besides this, the decomposition algorithm

finds exact values as opposed to bounds, another reason to

prefer this algorithm.

However, there are networks that are too large for the

decomposition algorithm. For these networks the path- and

Journal of Advances in Computer Networks, Vol. 3, No. 4, December 2015

287

cutset algorithm might still find bounds. This is the case, for

example, with the USAir97 [29] and the c.elegans [30]

networks. The first consists of nodes representing airports and

has edges between two nodes if there was a flight between

those airports in 1997. The second is the neural network of the

Caenorhabditis elegans worm. The USAir97 network has 332

nodes and 2126 edges while the c.elegans network has 306

nodes and 2345 edges. They are both quite dense and have a

pathwidth of over 20 which make a decomposition approach

impossible. The path- and cutset algorithm still finds bounds,

albeit not within the desired accuracy. For p = 0.99999, we

chose this value for lack of accurate information on the

reliability of links in these networks, the gap between the

bounds was about 1E-5, which is often accurate enough to

provide useful information.

TABLE III: COMPUTATION TIMES (S)

Network Path

& cutsets

Decomp. Found

pw

LB

pw

polska 0.05 0.08 3 3

atlanta 0.04 0.06 4 3

newyork 36.34 0.22 6 6

nobel-germany 0.03 0.06 3 3

geant 0.05 0.08 4 4

france 0.15 0.10 5 3

nobel-eu 0.13 0.13 4 3

pioro40 3600 1.11 7 5

germany50 28.63 0.77 6 4

ta2 3600 0.62 6 4

sun 2264.34 0.49 5 4

india35 1918.34 0.45 6 4

giul39 3600 0.82 7 5

zib54 2.25 0.12 4 3

brain 0.07 0.05 3 3

In the last two columns of Table III the pathwidth found by

our greedy heuristic and a lower bound on the pathwidth are

given, respectively. The lower bound is actually a lower

bound on the treewidth found using the Minor-Min-Width

heuristic [31]. Since the treewidth of a network is always

smaller than, or equal to, the pathwidth of a network, this also

gives a lower bound on the pathwidth of the network. The

lower bound shows our greedy heuristic produces results that

are quite close to the actual pathwidth. Although a slight

correlation can be seen between the width of the found path

decompositions and the computation times, this correlation is

not very obvious. If we consider complete networks, i.e. fully

connected networks, the maximum size of the boundary set is

always the number of nodes in the network. Running the

algorithm on these networks makes the relation between

computation time and pathwidth clearer, see Table IV, where

network Kn denotes a complete network with n nodes.

TABLE IV: TIMES TO COMPUTE THE ALL-TERMINAL RELIABILITY OF FULLY

CONNECTED GRAPHS

Network Computation Times (s)

K8 0.13

K9 0.30

K10 1.24

K11 7.71

K12 52.58

K13 380.98

B. Illustration of New Analysis Possibilities

The reduced order of magnitude of the computation times

makes it possible to conduct new types of reliability analysis.

Next we will discuss two illustrations of this. We take the ta2

and pioro40 networks as examples in this section but this

approach works for all networks in Table III.

First of all, we can revisit the formula that gives the link

availabilities, (7). Imagine that a given network needs to have

a certain reliability level. The availabilities of the links are

known at the moment and assume this level is currently met by

the network. However, in the future, as the network ages, each

link might become less reliable. It would be valuable to know

at which point the network no longer has a high enough

reliability. In order to answer this question we assume that it is

known how the formula that gives the link availabilities will

change in the future. We take the original formula with an

added variable α, that in some way depends on time, as an

example:

 (())
 ⁄ (8)

Since the computation times are low we can compute the

reliabilities for a range of α-values and plot a graphic that

allows one to see the variation of the all-terminal reliability

with α, see Fig. 3. With help of this plot it could easily be seen

for which α, i.e. at which time in the future, the network no

longer has the desired reliability level.

Fig. 3. The reliability of ta2 for different values of α.

Another issue could be that one wants to increase the

reliability of a given network. Of course there is a platitude of

ways to achieve this, but here we will examine one particular

case. Assume that only one link from the network could be

protected (or shielded). This would mean that this particular

link would practically never fail, for simplicity we assume that

the availability of this link would become 1. The problem is to

find out which link should be protected in order to ensure the

greatest increase of the reliability. Running the algorithm first

on ta2 as the initial network and then on the adjusted ta2

network, with each of the link availabilities in turn set to 1,

would give the plot depicted in Fig. 4. This figure can be used

to determine which link in ta2 should be protected. Even

though the links are sorted by ascending original availability

this does not seem to be a strong indicator of the resulting rise

in reliability. In Fig. 4, there is one link (link 83) that is

obviously the most suitable candidate for protection. The

underlying topology shows that this makes sense, link 83 is a

Journal of Advances in Computer Networks, Vol. 3, No. 4, December 2015

288

pendant, if it fails the network is no longer connected.

However, since this is also quite trivial, a network such as

pioro40, that has no bridges or pendants, shows that the

technique can also provide useful information in non-trivial

cases, see Fig. 5. For this case, the link availabilities were

multiplied by 0.7 because otherwise the differences in

network reliability would be extremely small (with an initial

availability of 0.99999999 there is little room for

improvement).

Fig. 4. The increase in reliability of ta2 when different links are protected.

Fig. 5. The increase in reliability of pioro40 when different links are

protected. In order to make the difference between the resulting reliabilities

substantial the initial link availabilities were multiplied by 0.7.

VI. CONCLUSION

In this paper it was shown that the decomposition method

compared to the iterative path- and cutset method is not only

exact, but also faster, particularly for the larger SNDlib

networks. Therefore, we recommend using the decomposition

algorithm instead of the iterative path- and cutset algorithm.

Nevertheless, the decomposition method does not work for

networks with a large pathwidth, in these cases the path- and

cutset approach may be an alternative to obtain some

information on network reliability, albeit possibly not as

accurate as desired. Finally, we also mention a method using

BDD, which also leads to an exact algorithm for obtaining the

all-terminal reliability [15], [16]. In fact, the implementation

in [16] is faster than our implementation, most likely because

of the numbering of partitions they use to quickly find specific

partitions in the state of the algorithm. Although the BDD

may seem unrelated to the decomposition, we believe the

underlying properties of the graph that allow the algorithms to

work are actually closely related to the pathwidth of the graph.

This means the two approaches could have comparable results

on all networks. We do not known of any papers that compare

these two approaches so this might be an interesting topic for

future research. Finally, another advantage of both BDD and

decomposition approaches is that they can easily be adjusted

to compute the k-terminal reliability problem.

REFERENCES

[1] ITU-T, “Terms and definitions related to quality of service and network

performance including dependability,” Recommendation E 800, 1994.

[2] M. O. Ball, “Complexity of network reliability computations,”

Networks, vol. 10, no. 2, pp. 153–165, 1980.

[3] M. O. Ball, “Computational complexity of network reliability analysis:

An overview,” IEEE Transactions on Reliability, vol. 35, no. 3, pp.

230–239, 1986.

[4] V. Kounev, M. Lévesque, D. Tipper, and T. Gomes, “On smart grid

communications reliability,” in Proc. 11th International Workshop on

the Design of Reliable Communication Networks, 2015.

[5] D. Tipper, “Resilient network design: challenges and future

directions,” Telecommunication Systems, vol. 56, no. 1, pp. 5–16,

2014.

[6] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,

M. Schöller, and P. Smith, “Resilience and survivability in

communication networks: Strategies, principles, and survey of

disciplines,” Computer Networks, vol. 54, no. 8, pp. 1245–1265, 2010.

[7] S. H. Ahmad, “Simple enumeration of minimal cutsets of acyclic

directed graph,” IEEE Transactions on Reliability, vol. 37, no. 5, pp.

484–487, 1988.

[8] A. M. Shooman, “Algorithms for network reliability and connection

availability analysis,” IEEE Electro/95 International Professional

Program Proceedings, pp. 309–333, 1995.

[9] G. S. Fishman, “A Monte Carlo sampling plan for estimating network

reliability,” Operations Research, vol. 34, no. 4, pp. 581–594, 1986.

[10] F. Altiparmak, B. Dengiz, and A. E. Smith, “A general neural network

model for estimating telecommunications network reliability,” IEEE

Transactions on Reliability, vol. 58, no. 1, pp. 2–9, 2009.

[11] J. Silva, T. Gomes, D. Tipper, L. Martins, and V. Kounev, “An

algorithm for computing all-terminal reliability bounds,” in Proc. 6th

International Workshop on Reliable Networks Design and Modeling,

2014, pp. 76–83.

[12] J. Silva et al., “An effective algorithm for computing all-terminal

reliability bounds,” Networks, vol. 66, issue 4, pp. 282-295, 2015.

[13] J. Carlier and C. Lucet, “A decomposition algorithm for network

reliability evaluation,” Discrete Applied Mathematics, vol. 65, no. 1,

pp. 141–156, 1996.

[14] A. Pönitz, “Über eine methode zur konstruktion von algorithmen für

die berechnung von invarianten in endlichen ungerichteten

hypergraphen,” Ph.D. dissertation, Technical University Freiberg

(Sachsen), 2003.

[15] F.-M. Yeh, S.-K. Lu, and S.-Y. Kuo, “OBDD-based evaluation of

k-terminal network reliability,” IEEE Transactions on Reliability, vol.

51, no. 4, pp. 443–451, 2002.

[16] G. Hardy, C. Lucet, and N. Limnios, “K-terminal network reliability

measures with binary decision diagrams,” IEEE Transactions on

Reliability, vol. 56, no. 3, pp. 506–515, 2007.

[17] A. Satyanarayana and R. K. Wood, “A linear-time algorithm for

computing k-terminal reliability in series-parallel networks,” SIAM

Journal on Computing, vol. 14, no. 4, pp. 818–832, 1985.

[18] S. Kapoor and H. Ramesh, “Algorithms for enumerating all spanning

trees of undirected and weighted graphs,” SIAM Journal on Computing,

vol. 24, no. 2, pp. 247–265, 1995.

[19] V. Vazirani and M. Yannakakis, “Suboptimal cuts: Their enumeration,

weight and number,” Automata, Languages and Programming, pp.

366–377, 1992.

[20] K. D. Heidtmann, “Smaller sums of disjoint products by subproduct

inversion,” IEEE Transactions on Reliability, vol. 38, no. 3, pp. 305–

311, 1989.

[21] S. Sebastio, K. S. Trivedi, D. Wang, and X. Yin, “Fast computation of

bounds for two-terminal network reliability,” European Journal of

Operational Research, vol. 238, no. 3, pp. 810–823, 2014.

[22] S. B. Akers, “Binary decision diagrams,” IEEE Transactions on

Computers, vol. 100, no. 6, pp. 509–516, 1978.

[23] A. Pönitz and P. Tittmann. (2001). Computing network reliability in

graphs of restricted pathwidth. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.7220&

rep=rep1&type=pdf

Journal of Advances in Computer Networks, Vol. 3, No. 4, December 2015

289

[24] H. L. Bodlaender, “A partial k-arboretum of graphs with bounded

treewidth,” Theoretical Computer Science, vol. 209, no. 1, pp. 1–45,

1998.

[25] T. Kashiwabara and T. Fujisawa, “NP-completeness of the problem of

finding a minimum-clique-number interval graph containing a given

graph as a subgraph,” in Proc. Symposium of Circuits and Systems,

1979.

[26] R. Niedermeier, “Invitation to fixed-parameter algorithms,” Oxford

Lecture Series in Mathematics and its Applications, vol. 31, 2006.

[27] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “SNDlib 1.0

survivable network design library,” Networks, vol. 55, no. 3, pp. 276–

286, 2010.

[28] M. Mezhoudi and C.-H. K. Chu, “Integrating optical transport quality,

availability, and cost through reliability-based optical network design,”

Bell Labs Technical Journal, vol. 11, no. 3, pp. 91–104, 2006.

[29] V. Batagelj and A. Mrvar. (2006). Pajek datasets. [Online]. Available:

http://vlado.fmf.uni-lj.si/pub/networks/data/

[30] D. J. Watts and S. H. Strogatz, “Collective dynamics of

„small-world‟networks,” Nature, vol. 393, no. 6684, pp. 440–442,

1998.

[31] V. Gogate and R. Dechter, “A complete anytime algorithm for

treewidth,” in Proc. the 20th Conference on Uncertainty in Artificial

Intelligence, 2004, pp. 201–208.

Willem Pino was born in the Netherlands on May 23,

1991. He studied theoretical physics and philosophy at

University College Utrecht before pursuing a M.Sc.

degree in computing science at Utrecht University. His

master research focuses on complexity of network

algorithms. Now, he is doing an internship at

Netherlands Organization for Applied Scientific

Research (TNO) where he works on resilience metrics

for distribution networks.

Teresa Gomes is an assistant professor in

telecommunications at the Department of Electrical

Engineering and Computers of the Faculty of Sciences

and Technology, University of Coimbra, Portugal,

since 1998, with tenure since 2003, and a researcher at

the INESC Coimbra, which is a non-profit R&D

institute. She obtained the M.Sc. degree in computer

science, in 1989 and the Ph.D. degree in electrical

engineering-telecommunications and electronics, in

1998, all from the University of Coimbra. Her main present interests are

routing, protection and reliability analysis models and algorithms for

communications networks.

Robert Kooij has a background in mathematics, he

received his PhD degree in cum laude at Delft

University of Technology, in 1993. From 1997 to 2003,

he was employed at Royal Dutch Telecom (KPN)

Research.

Since 2003, he is employed at Netherlands

Organization for Applied Scientific Research (TNO),

where he deals with quality aspects of ICT networks. In

2011, he became the principal scientist, conducting

and managing research on Critical ICT Infrastructures. Since 2005, Robert is

part-time affiliated with the Delft University of Technology, at the Faculty of

Electrical Engineering, Mathematics and Computer Science. Since 2010, he

is a part-time full professor with the chair "Robustness of Complex

Networks".

Journal of Advances in Computer Networks, Vol. 3, No. 4, December 2015

290

