
  

 

Abstract—Two algorithms computing the all-terminal 

reliability are compared. The first algorithm uses the pathsets 

and cutsets of the network to find lower and upper bounds 

respectively. The second algorithm uses decomposition and is 

able to give an exact outcome. The latter approach is 

significantly faster and able to calculate the exact value. 

However, for some large networks the decomposition algorithm 

does not give results while the path- and cutset algorithm still 

returns bounds. The low computation times of the proposed 

decomposition algorithm make it feasible to incorporate the 

repeated calculation of the all-terminal reliability in new types 

of network analysis. Some illustrations of these analyses are 

provided. 

 
Index Terms—All-terminal network reliability, 

decomposition, network availability, pathwidth.  

 

I. INTRODUCTION 

The definition of reliability as given in [1] is the 

„probability that an item will perform a required function 

under stated conditions for a given time interval‟. Within the 

sphere of networks it is taken to be the probability that the 

network remains functioning when parts of the network are 

subject to failure. In this paper we consider the case of 

(independent) failures of links in the network. The most 

general version of this metric is the k-terminal reliability of 

the network, i.e. the probability that a set of nodes K is 

connected. The problem of finding this reliability is well 

known to be NP-hard [2]. Two common instances of the 

k-terminal reliability are the two-terminal and all-terminal 

reliability where |K| = 2 and |K| = n respectively, where n 

denotes the number of nodes in the network. In this paper we 

will focus on the all-terminal reliability of networks with 

undirected links that can have different availabilities, which is 

also NP-hard [3]. 

Reliability is an important indicator of the resilience of 

networks and plays an important role in the design and 

maintenance of networks, such as computer, communication 
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and power networks. Network communications are a critical 

infrastructure of today‟s society. Financial transactions 

require a reliable and secure communication infrastructure. 

With the introduction of the smart power grid, the correct 

operation of the energy distribution network also becomes 

dependent on the existence of a resilient communication 

network. The communications reliability requirements for 

smart power grids are discussed in [4]. The focus in that paper 

is on all-terminal reliability. First responders also depend on 

reliable communication services: they must be able to 

communicate with the control center and also among 

themselves. In [5] the complexity and challenges of providing 

reliable services in an evolving communications 

infrastructure are discussed. In [6] a set of principles for 

designing resilient networks is put forward, and techniques 

for network resilience analysis are detailed. 

Techniques to find the reliability of a network give either 

exact answers or approximations. In the exact case the main 

methods used have traditionally been either path- and cutset 

enumeration, which uses the inclusion-exclusion principle to 

obtain a value for the reliability [7], or reductions followed by 

a factoring process [8]. These reductions are the same as those 

discussed in Section II of this paper. The factoring process 

chooses a link and splits the problem in two problems, one in 

which the link works and one in which it does not. Doing this 

creates a binary tree which can become prohibitively large. 

The approximation algorithms often use either Monte Carlo 

simulations [9] or artificial neural networks [10].  

The first approach discussed in this paper is a modification 

of the path- and cutset enumeration to find bounds instead of 

an exact value. The second approach finds exact values for the 

all-terminal reliability using a decomposition of the problem.  

The paper is organized as follows. In the next section we 

will talk about reductions of the network, which will be used 

by both approaches. In Section III we explain the method used 

in [11] and [12] that uses iterative path- and cutset 

enumeration. In Section IV the decomposition method 

proposed in [13] and [14] will be explained. In Section V the 

results of the two algorithms will be compared with each other 

and some extra analysis will be done on two illustrative 

networks. In the conclusion additional remarks about the 

algorithms will be made and another useful exact approach 

using binary decision diagrams (BDD) [15], [16] will be 

given some attention. 

 

II. NETWORK REDUCTIONS 

Consider a network G(V,E) where V  is a set of nodes and E  

is a set of links   (   ) with      . We denote |V| = n 

and |E| = m. For each l   E, al is the link availability. We 
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assume the link failures are independent events. Let R(G) 

denote the reliability of network G, i.e. the probability that the 

network is connected.  

Before an algorithm to calculate reliability is applied to the 

network it is possible to make some reductions [8], [17]. 

These reductions are transformations of the network that 

adjust its topology and probabilities. The resulting network 

retains all information crucial to calculating the reliability. 

Apart from adjusting the topology and probabilities they also 

introduce a global multiplicative factor Ω such that R(G) = Ω 

× R(G') where G' is the network after the transformations. The 

reductions remove all spurs, or pendants, from the network. 

They also remove all edges adjacent to nodes of degree 2. The 

result is a network with minimum degree 3. Series-parallel 

networks fully collapse, i.e. reduce to a single edge, under 

these transformations [17]. This means that the reliability of 

series-parallel networks can be computed in linear time. 

 

III. ITERATIVE PATHSET AND CUTSET GENERATION 

A pathset is a minimal subset of components whose 

operation implies system operation and a cutset is a minimal 

subset of components whose failure implies system failure [3]. 

In [11] and [12] an algorithm is proposed for calculating 

lower and upper bounds for the all terminal reliability
1
. This 

algorithm uses an ordered subset of the cutsets to calculate the 

reliability upper bound and an ordered subset of the pathsets 

(spanning trees) to calculate the reliability lower bound. This 

means that, unlike in the exact method, it is not necessary to 

enumerate all cutsets or pathsets, which quickly becomes 

prohibitively slow. A more thorough description of this 

approach can be found in [11], [12]. 

A complete enumeration of the path- or cutsets could be 

used to compute the exact reliability of a network. If the 

probability that all links in a pathset i are operational is Pr(Pi) 

and the probability that all links in a cutset j have failed is 

Pr(Cj) then we have:  

 

 ( )    (          ),                   (1) 

   ( )    (          ), 
 

where r is the number of pathsets and u is the number of 

cutsets. It is possible to obtain the union of events as the sum 

of the probability of disjoint events.  

 

 ( )    (          ), 

 ( )    (    ̅       ̅  ̅   ̅     ),       (2) 
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with  ̅i being the complement of Pi. Now it is possible to 

iteratively obtain lower bounds for the reliability:  

 

   ( )     (  ), 

   ( )     ( )     ( ̅   ),                 (3) 

  
   ( )       ( )     (  ̅  ̅   ̅     ). 

 
1 These papers use the terms minpath and mincut to denote what we here 

call pathset and cutset respectively. 

The same, with some slight adjustments, can be done with 

cutsets to obtain an upper bound. The objective is to find fast 

converging bounds. In order to achieve this, the algorithm 

generates pathsets iteratively, by decreasing probability, to 

obtain lower bounds. To obtain upper bounds it generates 

cutsets iteratively, also by decreasing probability. To find the 

pathsets and cutsets with the highest probability the 

algorithms in [18] and [19] can be used. 

The algorithm keeps generating increasingly tight upper 

and lower bounds until the desired difference between the two 

is obtained, a time limit is reached or some topologically 

based conditions are verified (see [11], [12] for more details). 

In [11] the calculation of the probability of disjoint events was 

done using algorithm KDH88 [20]. Every sequentially 

selected cutset and pathset is considered in this algorithm. A 

more effective algorithm is presented in [12] where, similarly 

to the approach in [21], the pathsets and cutsets that do not 

contribute significantly to reducing the reliability gap are 

ignored. Also in [12] the maximally disjoint pathsets are first 

considered, followed by the pathsets generated by decreasing 

probability. Additionally a binary decision diagram (BDD) 

[22] was used for the calculation of the reliability lower bound 

instead of KDH88. This resulted in a lower execution time 

and an improved lower bound. 

 

IV. DECOMPOSITION 

In [13] and [14] the idea is proposed to use decomposition 

to obtain the reliability of a network. The main concept of this 

approach is that the network is divided into two parts 

separated by a boundary set, see Fig. 1. 

 

 
Fig. 1. Two parts of a graph G separated by a boundary set. 

 

In Fig. 1, H= (V‟, E‟) is any sub-network of G, and L= (V”, 

E”) is the complement of H in G. The set of vertices F= V‟ ∩ 

V” is called the boundary set of H [23]. 

It is assumed that part H forms the processed part of the 

graph, implying that all relevant information from part H for 

computing the reliability of the network, can be saved in a 

state which pertains to the boundary set F. By adding and 

removing nodes from this boundary set and computing a new 

state from the previous state, the processed part can be 

expanded until the whole network is processed. In the 

beginning of the algorithm the whole network is unprocessed, 

i.e. V = L. When the algorithm is done the whole network is 

processed, i.e. V = H. 

The state of the algorithm can be understood by looking at 

instances of H, situations where each link is either available or 

failed. There is a probability associated with every instance. 

In an instance of H there are several connected components. A 

connected component that is not connected to the boundary 

set can never be connected to the other components (this 

could only happen by means of a connection through L). 
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Instances that have such a connected component therefore are 

failed instances. These can all be discarded. Because all 

connected components in the relevant instances are connected 

to the boundary set, all instances can be categorized by giving 

the connected components associated to each node in the 

boundary set. This also means that all instances that have the 

same partition of the boundary set, i.e. that have a similar 

division of nodes of the boundary set among connected 

components, are equivalent. The state now consists of all 

possible partitions of the boundary set and an associated 

probability for each of these partitions. These probabilities 

are obtained by adding the probabilities of all instances with 

this partition of the boundary set. This state can be denoted by 

a set of pairs (π, Pπ) where π is a partition on the boundary set 

and Pπ is the associated probability. For examples concerning 

the state of the algorithm the reader is referred to Section IV 

in [13]. 
Each state of the algorithm can be computed from a 

previous state. In [23] this is done by processing either a node 

activation, an edge activation or a node deactivation. An 

activation of node v extends all partitions in the state by a 

singleton and does not change the probability: 

 

*(    )+  *(  * +   )+.                       (4) 

 

A deactivation of node v first looks if v is the last node in 

the boundary set. If this is the case then the probability of the 

single possible partition gives the all-terminal reliability, 

since the whole network is processed. If this is not the case 

then all partitions where v is a singleton are removed and the 

rest of the partitions are adjusted in the following manner: 

 

⋃ *(    )+  *(  ∑   )+   (   )   (   )     (5) 

 

Here  (   ) is the set of all partitions that can be obtained 

from the partition σ by inserting v in one of the subsets of the 

partition σ. When a link   *   + is activated equation (6) is 

used, where      is the partition that results when the blocks 

with v and w are merged. 

 

*(    )+    *(  (    )    ) (                )+(6) 

 

The algorithm now uses these rules (equations (4) – (6)) to 

process the whole network, see the pseudo code in 

Decomposition Algorithm. The decomposition series referred 

to in the algorithm is a way of representing the path 

decomposition. It indicates what node has to be added, or 

removed, from the boundary set or which link has to be 

processed for each step in the algorithm. 

 

 
Fig. 2. An example network. 

 

For added clarity a step in a small example will be shown. 

Consider the graph in Fig. 2. Assume that at some point part H 

of the graph consists of the nodes {1,2,3,4,5} and the links 

between nodes {1,2,3,4}. No links to node 5 have been 

processed since node 5 has just been activated. Part L is the 

complement of part H and therefore consists of the links of the 

network that are not in part H and the nodes at their endpoints, 

i.e. {3,4,5,6}. This means the boundary set at this point is 

{3,4,5}. Assume the corresponding state at this point is 

{(3/4/5, Pr1), (34/5, Pr2)}. The first part of this state, (3/4/5, 

Pr1), signifies that the probability that nodes 3, 4 and 5 are not 

in the same connected components,  while all connected 

components are connected to the boundary set, in an instance 

of part H, is Pr1. The next step in the decomposition series is 

the activation of link l = (3,5). After this step, the boundary set 

remains the same but the state has changed according to 

equation (6) and now is: {(3/4/5, (1-al) × Pr1), (34/5, (1-al) × 

Pr2), (35/4, al × Pr1), (345, al × Pr2)}. In Section II of [23] 

this example network is completely processed step by step.  

 

Decomposition Algorithm 

Input: a connected network, edge availabilities, a 

decomposition  series 

Output: the all-terminal reliability (allTerminalReliability) 

 

state = { ({∅},1) } 

foreach step  in decompositionSeries 

 if step is node activation 

  v  = node that is activated 

  use equation (4) to update the state 

 else if step is node deactivation 

 if step is final step 

  /* Only one probability remains /* 

return final probability  

else 

v  = node that is activated 

remove all partitions where v  is a singleton 

use equation (5) to update the state 

 end 

else if step  is link activation 

(v,w) = link that is activated 

use equation (6) to update the state 

end 

end 
 

 

The total amount of steps from state to state in the 

algorithm is 2n + m and therefore linear in the input. The 

complexity of the algorithm depends most heavily on the size 

of the state, more specifically on the amount of partitions 

possible on the number of nodes in the boundary set, also 

known as the Bell number. This means that the algorithm is 

exponential in the maximum size of the boundary set. 

Therefore, it is important to find a decomposition of the graph 

that has a maximum boundary set which is small. A 

decomposition of a graph in the way needed for this algorithm 

is known as a path decomposition. More formally a path 

decomposition of a graph G is a sequence of subsets Xi of 

nodes of G, with two properties [24]. It must be the case that 

for each edge of G, there exists an i such that both endpoints 

of the edge belong to subset Xi and for every three indices 

              . The width of this decomposition is 
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           The minimum width over all path 

decompositions is defined as the pathwidth of a graph [24]. 

Because the algorithm is exponential in the maximum size of 

the boundary set and this is determined by the pathwidth, this 

algorithm will work well on networks with a small pathwidth. 

However, finding the pathwidth of a network (and a 

decomposition belonging to this pathwidth) is NP-hard [25]. 

Because of this, we use a heuristic to find an effective path 

decomposition. The heuristic used is suggested in [23]. It is a 

greedy heuristic that works as follows. Let the neighborhood 

N(X) of a set X  be all the nodes not in X that have a neighbor 

in X. Start with a vertex v and choose a vertex w   N({v}) that 

minimizes the boundary set between {v, w} and the rest of the 

graph. Continue until all nodes are included. Repeat this with 

every node as start node and find the solution with the 

minimal pathwidth. 

In the analysis in [23] it is shown that the algorithm runs in 

 ( ( )   (  )), where p(n) is a polynomial function and 

f(pw) is an exponential function depending only on the 

pathwidth of the network. The general thought of this analysis 

is given in the previous paragraph. The fact that the algorithm 

runs in  ( ( )   (  )) means that if the pathwidth is fixed, 

then the algorithm is linear in the size of the input. This is 

known as fixed parameter tractable (FPT) [26]. 

 

V. RESULTS 

A. Comparison of the Two Algorithms 

In order to compare the two different algorithms we used 

the same networks as tested in [11], [12] and also four 

additional networks (sun, giul39, zib54 and brain). These are 

networks from the SNDlib [27]. This is a library with several 

realistic telecommunication network design instances. Some 

information about the networks can be found in Table I. Note 

that in the case of sun, giul39 and brain each pair of directed 

arcs was replaced by an undirected edge; also a duplicated 

edge in zib54 was ignored. The last two columns in Table I 

give the amount of nodes and edges after the reductions of the 

network as described in Section II. 

The link availability al of link l is given by the following 

equation [28]:  

 

          
            ⁄       (7) 

 

where dl is the length in kilometers of link l. This corresponds 

to an assumed availability of 99.987% for an end-to-end 

connection of 250 miles in an optical network. This comes 

down to planned and unplanned downtimes up to a total of 

around 68 minutes per year. The length of each edge in the 

considered networks was calculated as the distance between 

its end nodes GPS coordinates (given in the SNDlib). 

The results for the iterative path- and cutset algorithm were 

obtained using an Intel(R) Core(TM) i7-3770M CPU @ 

3.40GHz processor desktop with 16G of RAM. The results 

for the decomposition algorithm were obtained using an 

Intel(R) Core(TM) i5-4310M CPU @ 2.70GHz processor 

laptop with 8G of RAM. The desired gap between the upper 

and lower bound for the iterative path- and cutset algorithm 

used as one of the stopping criteria was 1E-6. This value was 

used because it allows to determine six digits for the network 

reliability, which is, in most practical cases, accurate enough. 

In Table II the numerical results for both algorithms can be 

found. The exact outcomes from the decomposition algorithm 

do indeed fall within the bounds provided by the iterative 

path- and cutset algorithm for each case. In Table II, it can 

also be seen that [12] does achieve a reliability gap less than 

1E-6 for the majority of the considered networks. 

Furthermore, it is noteworthy that in almost every case the 

upper bound coincides with the exact value. This is in 

agreement with the fact that the cutset stop condition usually 

becomes true after a small number of iterations, while the 

algorithms continues to improve its lower bound generating 

spanning trees (the pathsets).  

 
TABLE I: SNDLIB NETWORKS 

Network Nodes Edges Nodes 

Reduced 

Edges 

Reduced 

polska 12 18 10 16 

atlanta 15 22 7 11 

newyork 16 49 15 47 

nobel-germany 17 26 7 12 

geant 22 36 10 21 

france 25 45 11 21 

nobel-eu 28 41 16 26 

pioro40 40 89 40 89 

germany50 50 88 39 73 

ta2 65 108 36 69 

sun 27 51 25 49 

india35 35 80 31 75 

giul39 39 86 39 86 

zib54 54 80 17 31 

brain 161 166 6 9 

 
TABLE II: RELIABILITY RESULTS 

Network Path- and cutset Decomp. 

 Lower Bound Upper 

Bound 

Exact Value 

polska 0,99999997 0,99999999 0.99999999 

atlanta 0,99995326 0,99995341 0.99995341 

newyork 0,99998748 0,99998801 0.99998801 

nobel-germany 0,99999992 0,99999999 0.99999999 

geant 0,99999405 0,99999469 0.99999469 

france 0,99992539 0,99992557 0.99992557 

nobel-eu 0,99999886 0,99999953 0.99999953 

pioro40 0,99900339 0,99999999 0.99999999 

germany50 0,99999975 0,99999999 0.99999999 

ta2 0,99835925 0,99860460 0.99860459 

sun 0,99995719 0,99998650 0.99998649 

india35 0,99999297 0,99999982 0.99999982 

giul39 0,99882553 0,99999969 0.99999969 

zib54 0,99832331 0,99832866 0.99832866 

brain 0,99675410 0,99675413 0.99675413 

 

In Table III, the computation times for both algorithms are 

compared. For the small networks the algorithms run in the 

same order of magnitude but it is evident that for the larger 

instances the decomposition algorithm outperforms the 

iterative path- and cutset algorithm, being three orders of 

magnitude faster. Besides this, the decomposition algorithm 

finds exact values as opposed to bounds, another reason to 

prefer this algorithm.  

However, there are networks that are too large for the 

decomposition algorithm. For these networks the path- and 
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cutset algorithm might still find bounds. This is the case, for 

example, with the USAir97 [29] and the c.elegans [30] 

networks. The first consists of nodes representing airports and 

has edges between two nodes if there was a flight between 

those airports in 1997. The second is the neural network of the 

Caenorhabditis elegans worm. The USAir97 network has 332 

nodes and 2126 edges while the c.elegans network has 306 

nodes and 2345 edges. They are both quite dense and have a 

pathwidth of over 20 which make a decomposition approach 

impossible. The path- and cutset algorithm still finds bounds, 

albeit not within the desired accuracy. For p = 0.99999, we 

chose this value for lack of accurate information on the 

reliability of links in these networks,  the gap between the 

bounds was about 1E-5, which is often accurate enough to 

provide useful information. 

 
TABLE III: COMPUTATION TIMES (S) 

Network Path  

& cutsets 

Decomp. Found 

pw 

LB 

pw 

polska 0.05 0.08 3 3 

atlanta 0.04 0.06 4 3 

newyork 36.34 0.22 6 6 

nobel-germany 0.03 0.06 3 3 

geant 0.05 0.08 4 4 

france 0.15 0.10 5 3 

nobel-eu 0.13 0.13 4 3 

pioro40 3600 1.11 7 5 

germany50 28.63 0.77 6 4 

ta2 3600 0.62 6 4 

sun 2264.34 0.49 5 4 

india35 1918.34 0.45 6 4 

giul39 3600 0.82 7 5 

zib54 2.25 0.12 4 3 

brain 0.07 0.05 3 3 

 

In the last two columns of Table III the pathwidth found by 

our greedy heuristic and a lower bound on the pathwidth are 

given, respectively. The lower bound is actually a lower 

bound on the treewidth found using the Minor-Min-Width 

heuristic [31]. Since the treewidth of a network is always 

smaller than, or equal to, the pathwidth of a network, this also 

gives a lower bound on the pathwidth of the network. The 

lower bound shows our greedy heuristic produces results that 

are quite close to the actual pathwidth. Although a slight 

correlation can be seen between the width of the found path 

decompositions and the computation times, this correlation is 

not very obvious. If we consider complete networks, i.e. fully 

connected networks, the maximum size of the boundary set is 

always the number of nodes in the network. Running the 

algorithm on these networks makes the relation between 

computation time and pathwidth clearer, see Table IV, where 

network Kn denotes a complete network with n nodes. 

 
TABLE IV: TIMES TO COMPUTE THE ALL-TERMINAL RELIABILITY OF FULLY 

CONNECTED GRAPHS 

Network Computation Times (s) 

K8 0.13 

K9 0.30 

K10 1.24 

K11 7.71 

K12 52.58 

K13 380.98 

 

B. Illustration of New Analysis Possibilities 

The reduced order of magnitude of the computation times 

makes it possible to conduct new types of reliability analysis. 

Next we will discuss two illustrations of this. We take the ta2 

and pioro40 networks as examples in this section but this 

approach works for all networks in Table III. 

First of all, we can revisit the formula that gives the link 

availabilities, (7). Imagine that a given network needs to have 

a certain reliability level. The availabilities of the links are 

known at the moment and assume this level is currently met by 

the network. However, in the future, as the network ages, each 

link might become less reliable. It would be valuable to know 

at which point the network no longer has a high enough 

reliability. In order to answer this question we assume that it is 

known how the formula that gives the link availabilities will 

change in the future. We take the original formula with an 

added variable α, that in some way depends on time, as an 

example: 

 

   ((   )         )
            ⁄               (8) 

 

Since the computation times are low we can compute the 

reliabilities for a range of α-values and plot a graphic that 

allows one to see the variation of the all-terminal reliability 

with α, see Fig. 3. With help of this plot it could easily be seen 

for which α, i.e. at which time in the future, the network no 

longer has the desired reliability level. 

 

 
Fig. 3. The reliability of ta2 for different values of α. 

 

Another issue could be that one wants to increase the 

reliability of a given network. Of course there is a platitude of 

ways to achieve this, but here we will examine one particular 

case. Assume that only one link from the network could be 

protected (or shielded). This would mean that this particular 

link would practically never fail, for simplicity we assume that 

the availability of this link would become 1. The problem is to 

find out which link should be protected in order to ensure the 

greatest increase of the reliability. Running the algorithm first 

on ta2 as the initial network and then on the adjusted ta2 

network, with each of the link availabilities in turn set to 1, 

would give the plot depicted in Fig. 4. This figure can be used 

to determine which link in ta2 should be protected. Even 

though the links are sorted by ascending original availability 

this does not seem to be a strong indicator of the resulting rise 

in reliability. In Fig. 4, there is one link (link 83) that is 

obviously the most suitable candidate for protection. The 

underlying topology shows that this makes sense, link 83 is a 
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pendant, if it fails the network is no longer connected. 

However, since this is also quite trivial, a network such as 

pioro40, that has no bridges or pendants, shows that the 

technique can also provide useful information in non-trivial 

cases, see Fig. 5. For this case, the link availabilities were 

multiplied by 0.7 because otherwise the differences in 

network reliability would be extremely small (with an initial 

availability of 0.99999999 there is little room for 

improvement). 

 

 
Fig. 4. The increase in reliability of ta2 when different links are protected. 

 

 
Fig. 5. The increase in reliability of pioro40 when different links are 

protected. In order to make the difference between the resulting reliabilities 

substantial the initial link availabilities were multiplied by 0.7. 

 

VI. CONCLUSION 

In this paper it was shown that the decomposition method 

compared to the iterative path- and cutset method is not only 

exact, but also faster, particularly for the larger SNDlib 

networks. Therefore, we recommend using the decomposition 

algorithm instead of the iterative path- and cutset algorithm. 

Nevertheless, the decomposition method does not work for 

networks with a large pathwidth, in these cases the path- and 

cutset approach may be an alternative to obtain some 

information on network reliability, albeit possibly not as 

accurate as desired. Finally, we also mention a method using 

BDD, which also leads to an exact algorithm for obtaining the 

all-terminal reliability [15], [16]. In fact, the implementation 

in [16] is faster than our implementation, most likely because 

of the numbering of partitions they use to quickly find specific 

partitions in the state of the algorithm. Although the BDD 

may seem unrelated to the decomposition, we believe the 

underlying properties of the graph that allow the algorithms to 

work are actually closely related to the pathwidth of the graph. 

This means the two approaches could have comparable results 

on all networks. We do not known of any papers that compare 

these two approaches so this might be an interesting topic for 

future research. Finally, another advantage of both BDD and 

decomposition approaches is that they can easily be adjusted 

to compute the k-terminal reliability problem. 
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