

Abstract—Recently, a sparse linear method (SLIM) is

developed for top-N recommender systems, which can produce

high-quality recommendations for sparse data sets. SLIM

provides a better performance than other existing methods. In

this paper, we provide a novel user-item interest method (UIIM)

based on bipartite network to improve the performance of

SLIM. UIIM generates top-N recommendations by building the

user-item interest matrix R with the bipartite network of users

and items, calculating the item-item similarity matrix with

SLIM and predicting users’ ratings on items as a dot product of

matrix and . And we also provide a parallel algorithm

based on Spark to learn . Our results indicate that UIIM

provides better performance and recommendation quality than

other existing methods and parallel algorithm of learning

outperforms serial algorithm on large-scale data sets.

Index Terms—Top-N recommender systems, bipartite

network, UIIM, SLIM, parallel.

I. INTRODUCTION

With the fast development of Internet and E-commerce,

the frequency of purchasing products online grows rapidly.

However, too many products make customers difficult to find

favorite products. The problem becomes how to help

customers find products that best fit their personal taste

effectively. In particular, when given the purchasing history

of users, a ranked list of items could be generated for users to

choose from. This result in the widely use of top-N

recommender systems.

Recent years, various algorithms have been developed for

top-N recommender systems. These algorithms can be

divided into two categories: neighborhood-based

collaborative filtering methods and LFM methods (latent

factor model). Neighborhood-based collaborative filtering

methods are the most common algorithms in recommender

systems. User-based collaborative filtering method, which is

proposed in 1992, is one of the most common methods for

recommender systems. Sarwar et al. proposed an item-based

collaborative filtering method in 2001 [1]. Item-based

collaborative filtering method is widely used in real-world

recommender system like Amazon and Douban.

Neighborhood-based collaborative filtering methods,

particularly referred to as user/item-based collaborative

filtering methods, compute similarities between users/items

Manuscript received September 22, 2014; revised May 23, 2015.
Zhixiong Jiang and Chunyang Lu are with CNPC Changping Data Center,

Beijing 102206, China (e-mail: jiangzhixiong@cnpc.com.cn,

luchunyang@cnpc.com.cn).
Siyuan Zheng and Juan Yang are with Beijing Key Laboratory of

Intelligent Telecommunications Software and Multimedia, Beijing

University of Posts and Telecommunications, Beijing 100876, China (e-mail:
zsybupt@gmail.com, yangjuan@bupt.edu.cn).

and recommend items with these similarities. The key idea of

LFM methods is to build the user-item matrix based on the

purchasing history of users, factorize it into (low-rank) user

factors and item factors that represent the user interests and

item features, and the users’ ratings/tastes can be represent by

the dot product of user factors and item factors. In [2], Chi-h

Chao Ma introduced a simple Latent Factor Model called

SVD, which simply generates recommendations as the dot

product of user factors and item factors. A method called

BiasSVD improves the performance of SVD by considering

the differences of users’ tastes and items’ characters. LFM

methods generate recommendations with high quality, but

incur high cost meanwhile. On the other hand,

neighborhood-based methods generate results very fast, but

the quality is relatively lower.

Recently, a novel method named SLIM has been

developed for top-N recommender systems, which combines

the advantages of both neighborhood-based methods and

LFM. SLIM recommends items for users by learning a sparse

aggregation coefficient matrix from user-item matrix [3],

which represents similarities between items. The experiments

in [3] show that SLIM achieves better performance and

recommendation quality than the state-of-the-art methods.

However, there is an inherent limitation of SLIM that during

learning matrix , the similarity between two items can be

learned only when they have been co-purchased/rated by at

least some users. The result is that it cannot find the potential

transitive relations between items [4].

In this paper, we propose a method called UIIM

(User-Item Interest Model), which solves this problem based

on the user-item bipartite network. We build the bipartite

network from the user-item matrix, for items that have not

been co-purchased by any users, there may be a positive

similarity between them that denoted by the paths between

them connected by users, UIIM can capture this similarity by

traversing these paths, so we can build the transitive

relationship between items that have not been

co-purchased/rated by at least one user based on this bipartite

network. And the experiments show that this method

outperforms SLIM.

The rest of this paper is organized as follows: In Section II,

a detailed introduction of the previous work is provided. In

Section III, our method UIIM and a parallel algorithm for

computing matrix is described. In Section IV and Section

V, the data for experiments and the result are presented.

II. PREVIOUS WORK

A. Definitions and Notation

In this paper, users and items are described by symbols u

and t, and for individual users and items, different subscripts

UIIM: A User-Item Interest Model Based on Bipartite

Network for Top-N Recommender System

Zhixiong Jiang, Chunyang Lu, Siyuan Zheng, and Juan Yang

Journal of Advances in Computer Networks, Vol. 3, No. 3, September 2015

251DOI: 10.7763/JACN.2015.V3.177

will be used (i.e., ,). The user-item purchasing matrix

will be represented by is 1 or 0 represents whether user

 has purchased/rated item or not, so
 denotes the i-th

row of , it represents the purchasing/rating history of user

 on all items, denotes the j-th column of , it represents

the purchasing/rating history of all users on item .

In this paper, all vectors (e.g.,
 ,) will be denoted by

bold lower-case letters, and all matrices (e.g.,) will be

denoted by bold upper-case letters. The prediction of user

on item will be denoted by having a ~ head, ̃ represents

the prediction of user on item , and ̃ denotes the

user-item prediction matrix.

B. SLIM

The SLIM method developed by Ning [3] generates

recommendations by learning a sparse coefficient matrix

which represents the item-item similarity matrix. Thus, the

model utilized by SLIM can be presented as

 ̃ (1)

SLIM estimates the sparse matrix as the minimizer for

the following regularized optimization problem:

‖ ‖

‖ ‖ ‖ ‖

 () (2)

where ‖ ‖ is the entry-wise l1-norm of , and ‖ ‖F is

the matrix Frobenius norm. is the estimated matrix of

recommendation scores (i.e., ̃), so the first term

‖

 ‖
 (i.e., the residual sum of squares) measures how well

the sparse linear model fits the training data, ‖ ‖F and

‖ ‖1 are lF-norm and l1-norm regularization terms, lF-norm

measures model complexity and prevents over fitting, and

l1-norm introduces sparsity to . The non-negativity

constraint is applied so that represents the positive

relations between items. At last, the constraint diag() = 0 is

applied to ensure that when calculate ̃ij, doesn’t make

any contribution. In addition, diag() = 0 can avoid trivial

solutions (i.e., the optimal W is an identical matrix).

Various experiments in [3] have showed that SLIM

outperforms other existing methods for top-N recommender

systems.

III. ALGORITHM

In this section, we will first introduce the inherent

limitation of SLIM, then we will expand the solution of this

limitation and the details of our method based on bipartite

network. At last we will introduce a method of learning in

parallel based on Spark.

A. Limitation of SLIM

As mentioned in Section I, there is an inherent limitation of

SLIM, SLIM can only learn the similarity of two items which

at least be co-purchased/rated by one user, similarities

between items which have not been co-purchased/rate by any

users cannot be learned. Here is a concrete example for

clearly understanding this limitation. We build the user-item

bipartite network from user-item purchasing matrix. The

circular shape represents users, and the triangle represents

items, if user has purchased/rated item , there will be an

edge between and .

1u 2u 3u 4u 5u

1t 2t 3t

Fig. 1. User-item bipartite network.

As Fig. 1 shows, in this system, there are 5 users

() and 3 items (). The problem is that

now we have to make recommendations (top-2) for .

Obviously, except and , other users that have purchased

item all purchased item meanwhile. That means has a

high similarity to , and except , users () that have

purchased item all purchased , there is a high similarity

between and , too, so we can recommend t2 and to

 based on the high similarities of () and ().

However, in this system, there is no user who has

co-purchased item and item , and the SLIM method

cannot capture the potential relation between t1 and t3. After

learning, the entry (1, 3) of the sparse coefficient matrix

will be 0 (=0), therefore, if we use the SLIM method to

generate recommendations for , only will be

recommended to . But in fact, indeed has a high

similarity to , and should also be recommended to .

In order to avoid this kind of situation, we propose a novel

method based on bipartite network to solve this problem.

B. UIIM

The SLIM method learns a sparse coefficient matrix as

the item-item similarity matrix, and then calculates the

user-item prediction matrix ̃ as a dot product of and

with Equation (1). In order to solve the limitation mentioned

above, UIIM constructs a user-item interest matrix from

based on the user-item bipartite network, and the matrix ̃

will be the dot product of matrix and .

 ̃ (3)

The user-item interest matrix represents users’ interests

in items learned from user-item bipartite network. In the

user-item bipartite network, all users and items are regarded

as vertexes. If user has purchased item , there will be an

edge between and , and the length of each edge is 1. In

this bipartite network, paths between users and items indicate

the interest of users in items. For a certain user and an

item , if has a high interest in , paths between them

will have characters below,

1) There will be a lot of paths between them.

2) Lengths of paths between them are short.

3) Paths between them do not contain vertexes of big

degrees.

Journal of Advances in Computer Networks, Vol. 3, No. 3, September 2015

252

According to this, first of all, we check whether is 1 or

not, if is 1, it means that has purchased before, and

we don’t need to compute , the value of is 1 in

this situation. On the hand, we start at vertex to find paths

to vertex based on depth first searching method, if there is

a path from to , it indicates that has a positive

interest in denoted by which is initialized with 1 before

we start to search , when we arrive a vertex in , we

multiply by the reciprocal of the degree of to update it,

and will be the sum of , k ranges from 1 to the number of

paths between and . From the above, we propose

formula (4) to compute .

 {
∑ ∏

 (4)

where p is the number of paths that start from vertex to

vertex , and is the set of vertexes in path , is the

degree of vertex v, and in order to terminate the process of

searching paths from to , we set a maximum iterations to

stop it.

TABLE I: USER-ITEM INTEREST MATRIX

 1 1 1/16

 1 1 1/16

 1/8 1 1

 1/8 1 1

 1 1/3 0

As the system that Fig. 1 described, Table I shows the

user-item interest matrix after the fourth iteration, the entry

(5, 2) in is a positive number, and since and have

been co-purchased by users, the entry (2, 3) in is a

positive number, too. Therefore, the score ̃ which is the

product of and will be positive and will be

recommended to .

Comparing to the user-item purchasing matrix , besides

the existing purchasing records, the user-item interest matrix

 enriches the potential interest of users in items, and as links

between items, these potential interests can help find the

transitive relations between items that have not been

co-purchased by users when generating recommendations by

compute .

C. Parallel Algorithm for Computing

Both UIIM and SLIM have to learn with Equation (1), a

SGD (Stochastic Gradient Descent) method is introduced in

[5] which has achieved less time of computing than [3].

But when the scale of the data becomes larger, it is difficult

for serial algorithm to learn with a larger amount of

computing, so we provide a parallel algorithm to compute

 based on Spark with Batch Gradient Descent method.

Serial algorithm learns each column of with Equation (5):

‖ ‖

 (5)

Assume that the size of is m×n and the iterative time is k,

for each column of , we have to go through rows of to

compute () of k-time iteration with serial

algorithm, the complexity is O(kmn^3). And with Spark, we

can compute () in parallel as Fig. 2 and Table II

show, the complexity can be reduce to O(kn^3).

TABLE II: PARALLEL ALGORITHM FOR

Algorithm of learning

for each column of

{

 for q from 1 to k // iterative time

 {
 computing gradient descent

direction () in parallel
 }

 update
}

1w

iw

nw

W

…

…

ia

1a

ma

.
.

.
.

iAw

Fig. 2. Compute in parallel.

IV. EXPERIMENT

In this section, we evaluated the performance of UIIM and

the performance of the parallel algorithm of learning matrix

 on different scale data sets.

A. Data Set

We evaluated the performance of UIIM on a benchmark

data set in Table III, namely, Movielens [6], and we split

these three data sets with program provided by [7].

TABLE III: EXPERIMENTAL DATA SETS

dataset Users items ratings

ML100K 943 1682 100000

ML1M 6040 3952 1000209

ML10M 71567 10677 10000054

UIIM aims to improve the limitation of SLIM that

similarities between two items can be learned only when they

have been co-purchased by a user, and on ML100K, 81.9%

pair of items have not been co-purchased by any user. It

indicates that ML100K data set can measure the performance

of UIIM effectively.

And we compared the cost of serial algorithm of

computing with parallel algorithm on the three data sets

above. To evaluate our algorithm, we conducted performance

experiments based on Spark (version 1.0.0), Spark platform

is deployed on nine Huawei RH2285 2U servers, including

eight worker nodes and one master node. Each node has Intel

(R) Xeon (R) CPU E5530 @ 2.40GHz dual-processor, 48GB

RAM, 4T hard drive.

B. Evaluation Methodology

In this paper, we evaluate the quality of recommendations

with the Precision of the algorithm. Assume that P(u) is the

set of items that recommended for user , T(u) is the set of

Journal of Advances in Computer Networks, Vol. 3, No. 3, September 2015

253

items user u has purchased in the test data. U is the set of

users, and then the Precision can be described as:

∑ | () ()|

∑ | ()|
 (6)

p@k means that the precision of the recommender system

when it recommends a ranked list of items with a size of k to

each user in the system. In order to evaluate a recommender

system comprehensively, different value of k is proposed to

calculate the precision. And we also compare computing time

of learning of the serial algorithm with the parallel

algorithm on three different data sets above.

V. CONCLUSION

We implement the SLIM with SGD (Stochastic Gradient

Descent) method mentioned in [5], the UIIM method

described above, the parallel algorithm of learning matrix .

And the result of itemKNN method is from Table II in [5].

Table IV shows the Precision of three different algorithms

on ML100K data set, we can observe that the UIIM method

outperforms over SLIM and itemKNN method with different

value of k, and UIIM achieves a better precision than SLIM

and itemKNN comprehensively.

Fig. 3 shows the time of computing of serial algorithm

and parallel algorithm based on Spark with three data sets

above. Fig. 3 indicates that on ML10M data set, serial

algorithm learns with 91.6 minutes, while parallel

algorithm based on Spark speeds up the computing time to

49.3 minutes over serial algorithm. Parallel algorithm

achieves a better performance than serial algorithm with a

large-scale data.

TABLE IV: THE PRECISION OF DIFFERENT ALGORITHMS

ML100K p@5 p@10 p@15 p@20

itemKNN 0.350 0.296 0.267 0.246

SLIM 0.340 0.306 0.280 0.263

UIIM 0.398 0.350 0.322 0.299

Fig. 3. Time of computing .

REFERENCES

[1] B. Sarwar, G. Karypis, J. Konstan et al., “Item-based collaborative
filtering recommendation algorithms,” in Proc. the 10th International

Conference on World Wide Web, ACM, 2001, pp. 285-295.

[2] C. C. Ma, “A guide to singular value decomposition for collaborative
filtering,” 2008.

[3] X. Ning and G. Karypis, “Slim: Sparse linear methods for top-n

recommender systems,” in Proc. 2011 IEEE 11th International
Conference on Data Mining, IEEE, 2011, pp. 497-506.

[4] S. Kabbur, X. Ning, and G. Karypis, “FISM: Factored item similarity

models for top-N recommender systems,” in Proc. the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data

Mining, ACM, 2013, pp. 659-667.
[5] M. Levy and K. Jack, “Efficient top-N recommendation by linear

regression,” in Proc. Large Scale Recommender Systems Workshop in

RecSys'13, 2013.
[6] MovieLens. [Online]. Available:

http://grouplens.org/datasets/movielens/

[7] GitHub. [Online]. Available: https://github.com/Mendeley/mrec

Zhixiong Jiang is a deputy chief engineer of

Changping Data Center and a technical director of

cloud computing project of China National Petroleum

Corporation. He obtained his M.E degree in computer
application from the University of Shanghai for

Science and Technology and the PhD degree in

computer software from Fudan University, China. His
research interests are in the area of cloud computing

and system architecture.

Chunyang Lu is the deputy director of Changping

Data Center of Bureau of Geophysical Prospecting

INC., China National Petroleum Corporation and the
deputy general manager of CNPC Beijing Richfit

Information Technology Co., Ltd. He obtained his

M.E degree in software engineer from Beihang
University. His research interests are in the area of

construct and operation the cloud computing center.

Siyuan Zheng is a student with the School of

Computer in Beijing University of Posts and

Telecommunications, his major is computer science.
His research area is data mining and recommender

system.

Juan Yang is an associated professor of Beijing
University of Posts and Telecommunication, China.

She obtained her M.E degree in computer application

and the PhD degree in communication and
information system from Beijing University of Posts

and Telecommunication, China. Her research interests

are in the area of cloud computing, intelligent
information processing and communication software.

Journal of Advances in Computer Networks, Vol. 3, No. 3, September 2015

254

