



Abstract—The Internet provides a powerful, cost effective,

reliable, and survivable communication over the world for

different services like e-commerce, finance, education, military,

and so on. The Internet has been rapidly increased; it has been

growing at unprecedented rates. As the Internet become huge,

its network performance becomes subjected to a lot of problems

that decrease the communication performance like congestion,

interference, reordering and so on.

In this paper, we focus on measuring the impact of packets

and ACKs reordering on the performance of TCP variants

namely TCP Reno, TCP New Reno, TCP SACK, and TCP

Vegas, we also analyze the performance of these protocols when

their duplicate acknowledgement threshold (Dupthresh) values

are increased in order to prevent false fast retransmissions and

unnecessary Congestion Window Size (CWND) reductions.

Index Terms—TCP, out-of-order, NS-2, TCP Reno, TCP new

Reno, TCP SACK, TCP Vegas.

I. INTRODUCTION

The Internet communication is managed by set of protocols

grouped by several layers, these protocols and layers

construct the communications framework model or suite,

TCP/IP suite one of the most common of all network protocol

suites. TCP/IP is a hierarchical protocol made up of

interactive layers (Fig. 1).

Fig. 1. TCP/IP layers.

Application layer are placed at the top of TCP / IP stack [1],

it include many protocols, such as (FTP, HTTP, SMTP and so

on) for application communication. The transport layer

follows the application layer. TCP/IP makes available two

distinct transport layer protocols to the application layer:

Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP). In our thesis, we depend Transmission

Control Protocol (TCP) which is the most commonly used

protocol in the Internet, because it is used for so many

application protocols such as HTTP, POP, SMTP, etc. to

Manuscript received November 12, 2014; revised June 14, 2015.

S. Kadry is with American University of the Middle East, Kuwait (e-mail:

skadry@gmail.com).

A. E. Al-Issa was with Arts Sciences and Technology University,

Lebanon (e-mail: eng.aliedan@yahoo.com).

transfer data reliably between the source and destination. TCP

provides reliable connection between the sender and the

receiver by using sequence number for each packet and ACKs

that confirm the delivery of the packet to the destination, TCP

uses several techniques and algorithms to regulate the

transmission rate at which the sender must send such as

congestion control and flow control and etc.

The recent researches [2], [3] appear that the occurrence of

packet reordering on the network is not pathological behavior.

Bennett et al. [4] had intended that reordering is highly

prevalent on many links. The results of their study [4] indicate

that the probability of a session, running through the US

MAE-East exchange, experiencing packet reordering was

over 90%. Intuitively, Bennett et al. referenced that the reason

for the large proportion of flows experiencing reordering was

the presence of parallelism on the routes taken by the packets

flowing through the network. A test was conducted by

Stanford Linear Accelerator Center (SLAC), the test included

256 sites and data packets were sent from SLAC to all these

sites. It was found that roughly 25% of the sites exhibit

reordering of packets (http://www-iepm.slac.stanford.edu/

monitoring/reorder/2000).

In this paper, we focus on measuring the impact of packets

and ACKs reordering on the performance of TCP variants

TCP Reno, TCP New Reno, TCP SACK, and TCP Vegas, we

also analyze the performance of these protocols when their

Dupthresh values are increased in order to prevent false fast

retransmissions and unnecessary CWND reductions.

II. TRANSMISSION CONTROL PROTOCOL (TCP)

The Internet provides a convenient and cost-effective

communication platform for electronic commerce, education,

and entertainment. The success of the Internet arises from its

capabilities to support survivable, robust, and reliable

end-to-end data transfer services a lot of applications running

over a set of end-systems. The Internet is originated from the

Advanced Research Projects Agency Network (ARPANET)

designed to support survivable military communications.

Currently, Transmission Control Protocol (TCP) [5] is the

most popular transport layer protocol that provides

process-to-process, full duplex, in-order delivery, connection

oriented, flow control, Error control, and reliable data transfer

in the Internet. TCP is one of the two original components of

the TCP/IP suite, complementing the Internet Protocol (IP),

and therefore the entire suite is commonly referred to as

TCP/IP. TCP provides a communication service at an

intermediate level between an application program and the

Internet Protocol (IP). TCP [6] provides the service of

exchanging data directly between two network host‟s

Modeling and Simulation of Out-of-Order Impact in TCP

Protocol

Seifedine Kadry and Ali Edan Al-Issa

Journal of Advances in Computer Networks, Vol. 3, No. 3, September 2015

220DOI: 10.7763/JACN.2015.V3.170

processes by adding port number for each process in the port

field of the TCP header, whereas IP handles addressing and

routing data across one or more networks. In particular, TCP

allows the sending process to send the data as a stream of byte

and allow the receiver to obtain the data as stream of byte, so

TCP creates an imaginary environment in which the process

seem to be connected by an imaginary “tube” that carries their

bytes across the internet. The processing (write and read data)

on the both direction may not be at the same rate, so TCP need

buffer for storage on both direction (sender and receiver). The

Network layer, which work as services provider for Transport

layer, need to send data in packet format not as stream of byte,

so TCP groups number of bytes together into a packet or

segment. A TCP connection provides a full-duplex service: If

there is a TCP connection between Process A on one host and

Process B on other host, then application layer data can flow

from Process A to Process B at the same time as application

layer data flows from Process B to Process A. TCP is

connection oriented protocol that means when application

process at one of the host wants to send or receive data from

another application process at the other host, TCP must

establish virtual connection (not physical) and make”

handshaking” with each other then data are exchanged in both

side, after sending data the connection is terminated.

The TCP [7] must recover from data that is damaged, lost,

duplicated, or delivered out of order by the internet

communication system. This is achieved by assigning a

sequence number to each octet transmitted (segment), and

requiring an acknowledgment (ACK) from the receiving TCP.

Segment sequence number is the byte-stream number of the

first byte in the segment, that‟s mean when a process in Host

A wants to send a stream of data to a process in Host B over a

TCP connection, the TCP in Host A will implicitly number

each byte in the data stream, if the data stream consists of a

file consisting of 100,000 bytes, the MSS (maximum segment

size) is 1,000 bytes, and that the first byte of the data stream is

numbered 0, the second segment gets assigned sequence

number 1,000, the third segment gets assigned sequence

number 2,000, and so on. Each sequence number is inserted in

the sequence number field in the header of the appropriate

TCP segment. If the ACK is not received within a timeout

interval, the data is retransmitted. At the receiver, the

sequence numbers are used to correctly order segments that

may be received out of order and to eliminate duplicates.

When a destination receives a data segment, it acknowledges

the receipt of the segment by issuing an acknowledgement

(ACK) with the next expected data octet number (segment).

The time elapsed between when a data segment is sent and

when an ACK for the segment is received is known as the

round-trip time (RTT) of the communication between the

source and the destination, which is the sum of the

propagation, transmission, queuing, and processing delays at

each hop of the communication, and the time taken to process

a received segment and generate an ACK for the segment at

the destination.

III. CONGESTION CONTROL

An important issue in the Internet is congestion.

Congestion in a network may occurs if the load on the network

(the number of packet sent to the network) is greater than the

capacity of the network (the number of packets a network can

handle). Congestion control refers to the mechanisms and

techniques to control the congestion and keep the load below

the capacity.

Congestion in the network occurs because routers and

switches have queues (buffers that hold the packets before and

after processing). The packet is put in the appropriate output

queue and waits its turn to be sent. These queues are finite, so

it is possible for more packets to arrive at a router than the

router can buffer.

There are two broad approaches of congestion control that

are taken in practice, these types are:

 End-to-end congestion control. In an end-to-end

approach to congestion control the network layer

provides no explicit support to the transport layer for

congestion control purposes. The presence of congestion

in the network must be inferred by the end systems based

only on observed network behavior (for example, packet

loss and delay). TCP segment loss (as indicated by a

timeout or a triple duplicate acknowledgment) is taken as

an indication of network congestion and TCP decreases

its window size accordingly.

 Network-assisted congestion control. With

network-assisted congestion control network-layer

components (routers) provide explicit feedback to the

sender regarding the congestion state in the network.

This feedback may be as simple as a single bit indicating

congestion at a link.

The TCP congestion-control mechanism operating at the

sender keeps track of three variables per connection:

 The Congestion Window (CWND) is a sliding window,

which constraint on the rate at which a TCP sender can

send traffic into the network, before receiving an

Acknowledgement.

 The Receiver's Advertised Window (RWND) is flow

control from the Receiving TCP, indicating a window

size of data the receiver is willing to accept.

 The Slow Start Threshold (Ssthresh) is a value used to

decide whether the Sending TCP is transmitting packets

using the Slow Start or Congestion Avoidance algorithm,

and if the CWND variable should be adjusted.

 Specifically, the amount of unacknowledged data at a

sender may not exceed the minimum of CWND and

RWND, that is:

LastByteSent - LastByteAcked < min {cwnd, rwnd}

There are several methods and techniques for improving

the performance of TCP by limiting the sending rate of data

packet by limiting the amount of unacknowledged segments

allowed to be sent, and the size of the congestion window; we

will discuss these techniques just after we summarize the TCP

algorithms.

IV. TCP ALGORITHMS [8]

A. Slow Start

Slow start is conducted in the beginning of every TCP

connection and its main purpose is to find the maximum

Journal of Advances in Computer Networks, Vol. 3, No. 3, September 2015

221

available bandwidth at which it can send data without ca using

the network to be congested.

B. Congestion Avoidance

If the receiver window is large enough, the slow start

mechanism will start discarding packets.

C. Fast Retransmission

If an out-of-order segment is received TCP generates a so

called duplicate acknowledgment. This duplicate

acknowledgment is sent immediately from the receiver to the

sender indicating that a segment arrived out-of-order, and

which segment that was supposed to be received.

D. Fast Recovery

After fast retransmit is conducted, congestion avoidance

and not slow start is performed. This behavior is called Fast

Recovery.

V. TCP VARIANTS

A. TCP Tahoe

Tahoe refers to the TCP congestion control algorithm. TCP

Tahoe is based on a principle of „conservation of packets‟, i.e.

if the connection is running at the available bandwidth

capacity then a packet is not injected into the network unless a

packet is taken out as well.

B. TCP Reno

This Reno [9] retains the basic principle of Tahoe, such as

slow starts and the coarse grain re-transmit timer. However it

adds some intelligence over it so that lost packets are detected

earlier and the pipeline is not emptied every time a packet is

lost.

C. TCP New Reno

New RENO [10], [11] is a slight modification over

TCP-RENO. It is able to detect multiple packet losses and

thus is much more efficient that RENO in the event of

multiple packet losses.

D. TCP Sack

TCP with Selective Acknowledgments (SACK) [11] is an

extension of TCP Reno and it works around the problems face

by TCP RENO and TCP New-Reno, namely detection of

multiple lost packets, and retransmission of more than one

lost packet per RTT.

E. TCP Vegas

Vegas is a modified Reno. TCP Vegas [12] is different

from TCP Reno in the sense that:

1) A new retransmission mechanism is used

2) An improved congestion avoidance mechanism that

controls buffer occupy

3) A modified slow start mechanism

That solves the problem of coarse gain timeout. TCP Vegas

include a modified retransmission strategy that is based on

fire-gained measurements of the RTT as well as new

mechanism for congestion detection during slow start and

congestion avoidance.

VI. RESEARCH METHODOLOGY

In this section, we provide a description for the research

methods used for analyzing the performance of TCP variants

when the network experience reordering. Network simulation

[13] is a technique where a program models the behavior of a

network. Network simulator is a software program that

simulates the working of a computer network. In simulators,

the computer network is typically modeled with devices and

traffic before the performance is analyzed. Simulations

provide important methods to compare different TCP variants

and reordering tolerant algorithms when the network

experience packet reordering and study their performance in

terms of throughput, congestion window, fast retransmission

ratio, link utilization, and timeout ratio. For performance

evaluation task, the task can be classified to several steps. Fig.

2 shows software simulation research methodology preferred,

that we used, for use a seven-step approach in conducting a

successful simulation study adopted by A. M. Law [14].

Fig. 2. A seven step approach for conducting a successful simulation study

(Law, 2008).

Now, we study the impact of reordering on the various TCP

protocols namely TCP Reno, TCP New Reno, TCP SACK,

and TCP Vegas. Firstly we analyze the throughput

performance of Reno, New Reno, Vegas, and SACK when

packets get delayed due to the various reordering distributions

such as frequent delay distribution, then we analyze the

performance of these protocols when their Dupthresh values

are increased in order to prevent false fast retransmissions and

unnecessary CWND reductions. Our network topology is

given in the following Fig. 3.

Fig. 3. Network topology.

Journal of Advances in Computer Networks, Vol. 3, No. 3, September 2015

222

The simulated network has a source and destination node

connected to two intermediate routers. The nodes are

connected to the routers. To simulate packet reordering, we

repeatedly change the R1-R2 path delay according to normal

distribution such that every path delay sample is at least 50ms.

The mean and standard deviation of the path delay are (200 α

+ 50)ms and 200 α /3ms, respectively, where α is the path

delay factor ranging from 0 to 2 in our study. A larger α will

induce more variation in the path delay, thereby increasing the

degree of packet reordering.

The time intervals between two successive changes on the

path delay, denoted as inter switching time; regulate the

frequency of the reordering events. In our simulation study,

the inter switching time, 𝛽, is exponentially distributed with

mean 50ms or 250ms. The smaller the inters witching time is

the more frequently reordering events are produced, and vice

versa. Our simulations use 1500 byte packets. We used the

drop-tail queuing strategy with a queue size set to 300

segments. Reordering was introduced at the bottleneck link

(R1, R2). The experiments were conducted using a single

long lived FTP flow traversing the nodes A and B. The

maximum window size of the TCP flow was also set to 500

segments. The TCP flow lasts 1100 seconds. We vary the path

delay factor from 0 to 2 and set the mean of inter switching

time, 𝛽 to 250 ms to introduce packet reordering events and

compare the throughput performance of the simulated

network using TCP Reno, SACK, New Reno, and Vegas.

As shown in Fig. 4, Reno and SACK protocols have all

very similar throughput performance throughout the tested

range of path delay factor, and they give a slight improvement

in throughput performance over New Reno for all tested path

delay factor, for example, when path delay factor set to 0.2,

TCP-SACK throughput performance is almost 2.5% more

than TCP New Reno, and when path delay factor set to 0.4,

TCP-Reno throughput performance is almost 9% more than

TCP New Reno. Because TCP-New Reno uses partial ACK in

the Fast Recovery phase, so the packet reordering result in the

unnecessary retransmission of an entire window of data, in

opposition TCP-SACK and TCP Reno don't use partial-ACK

in the Fast Recovery phase, and TCP-SACK uses sack option

to detect loss packets. Also TCP SACK and Reno outperform

TCP-Vegas for all tested path delay factor from 0 to 2. For

example, when path delay factor set to 0.2, TCP-Reno

throughput performance is almost 73% more than TCP Vegas,

and when path delay factor set to 0.6, TCP Sack throughput

performance is almost 31% more than TCP Vegas.

Now, we compare the throughput performance and fast

retransmission ratio of the simulated network using Reno,

New Reno, SACK, and Vegas when packets experience

reordering with different Dupthresh values. The link between

the routers is set to 3 Mbps capacity with a configurable delay.

The process of delaying a packet is normally distributed with

a mean packet delay of 250ms and standard deviation of

200/3ms. Also the inter switching time 𝛽 is exponentially

distributed with mean 250ms. In each experiment we vary the

Dupthresh values from 3duplicate ACKs to 18 duplicate

ACKs. From the Fig. 5, it is clear when the value of Dupthresh

is increased from three duplicate ACKs, the throughput

performance of TCP SACK, Reno and New Reno increased

to a large extent.

Fig. 4. Frequent delay distributions — throughput versus path delay factor.

Fig. 5. Frequent delay distributions: throughput versus Dupthrshs.

Fig. 6. Frequent delay distributions: fast retransmission ratio versus

Dupthrshs.

When the value of Dupthresh equal to 3 the throughput

performance of TCP SACK and Reno equal to 0.6 Mbps and

the throughput performance of TCP New Reno for this value

of Dupthresh equal to 0.54 Mbps, whereas the throughput

values of these protocols equal to 1.1Mbps, 1.2Mbps and 1.1

Mbps respectively when Dupthresh equal to 10, and the

throughput values of these protocols equal to 2 Mbps, 1.8

Mbps and 1.8 Mbps when Dupthresh equal to 18, Whereas the

throughput performance of TCP Vegas doesn't affect with

increasing of Dupthresh values.

From the Fig. 6, it is evident that when the value of

Dupthresh is increased from three duplicate ACKs, the

Journal of Advances in Computer Networks, Vol. 3, No. 3, September 2015

223

number of CWND reductions due to fast retransmissions

decrease, and this result in throughput improvement. For

example, when the value of Dupthresh equal to 3, the

percentage of Fast Retransmitted packet for TCP New Reno

equal to 9% and the percentage of Fast Retransmitted packet

for TCP SACK for this value of Dupthresh is almost 3.5%,

whereas the percentage of Fast Retransmitted packet of these

protocols equal to 4% for TCP New Reno and equal to 1% for

TCP SACK when the value of Dupthresh equal to 10.

VII. CONCLUSION

In this research, we evaluated the performance of TCP

variants namely TCP SACK, Reno, New Reno, and TCP

Vegas when the network experiences reordering and/or

reordering. We found that when the network suffer from

reordering, the performance of all TCP variants dropped

extremely, we also found that when we increase the value of

Dupthresh for TCP variants the throughput performance of

these protocols can be improved in presence of reordering.

REFERENCES

[1] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down

Approach, 5th ed. Addison Wesley, 2009.

[2] G. Iannaccone, S. Jaiswal, and C. Diot, “Packet reordering inside the

Sprint backbone,” Sprint ATL Technical Report TR01-ATL-062917,

2001.

[3] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley,

“Measurement and classification of out-of-sequence packets in a tier-1

IP backbone,” IEEE/ACM Transactions on Networking, vol. 15, no. 1,

February 2007.

[4] J. Bennett, C. Partridge, and N. Shectman, “Packet reordering is not

pathological network behavior,” IEEE/ACM Transactions on

Networking, vol. 7, no. 6, pp. 789-798, Dec. 1999.

[5] J. Postel, “Transmission control protocol,” RFC 793, Protocol

Specification, DARPA Internet Program, Sept. 1981.

[6] A. Behrouz, TCP/IP Protocol Suite, 4th ed. McGraw Hill, 2010.

[7] K. Fall and K. Varadhan, The NS Manual (Formerly NS Notes and

Documentation), The VINT Project, May 2006.

[8] A. M. Law, “How to build valid and credible simulation models,” in

Proc. the 40th Conference on Winter Simulation, Florida, 2008.

[9] W. Stevens, “TCP slow start, congestion avoidance fast retransmit

algorithm,” IETF RFC 2001, January 1997.

[10] M. Mathis and J. Mahdavi, “Forward acknowledgement: Refining TCP

congestion control,” in Proc. ACM SIGCOMM, 1996, pp. 281-291.

[11] B. Qureshi, M. Othman, and N. A. W. Hami, “Progress in various TCP

variants,” in Proc. 2nd International Conference on Computer,

Control and Communication, February 2009, pp. 1-6.

[12] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion

avoidance on a global internet,” IEEE Journal on Selected Areas in

Communication, vol. 13, no. 8, pp. 1465-1480, 1995.

[13] A. Gurtov and S. Floyd, “Modeling wireless links or transport

Protocols,” ACM Computer Communication Review, vol. 34, pp.

85-96, 2003.

[14] S. Kadry, I. Kamar, A. Kalakech, and, “TCP: An improvement on TCP

protocol,” Journal of Theoretical and Applied Information

Technology, pp. 165-171, 2005.

Seifedine Kadry is an associate professor at

American University of the Middle East, Faculty of

Engineering. He got his master degree in computer

science and applied math from AUF-EPFL-Inria,

Lebanon in 2002. He received the doctor degree from

the Clermont Ferrand II University, France in 2007.

His research interests include software testing and

security.

Ali Edan is a graduate student from Arts Sciences and

Technology University in Lebanon. His research

interest is analysis of networking protocol.

Journal of Advances in Computer Networks, Vol. 3, No. 3, September 2015

224

