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Abstract—The Internet provides a powerful, cost effective, 

reliable, and survivable communication over the world for 

different services like e-commerce, finance, education, military, 

and so on. The Internet has been rapidly increased; it has been 

growing at unprecedented rates. As the Internet become huge, 

its network performance becomes subjected to a lot of problems 

that decrease the communication performance like congestion, 

interference, reordering and so on. 

In this paper, we focus on measuring the impact of packets 

and ACKs reordering on the performance of TCP variants 

namely TCP Reno, TCP New Reno, TCP SACK, and TCP 

Vegas, we also analyze the performance of these protocols when 

their duplicate acknowledgement threshold (Dupthresh) values 

are increased in order to prevent false fast retransmissions and 

unnecessary Congestion Window Size (CWND) reductions. 

 
Index Terms—TCP, out-of-order, NS-2, TCP Reno, TCP new 

Reno, TCP SACK, TCP Vegas.  

 

I. INTRODUCTION 

The Internet communication is managed by set of protocols 

grouped by several layers, these protocols and layers 

construct the communications framework model or suite, 

TCP/IP suite one of the most common of all network protocol 

suites. TCP/IP is a hierarchical protocol made up of 

interactive layers (Fig. 1). 

 

 
Fig. 1. TCP/IP layers. 

 

Application layer are placed at the top of TCP / IP stack [1], 

it include many protocols, such as (FTP, HTTP, SMTP and so 

on) for application communication. The transport layer 

follows the application layer. TCP/IP makes available two 

distinct transport layer protocols to the application layer: 

Transmission Control Protocol (TCP) and User Datagram 

Protocol (UDP). In our thesis, we depend Transmission 

Control Protocol (TCP) which is the most commonly used 

protocol in the Internet, because it is used for so many 

application protocols such as HTTP, POP, SMTP, etc. to 
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transfer data reliably between the source and destination. TCP 

provides reliable connection between the sender and the 

receiver by using sequence number for each packet and ACKs 

that confirm the delivery of the packet to the destination, TCP 

uses several techniques and algorithms to regulate the 

transmission rate at which the sender must send such as 

congestion control and flow control and etc. 

The recent researches [2], [3] appear that the occurrence of 

packet reordering on the network is not pathological behavior. 

Bennett et al. [4] had intended that reordering is highly 

prevalent on many links. The results of their study [4] indicate 

that the probability of a session, running through the US 

MAE-East exchange, experiencing packet reordering was 

over 90%. Intuitively, Bennett et al. referenced that the reason 

for the large proportion of flows experiencing reordering was 

the presence of parallelism on the routes taken by the packets 

flowing through the network. A test was conducted by 

Stanford Linear Accelerator Center (SLAC), the test included 

256 sites and data packets were sent from SLAC to all these 

sites. It was found that roughly 25% of the sites exhibit 

reordering of packets (http://www-iepm.slac.stanford.edu/ 

monitoring/reorder/2000).  

In this paper, we focus on measuring the impact of packets 

and ACKs reordering on the performance of TCP variants 

TCP Reno, TCP New Reno, TCP SACK, and TCP Vegas, we 

also analyze the performance of these protocols when their 

Dupthresh values are increased in order to prevent false fast 

retransmissions and unnecessary CWND reductions. 

 

II. TRANSMISSION CONTROL PROTOCOL (TCP) 

The Internet provides a convenient and cost-effective 

communication platform for electronic commerce, education, 

and entertainment. The success of the Internet arises from its 

capabilities to support survivable, robust, and reliable 

end-to-end data transfer services a lot of applications running 

over a set of end-systems. The Internet is originated from the 

Advanced Research Projects Agency Network (ARPANET) 

designed to support survivable military communications. 

Currently, Transmission Control Protocol (TCP) [5] is the 

most popular transport layer protocol that provides 

process-to-process, full duplex, in-order delivery, connection 

oriented, flow control, Error control, and reliable data transfer 

in the Internet. TCP is one of the two original components of 

the TCP/IP suite, complementing the Internet Protocol (IP), 

and therefore the entire suite is commonly referred to as 

TCP/IP. TCP provides a communication service at an 

intermediate level between an application program and the 

Internet Protocol (IP). TCP [6] provides the service of 

exchanging data directly between two network host‟s 
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processes by adding port number for each process in the port 

field of the TCP header, whereas IP handles addressing and 

routing data across one or more networks. In particular, TCP 

allows the sending process to send the data as a stream of byte 

and allow the receiver to obtain the data as stream of byte, so 

TCP creates an imaginary environment in which the process 

seem to be connected by an imaginary “tube” that carries their 

bytes across the internet. The processing (write and read data) 

on the both direction may not be at the same rate, so TCP need 

buffer for storage on both direction (sender and receiver). The 

Network layer, which work as services provider for Transport 

layer, need to send data in packet format not as stream of byte, 

so TCP groups number of bytes together into a packet or 

segment. A TCP connection provides a full-duplex service: If 

there is a TCP connection between Process A on one host and 

Process B on other host, then application layer data can flow 

from Process A to Process B at the same time as application 

layer data flows from Process B to Process A. TCP is 

connection oriented protocol that means when application 

process at one of the host wants to send or receive data from 

another application process at the other host, TCP must 

establish virtual connection (not physical) and make” 

handshaking” with each other then data are exchanged in both 

side, after sending data the connection is terminated. 

The TCP [7] must recover from data that is damaged, lost, 

duplicated, or delivered out of order by the internet 

communication system. This is achieved by assigning a 

sequence number to each octet transmitted (segment), and 

requiring an acknowledgment (ACK) from the receiving TCP. 

Segment sequence number is the byte-stream number of the 

first byte in the segment, that‟s mean when a process in Host 

A wants to send a stream of data to a process in Host B over a 

TCP connection, the TCP in Host A will implicitly number 

each byte in the data stream, if the data stream consists of a 

file consisting of 100,000 bytes, the MSS (maximum segment 

size) is 1,000 bytes, and that the first byte of the data stream is 

numbered 0, the second segment gets assigned sequence 

number 1,000, the third segment gets assigned sequence 

number 2,000, and so on. Each sequence number is inserted in 

the sequence number field in the header of the appropriate 

TCP segment. If the ACK is not received within a timeout 

interval, the data is retransmitted. At the receiver, the 

sequence numbers are used to correctly order segments that 

may be received out of order and to eliminate duplicates. 

When a destination receives a data segment, it acknowledges 

the receipt of the segment by issuing an acknowledgement 

(ACK) with the next expected data octet number (segment). 

The time elapsed between when a data segment is sent and 

when an ACK for the segment is received is known as the 

round-trip time (RTT) of the communication between the 

source and the destination, which is the sum of the 

propagation, transmission, queuing, and processing delays at 

each hop of the communication, and the time taken to process 

a received segment and generate an ACK for the segment at 

the destination. 

 

III. CONGESTION CONTROL 

An important issue in the Internet is congestion. 

Congestion in a network may occurs if the load on the network 

(the number of packet sent to the network) is greater than the 

capacity of the network (the number of packets a network can 

handle). Congestion control refers to the mechanisms and 

techniques to control the congestion and keep the load below 

the capacity. 

Congestion in the network occurs because routers and 

switches have queues (buffers that hold the packets before and 

after processing). The packet is put in the appropriate output 

queue and waits its turn to be sent. These queues are finite, so 

it is possible for more packets to arrive at a router than the 

router can buffer. 

There are two broad approaches of congestion control that 

are taken in practice, these types are: 

 End-to-end congestion control. In an end-to-end 

approach to congestion control the network layer 

provides no explicit support to the transport layer for 

congestion control purposes. The presence of congestion 

in the network must be inferred by the end systems based 

only on observed network behavior (for example, packet 

loss and delay). TCP segment loss (as indicated by a 

timeout or a triple duplicate acknowledgment) is taken as 

an indication of network congestion and TCP decreases 

its window size accordingly. 

 Network-assisted congestion control. With 

network-assisted congestion control network-layer 

components (routers) provide explicit feedback to the 

sender regarding the congestion state in the network. 

This feedback may be as simple as a single bit indicating 

congestion at a link. 

The TCP congestion-control mechanism operating at the 

sender keeps track of three variables per connection: 

 The Congestion Window (CWND) is a sliding window, 

which constraint on the rate at which a TCP sender can 

send traffic into the network, before receiving an 

Acknowledgement. 

 The Receiver's Advertised Window (RWND) is flow 

control from the Receiving TCP, indicating a window 

size of data the receiver is willing to accept. 

 The Slow Start Threshold (Ssthresh) is a value used to 

decide whether the Sending TCP is transmitting packets 

using the Slow Start or Congestion Avoidance algorithm, 

and if the CWND variable should be adjusted. 

 Specifically, the amount of unacknowledged data at a 

sender may not exceed the minimum of CWND and 

RWND, that is: 
 
LastByteSent - LastByteAcked < min {cwnd, rwnd} 

 

There are several methods and techniques for improving 

the performance of TCP by limiting the sending rate of data 

packet by limiting the amount of unacknowledged segments 

allowed to be sent, and the size of the congestion window; we 

will discuss these techniques just after we summarize the TCP 

algorithms. 

 

IV. TCP ALGORITHMS [8] 

A. Slow Start 

Slow start is conducted in the beginning of every TCP 

connection and its main purpose is to find the maximum 
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available bandwidth at which it can send data without ca using 

the network to be congested. 

B. Congestion Avoidance 

If the receiver window is large enough, the slow start 

mechanism will start discarding packets. 

C. Fast Retransmission 

If an out-of-order segment is received TCP generates a so 

called duplicate acknowledgment. This duplicate 

acknowledgment is sent immediately from the receiver to the 

sender indicating that a segment arrived out-of-order, and 

which segment that was supposed to be received. 

D. Fast Recovery 

After fast retransmit is conducted, congestion avoidance 

and not slow start is performed. This behavior is called Fast 

Recovery. 

 

V. TCP VARIANTS 

A. TCP Tahoe 

Tahoe refers to the TCP congestion control algorithm. TCP 

Tahoe is based on a principle of „conservation of packets‟, i.e. 

if the connection is running at the available bandwidth 

capacity then a packet is not injected into the network unless a 

packet is taken out as well. 

B. TCP Reno 

This Reno [9] retains the basic principle of Tahoe, such as 

slow starts and the coarse grain re-transmit timer. However it 

adds some intelligence over it so that lost packets are detected 

earlier and the pipeline is not emptied every time a packet is 

lost. 

C. TCP New Reno 

New RENO [10], [11] is a slight modification over 

TCP-RENO. It is able to detect multiple packet losses and 

thus is much more efficient that RENO in the event of 

multiple packet losses. 

D. TCP Sack 

TCP with Selective Acknowledgments (SACK) [11] is an 

extension of TCP Reno and it works around the problems face 

by TCP RENO and TCP New-Reno, namely detection of 

multiple lost packets, and retransmission of more than one 

lost packet per RTT. 

E. TCP Vegas 

Vegas is a modified Reno. TCP Vegas [12] is different 

from TCP Reno in the sense that: 

1) A new retransmission mechanism is used 

2) An improved congestion avoidance mechanism that 

controls buffer occupy 

3) A modified slow start mechanism 

That solves the problem of coarse gain timeout. TCP Vegas 

include a modified retransmission strategy that is based on 

fire-gained measurements of the RTT as well as new 

mechanism for congestion detection during slow start and 

congestion avoidance. 

VI. RESEARCH METHODOLOGY 

In this section, we provide a description for the research 

methods used for analyzing the performance of TCP variants 

when the network experience reordering. Network simulation 

[13] is a technique where a program models the behavior of a 

network. Network simulator is a software program that 

simulates the working of a computer network. In simulators, 

the computer network is typically modeled with devices and 

traffic before the performance is analyzed. Simulations 

provide important methods to compare different TCP variants 

and reordering tolerant algorithms when the network 

experience packet reordering and study their performance in 

terms of throughput, congestion window, fast retransmission 

ratio, link utilization, and timeout ratio. For performance 

evaluation task, the task can be classified to several steps. Fig. 

2 shows software simulation research methodology preferred, 

that we used, for use a seven-step approach in conducting a 

successful simulation study adopted by A. M. Law [14]. 

 

 
Fig. 2. A seven step approach for conducting a successful simulation study 

(Law, 2008).  

 

Now, we study the impact of reordering on the various TCP 

protocols namely TCP Reno, TCP New Reno, TCP SACK, 

and TCP Vegas. Firstly we analyze the throughput 

performance of Reno, New Reno, Vegas, and SACK when 

packets get delayed due to the various reordering distributions 

such as frequent delay distribution, then we analyze the 

performance of these protocols when their Dupthresh values 

are increased in order to prevent false fast retransmissions and 

unnecessary CWND reductions. Our network topology is 

given in the following Fig. 3.  

 

 
Fig. 3. Network topology. 
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The simulated network has a source and destination node 

connected to two intermediate routers. The nodes are 

connected to the routers. To simulate packet reordering, we 

repeatedly change the R1-R2 path delay according to normal 

distribution such that every path delay sample is at least 50ms. 

The mean and standard deviation of the path delay are (200 α 

+ 50)ms and 200 α /3ms, respectively, where α is the path 

delay factor ranging from 0 to 2 in our study. A larger α will 

induce more variation in the path delay, thereby increasing the 

degree of packet reordering. 

The time intervals between two successive changes on the 

path delay, denoted as inter switching time; regulate the 

frequency of the reordering events. In our simulation study, 

the inter switching time, 𝛽, is exponentially distributed with 

mean 50ms or 250ms. The smaller the inters witching time is 

the more frequently reordering events are produced, and vice 

versa. Our simulations use 1500 byte packets. We used the 

drop-tail queuing strategy with a queue size set to 300 

segments. Reordering was introduced at the bottleneck link 

(R1, R2). The experiments were conducted using a single 

long lived FTP flow traversing the nodes A and B. The 

maximum window size of the TCP flow was also set to 500 

segments. The TCP flow lasts 1100 seconds. We vary the path 

delay factor from 0 to 2 and set the mean of inter switching 

time, 𝛽 to 250 ms to introduce packet reordering events and 

compare the throughput performance of the simulated 

network using TCP Reno, SACK, New Reno, and Vegas. 

As shown in Fig. 4, Reno and SACK protocols have all 

very similar throughput performance throughout the tested 

range of path delay factor, and they give a slight improvement 

in throughput performance over New Reno for all tested path 

delay factor, for example, when path delay factor set to 0.2, 

TCP-SACK throughput performance is almost 2.5% more 

than TCP New Reno, and when path delay factor set to 0.4, 

TCP-Reno throughput performance is almost 9% more than 

TCP New Reno. Because TCP-New Reno uses partial ACK in 

the Fast Recovery phase, so the packet reordering result in the 

unnecessary retransmission of an entire window of data, in 

opposition TCP-SACK and TCP Reno don't use partial-ACK 

in the Fast Recovery phase, and TCP-SACK uses sack option 

to detect loss packets. Also TCP SACK and Reno outperform 

TCP-Vegas for all tested path delay factor from 0 to 2. For 

example, when path delay factor set to 0.2, TCP-Reno 

throughput performance is almost 73% more than TCP Vegas, 

and when path delay factor set to 0.6, TCP Sack throughput 

performance is almost 31% more than TCP Vegas. 

Now, we compare the throughput performance and fast 

retransmission ratio of the simulated network using Reno, 

New Reno, SACK, and Vegas when packets experience 

reordering with different Dupthresh values. The link between 

the routers is set to 3 Mbps capacity with a configurable delay. 

The process of delaying a packet is normally distributed with 

a mean packet delay of 250ms and standard deviation of 

200/3ms. Also the inter switching time 𝛽 is exponentially 

distributed with mean 250ms. In each experiment we vary the 

Dupthresh values from 3duplicate ACKs to 18 duplicate 

ACKs. From the Fig. 5, it is clear when the value of Dupthresh 

is increased from three duplicate ACKs, the throughput 

performance of TCP SACK, Reno and New Reno increased 

to a large extent.  

 
Fig. 4. Frequent delay distributions — throughput versus path delay factor. 

 

 
Fig. 5. Frequent delay distributions: throughput versus Dupthrshs. 

 

 
Fig. 6. Frequent delay distributions: fast retransmission ratio versus 

Dupthrshs. 

 

When the value of Dupthresh equal to 3 the throughput 

performance of TCP SACK and Reno equal to 0.6 Mbps and 

the throughput performance of TCP New Reno for this value 

of Dupthresh equal to 0.54 Mbps, whereas the throughput 

values of these protocols equal to 1.1Mbps, 1.2Mbps and 1.1 

Mbps respectively when Dupthresh equal to 10, and the 

throughput values of these protocols equal to 2 Mbps, 1.8 

Mbps and 1.8 Mbps when Dupthresh equal to 18, Whereas the 

throughput performance of TCP Vegas doesn't affect with 

increasing of Dupthresh values. 

From the Fig. 6, it is evident that when the value of 

Dupthresh is increased from three duplicate ACKs, the 
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number of CWND reductions due to fast retransmissions 

decrease, and this result in throughput improvement. For 

example, when the value of Dupthresh equal to 3, the 

percentage of Fast Retransmitted packet for TCP New Reno 

equal to 9% and the percentage of Fast Retransmitted packet 

for TCP SACK for this value of Dupthresh is almost 3.5%, 

whereas the percentage of Fast Retransmitted packet of these 

protocols equal to 4% for TCP New Reno and equal to 1% for 

TCP SACK when the value of Dupthresh equal to 10. 

 

VII. CONCLUSION 

In this research, we evaluated the performance of TCP 

variants namely TCP SACK, Reno, New Reno, and TCP 

Vegas when the network experiences reordering and/or 

reordering. We found that when the network suffer from 

reordering, the performance of all TCP variants dropped 

extremely, we also found that when we increase the value of 

Dupthresh for TCP variants the throughput performance of 

these protocols can be improved in presence of reordering. 
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