

Abstract—The field of Wireless sensor networks is an ever-

growing one. Small, low-cost, low-power sensors that can be

deployed in numerous locations prove to be highly beneficial.

The intent of this paper is to propose a way of monitoring the

environment using low-cost, low-power sensors that function is

a tiny yet robust environment.

A Wireless Sensor Network using Arduino and Raspberry

Pi for remote Environment Monitoring is built to monitor

Atmospheric factors like Temperature, Humidity and Pressure

are measured using XBee sensor nodes, which transmit the

sensor data to a central data aggregator node which is the

Arduino. A lightweight web server built on the Arduino

displays this information on a web page. Another remote data

aggregator node, in the form of MySQL server is configured

on a Raspberry Pi, and the sensor data is stored onto this

database server as well. Sensor data is available for local and

remote access. This MySQL server can also be viewed and

controlled using an Android App.

Index Terms—Arduino, wireless sensor network,

environment, Raspberry Pi, MySQL.

I. INTRODUCTION

The world is moving towards micro and Nano-scale

devices, and Wireless communication technologies are

replacing its wired counterparts. Wireless sensor network

(WSN) is a field that can encompass both these technologies

and bring out the best in them. WSN’s are decentralized and

its nodes specialize in gathering information, processing it

and delivering results without a backbone network for

support. Also, more importantly it is capable of self-

organization [1].

Environment monitoring has been around for centuries

and is one of the most widely used applications of a WSN.

There are growing concerns over environmental issues like

global warming, energy conservation, efficient energy use

etc. Wireless networks have developed greatly over the last

decade. Communication technologies over small distances

have developed immensely. For ex: Bluetooth, Wi-Fi,

ZigBee networks etc. are always improving and moving

towards lower-power, faster data speeds technologies.

The remainder of this paper describes a possible way to

use Arduino and Raspberry Pi for remote weather

monitoring, describing advantages of doing so and how to

implement it efficiently.

Manuscript received May 19, 2014; revised December 27, 2014.
Vinay Raghavan and Hamid Shahnasser are with San Francisco State

University, USA (e-mail: bvinay@mail.sfsu.edu, hamid@sfsu.edu).

II. SYSTEM DESIGN AND OVERVIEW

Sensor Networks designed using wired medium are often

expensive, hard to maintain and restricts mobility. These are

few of the disadvantages of using wired networks.

Autonomous wireless sensor networks interact with its

environment independently and relay its information with

its environment independently and relay its information

wirelessly with other nodes in the network

The flexibility offered by a WSN increases its

applications manifold. The architecture of the system is

described in detail below along with the hardware.

A. System Overview

Fig. 1 is the overview of a Wireless Sensor network for

Environment Monitoring which is made up of a coordinator

node, various sensor nodes, data aggregator nodes for local

(Arduino) and remote storage (Raspberry Pi). Data

collection and processing is done through the Arduino and

XBee devices. Storage and post processing of data is done

on the MySQL server hosted on the Raspberry Pi.

Fig. 1. WSN using Arduino and Raspberry Pi.

The system involves the following components:

Arduino Mega: This is the controller and processing

element of our system. It is based on ATmega2560. It has

54 digital i/o pins of which 15 can be used as PWM outputs

[2]. It has an operating voltage of 5V, with 8KB SRAM

memory and 4KB EEPROM. The Arduino acts as a data

aggregator for the Wireless Sensor Nodes. The sensor nodes

are made wireless using XBee modules. An XBee module is

used for each sensor, so there will be three wireless sensor

nodes which are called end devices/routers, which transmit

sensor information to a central XBee node called the

coordinator.

XBee modules: Provide cost-effective wireless

connectivity to devices in ZigBee mesh networks. It uses

Radio Frequency (RF) to exchange data between XBee

modules. It transmits on 2.4GHz and has its own network

protocols. Although it is not a microcontroller, it has limited

processing power. One of the advantages of using XBee

modules is a special feature they have called “Sleep Mode”

which can be used to reduce power consumption during

Embedded Wireless Sensor Network for Environment

Monitoring

Vinay Raghavan and Hamid Shahnasser

13

Journal of Advances in Computer Networks, Vol. 3, No. 1, March 2015

DOI: 10.7763/JACN.2015.V3.134

periods of inactivity. The XBee coordinator is physically

connected to the Arduino, which in turn is connected to a

computer. Thus, the coordinator collects information from

all sensor nodes and relays this information to the Arduino

which temporarily stores this data on the On-Board

EEPROM and sends this data to a MySQL database hosted

on a raspberry Pi.

Raspberry Pi: The Pi is a small, inexpensive personal

computer. It has a SD card slot which can be used to boot up

the computer from one of the free open sources. Linux

operating systems that is available. A HDMI or DVI with

HDMI adapter monitor is required with USB keyboard;

mouse and 5V supply to power this device. On this platform,

a MySQL database server is hosted to store sensor data in a

remote location.

B. ZigBee as Wireless Medium

ZigBee is a wireless standing based on IEEE802.15.4 that

has been gaining popularity in the field of Wireless sensing

and control. Its biggest advantages are its power, cost, low

data rate, reliability and overall security. Compared to other

commonly used wireless technologies like Wi-Fi, Bluetooth

etc., ZigBee offers high transmission capability.

III. LITERATURE REVIEW

A. History

The area of sensor networks has a long history and they

are used in numerous real world applications. Recent

advances in Wireless communication, digital electronics,

and MEMS devices have made the development of low-cost,

low-power and small sensor nodes a reality. Environment

monitoring is a way for us to understand the surroundings

we live in and have the ability to foretell expected patterns

and behavior of the environment in order to prepare better.

B. Present Models of WSN and Their Applications

Ruchi Mittal and Bhatia in [3] propose a system in which

they detect irregular patterns of sensory data with respect to

time and space. They design a system which continuously

queries and monitors sensor data to detect any deviations

from the norm. This is essential in detecting a faulty sensor

node and ensuring it can be quickly replaced. This system is

especially helpful when detecting environmental activity

like forest fire. In order to achieve desired results, Data pre-

processing and sensor data clustering is used. In data pre-

processing, the sensor data is cleaned by putting in missing

values and removing any unwanted data. Mittal and Bhatia

analyze this data cluster by plotting data, comparing them

against expected/predicted patterns and detect anomalies.

Ye and Wang in [4] have a WSN system which is based

on IRIS mote hardware platform which consists of ATmega

128 microprocessor, a RF230 radio chip and external flash

memory for over the air programming [4]. The sensors are

programmed to collect and deliver sensor data periodically.

Sensor data is sent on an “event” basis, which means that

whenever there is a sudden change in the environment, the

sensor data is sent. However, the sensors are always

“listening”, i.e. they wait for changes in environment and

report only once a drastic change is detected. These sensors

are user-defined and act based on requirement. The sensors

used are barometric pressure, ambient temperature,

humidity, wind direction, wind speed, and rainfall sensors.

Once data from all the nodes are collected, this information

is transmitted to a local base station (ATmega 128) through

multi-hop transmission [4]. This data is stored in an

embedded database SQLite3 and displayed on a web-page

using TCP/IP.

Ye and Wang in [5] extend the WSN from [4] to include

ZigBee technology as the wireless medium. ZigBee is a

wireless standard based on IEEE802.15.4 which is low cost,

low power, low data rate and more importantly, highly

reliable and secure medium of networking. The WSN is

built using a coordinator node and several sensor nodes, a

workstation and a database. Raw sensor data is collected

from multiple nodes and processed using A/D converters

and sent to the coordinator node, which takes care of storage

and data analysis. CDMA/GPRS service provides ability to

remotely control the network. Visual Basic language is used

to build an interface for the WSN and can be accessed using

any Windows system.

Another system implemented by Sung et al. in [6] uses

Arduino stalker, a feature rich Arduino compatible board

based on ATmega328P. Real-time sensor data i.e.

temperature, humidity, soil moisture, air quality,

illumination is displayed on desktop using Visual C#.

C. WSN Using Arduino and Raspberry Pi

Although the systems mentioned above are effective in

achieving the purpose of collecting sensor data and storing

them, they do have a few limitations that are addressed in

this project. For detecting anomalies in sensor networks,

creating clusters of data and inserting expected data values

and comparing them against received values is a good way

of detecting faulty sensor nodes and replacing them,

however, this project uses the in-built features of MySQL

servers, namely Triggers & Delimiters, [7] using these

features of MySQL, expected data ranges can be specified

in the database table and any deviation from this value will

send a trigger to alert the user that either an event has

occurred or a node is malfunctioning. This can be checked

via the phone app or by logging into the server to check the

latest values updated in the database and compare them with

past values.

The weather monitoring station by Ye et al. in [4] is

similar to the one in this project, but this project has a

customized processing platform, is less vulnerable

compared to the more bulky system employed by Ye et al.

Computers are susceptible to theft and their higher

processing capability also makes them vulnerable to attacks

by hackers or intruders. This project minimizes that risk by

using a MySQL server configured on a Raspberry Pi, which

is a tiny platform which requires a small housing and it’s

easier to camouflage or even embed in the environment

compared to a big processing unit. The use of an app makes

the whole process more accessible and easier to view and

modify sensor data from anywhere in the world without

having to login to a computer.

Along with these features, the fact that it’s a relatively

low cost system, with greater mobility, easy installation, and

greater security makes it an attractive option for

implementing a remote environment monitoring station.

14

Journal of Advances in Computer Networks, Vol. 3, No. 1, March 2015

IV. IMPLEMENTATION STRATEGY

A. Network Structure

The DHT22 and the BMP085 sensors are not analog

sensors and hence cannot be used with XBee radios to

transfer information wirelessly. The TMP36 sensor however,

can be made wireless and used to transfer sensor data using

XBee radios. A ZigBee network consisting of routers and a

coordinator is configured to receive and transmit this

information.

The router XBee hosting the TMP36 sensor can be

powered using batteries, the coordinator XBee is powered

using jumpers/Arduino power pins. The Arduino is powered

by a 8-12V power adapter, and the 5V and 3.3V pins on the

Arduino are used to power the DHT22 and BMP085 sensors.

The sensor nodes are small and low power devices which

can run for a long time and are easy to deploy. Typically

they sense their surroundings and can be configured to send

data packets in the following ways:

 Event Based – The nodes can be configured to be

event driven, i.e. when an event occurs like sudden dip

or increase in temperature, a sleeping sensor can be

woken up to collect data and send the same.

 Time Driven – Nodes can be configured to send data

packets at set time intervals.

 User Need driven – Nodes can be polled for data at

times only when user requires data from it.

The Arduino which is the central unit collects data from

wireless XBee nodes through the coordinator XBee node

connected to it. The sensor nodes have a data collection

mechanism in which sensory data is processed and

transmitted to coordinator radios. This is show is Fig. 2.

Fig. 2. Network structure of WSN.

B. Sensor Nodes Process

Fig. 3. Flowchart of nodes process.

The project involves mainly three sensors for getting

temperature, barometric pressure and humidity values. The

temperature sensor interacts with the Arduino through

wireless XBee nodes while the other two sensors interact

with Arduino directly through its digital pins. The node

process is depicted in Fig. 3.

1) Temperature Sensor: The TMP36 is a low voltage,

precision centigrade temperature sensor that produces a

voltage output proportional to centigrade temperature.

This analog temperature is used to calculate the

temperature value is Celsius and Fahrenheit using the

following formula.

Temp in Celsius = ((raw.temp×1200.0/1024.0)-500.0)/10

Temp in Fahrenheit = ((Temp in Celsius×9.0)/5.0)+32

2) Barometric Pressure Sensor: This is a basic sensor

designed specifically for measuring barometric pressure.

Also, this sensor doubles up as an altimeter, wherein,

pressure changes can be used to calculate altitude

values. Its I2C interface allows easy system integration

with microcontrollers and is based on piezo-resistive

technology. The pressure can be read out from the

BMP085 EEPROM via I2C interface at software

initialization. The pressure value can be used to

calculate absolute altitude using the following formula.

Altitude=44330×(1-(p/p0)
200/1051

)

3) Humidity and Temperature Sensor: The DHT22 outputs

a calibrated digital signal using exclusive digital signal

collecting technique and humidity sensing technology.

It takes about 5mS for single time communication and

requires a single resistor to pull up from data pin to

voltage. The sensor has its own protocol and requires a

bit of logic to read correctly.

C. Storage Options

Sensor information can be in various forms, namely:

 Integers

 Floating Point Numbers

 Raw unprocessed data

The sensory data often requires interpretation, calibration

and conversion by the processing element in the circuit.

This data pre-processing and post-processing is done partly

by the Arduino and the MySQL server.

1) Local storage options for Arduino

The most common form of nonvolatile memory available

to the Arduino is read-only EEPROM (Electrically erasable

programmable read-only memory). Data can be written to

the EEPROM via the I2C protocol. Writing to and reading

from the EEPROM is supported via an Arduino library.

However, for this project and other projects where data is

written periodically for long periods, the available memory

is limited and hence other storage mechanisms have to be

explored for storing sensor data that cumulatively is greater

than the onboard EEPROM of 512KB in the Arduino.

Most Arduino shields accommodate SD card slots. Also,

the Arduino IDE has a library for using SD cards as part of

projects. When compared to EEPROM, SD cards have

15

Journal of Advances in Computer Networks, Vol. 3, No. 1, March 2015

greater memory and can store more data. In this project, SD

card is not used since a higher and faster storage option in

the form of MySQL server is used.

2) Remote storage options

This option involves sending data to another node or

system for storing the data via the internet. This network

connectivity is supported by using Ethernet or Wi-Fi shields

for the Arduino. For this project, a MySQL server

configured on a Raspberry Pi is used to store this sensor

data. This is a preferred option over writing to a SD card

because it is much easier to write and read files using

python; it has a greater processing capability, and more

storage space. MySQL server allows creating databases and

tables for storing this data, the tables can be configured such

that it can get raw data from Arduino and process it and

convert it into user readable form. This reduces processing

time and memory usage on the Arduino.

V. SALIENT FEATURES

This project is aimed at providing a means to monitor a

remote/isolated environment while providing easy

accessible means of viewing and analyzing this sensor data.

Some of the features implemented and final outcome of the

project is listed below.

The project has a few features that are used to secure the

WSN and also to improve performance and longevity. These

are mentioned below:

Low-Power: The WSN consists of low-power sensors

that typically require less than 5V operating voltage to

function. And the whole network has a power rating of less

than 1W. Therefore, the project satisfies one of the biggest

criteria when designing a WSN, i.e. it is low power.

Also, this project employs “Sleep Mode” for the XBee

wireless sensor nodes. Sleep modes can be used to

effectively reduce power consumption and significantly

extend battery lifetime. This is achieved using Indirect

Messaging in which the XBee nodes conserver power

through cycles of sleep and wake up. The remote nodes

sleep at set time intervals and wake up and poll the base

node to transmit collected data. If indirect messages are not

in the sensor node queue, coordinator does not transmit any

message to the microcontroller. In order for this method to

work efficiently, the cyclic sleep period (SP) parameter of

the coordinator should be greater than or equal to time

before sleep (ST) parameter of the remote sensor node.

The coordinator accepts messages from a remote node

and places it in a buffer till the node sends a poll request.

The XBee is configured to hold onto this poll request for a

period of 2.5 times the sleeping period of the remote node

Security: Security threats in a WSN can be of both

physical and virtual nature. The physical threats are

minimized by using a robust yet small platform that is easy

to embed and camouflage in a remote environment. This

makes it hard to detect its presence and thus mask it from

potential attackers [8], [9]. Further security measures are

employed in the network to guard against hackers. Some of

them are listed below:

1) Pan ID: XBee are by default configured to operate on

the same PAN ID. This ID can be changed to suit the

project & a unique ID can be assigned to all nodes on

the network so that the coordinator accepts join requests

only from genuine nodes.

2) Baud Rate: XBee operate over various baud rates. A

node with a different baud rate from another node on

the network cannot communicate with each other. All

sensor nodes need to transmit information at the same

baud rate in order to communicate successfully.

3) Channel: Interference is often a major problem with

wireless networks and this can be minimized by

configuring the XBee to operate on a channel different

from the ones Wi-Fi networks employ. This also makes

listening to the transmitting medium hard for potential

users.

4) API Mode: XBee is used primarily in two modes: API

& AT. In the latter, data is transmitted directly OTA to

destination node without altering it. In API mode, the

data can be encapsulated in packets, which can be used

to get delivery feedback, remote sensing and control of

I/O pins of remote nodes.

5) Addressing: XBee modules come pre-assigned with

serial numbers (64-Bit number) called radio address.

The radio’s address is used to target messages for

delivery. Along with these, another 16-Bit number is

assigned to each radio node on the network. So in order

to successfully communicate over a network, each node

should have the same PAN ID, be operating on the

same channel frequency and match the destination

address of the receiving node.

6) MySQL security: MySQL is a highly scalable, flexible

which is widely available. In spite of this, it offers one

of the most power transactional database engines on the

marker. Data integrity is assured through server-

enforced integrity, specialized transaction levels.

By employing access privileges and account management,

MySQL provides powerful mechanisms to ensure only

authorized personnel have access to the server and the data

it’s hosting.

VI. CONCLUSION

This project proposes a WSN for environment monitoring

using a simple, cost-effective and low-power method. An

Arduino platform paired with a Raspberry Pi is used for data

acquisition and data storage respectively. Data acquisition is

aided by sensors which measure environment parameters

such as temperature and humidity, barometric pressure and

altitude. This system offers an innovative approach to

storing sensor data and replaces the traditional bulky PC’s

with tiny, robust Raspberry Pi based MySQL server.

The system, though highly useful, is far from perfect. The

XBee radios cannot be used as wireless sensors when the

sensor data needs to be processed using algorithms or

requires a lot of memory space. The ATmega 256 IC as well

as the XBee radios are low voltage devices, and thus often

suffer from meltdown when there is a sharp variation in

operating voltage. Hence, additional circuitry is required to

provide a constant voltage source. Also, this prototype is

limited to just the temperature, humidity and barometric

pressure sensing. System performance is untested when

more sensors like rainfall, wind and soil sensors are added.

16

Journal of Advances in Computer Networks, Vol. 3, No. 1, March 2015

These issues will be taken into account for future work on

the project.

REFERENCES

[1] L. Javier and J. Y. Zhou, Wireless Sensor Network Security, vol. 1,
IOS Press, 2008.

[2] Arduino.cc. (2014). Arduino — ArduinoBoardMega2560. [Online].

Available: http://arduino.cc/en/Main/arduinoBoardMega2560
[3] R. Mittal and M. P. S. Bhatia, “Wireless sensor networks for

monitoring the environmental activities,” in Proc. 2010 IEEE

International Conference on Computational Intelligence and
Computing Research, 2010, pp. 1–5.

[4] D. Ye, D. Gong, and W. Wang, “Application of wireless sensor

networks in environmental monitoring,” in Proc. 2009 2nd
International Conference on Power Electronics and Intelligent

Transportation System, 2009, vol. 1, pp. 205–208.

[5] C. Yu, Y. Cui, L. Zhang, and S. Yang, “ZigBee wireless sensor
network in environmental monitoring applications,” in Proc. 5th

International Conference on Wireless Communications, Networking

and Mobile Computing, 2009, pp. 1–5.
[6] W. T. Sung, J. H. Chen, C. L. Hsiao, and J. S. Lin, “Multi-sensors

data fusion based on arduino board and xbee module technology.” in

Proc. 2014 International Symposium on Computer, Consumer and
Control, 10-12 June 2014, pp. 422, 425.

[7] J. Alonso, L. Belanche, and D. R. Avresky, “Predicting software

anomalies using machine learning techniques,” in Proc. 2011 10th
IEEE International Symposium on Network Computing and

Applications, 25-27 Aug. 2011, pp. 163-170.

[8] C. P. Pfleeger and S. L. Pfleeger, Security in Computing, 3rd edition,
Prentice Hall 2003.

[9] C. Karlof and D. Wagner, “Secure routing in wireless sensor

networks: Attacks and countermeasures,” Elsevier's Ad Hoc Network

Journal, Special Issue on Sensor Network Applications and Protocols,

pp. 293-315, September 2003.

Vinay Raghavan was born on October 16, 1990. He

has received his bachelor’s degree from Visvesaraya
Technological University, Bangalore, India in

telecommunication; MS degree in embedded

electrical and computer systems from San Francisco
State University, California, USA.

His areas of research and interests include sensor

networks, embedded systems and digital design. He is
an active member of the Maker community and

contributes often to open source DIY projects.

Hamid Shahnasser received his B.E. Degree in

electrical engineering from McGill University,
Montreal, MS degree in electrical and computer

engineering from Carnegie-Mellon and his Ph.D.
degree from Drexel Universities in Pennsylvania.

He is currently a professor of electrical and

computer engineering and graduate program
coordinator at San Francisco State University. Dr.

Shahnasser’s areas of interest are communication

networks and computer systems. Dr. Shahnasser has been a researcher
faculty affiliate at NASA Ames Research Center since 1990 and has been

collaborating on several research grants with that organization since then.

Dr. Shahnasser has also been the recipient of grants from NSA, Department
of Education, National Science foundation and various private companies

and organizations.

17

Journal of Advances in Computer Networks, Vol. 3, No. 1, March 2015

