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Abstract—Wei and Tanaka have proposed a variant of the

Thorup algorithm which showed a better result than the 

original Thorup algorithm and the Fibonacci-based Dijkstra 

algorithm in practice. In this paper, we propose a faster 

algorithm based on their work. Our new algorithm has a faster 

speed when visiting vertices, it is achieved by decreasing the 

depth of a component tree. The experimental result indicates, 

comparing to array-based Dijkstra, Fibonacci-based Dijkstra 

and the original Thorup algorithm, reduction by 7.5%, 72.9% 

and 85.6% of the time cost, respectively.

Index Terms—Dijkstra, single-source shortest path, thorup,

undirected weights.

I. INTRODUCTION

Wei and Tanaka [1] have proposed a variant of the Thorup 

algorithm which reduces the time cost of pre-indexing and 

calculating shortest paths in practice. It is proven that their

algorithm showed a better result than the original Thorup 

algorithm and the Fibonacci-based Dijkstra algorithm in 

practice, but still slower than the array-based Dijkstra 

algorithm. In this paper, we will propose a faster algorithm

based on their algorithm further. Our algorithm enhances the 

performance of visiting vertices by reducing the depth of the 

structure used. The experiment result indicates, our algorithm

is faster than thearray-based Dijkstra, the Fibonacci-based 

Dijkstra and the original Thorup algorithm.

Definitions and background of this paper are described in 

the rest part of this Section. Related works are introduced in 

Section II, and then we will review Wei and Tanaka’s

algorithm (named The Improved Thorup Algorithm) in 

Section III. Our new algorithm is introduced in Section IV. 

Section V includes the introduction of the experiment and 

analysis.

The single source shortest path (SSSP) is the problem of 

finding the shortest path from a source vertex to every other 

vertex. It has been applied in many fields such as navigation

[2], keyword searching [3], computer network [4], and it is 

widely used for finding the optimal route in a road network. 

SSSP problem is described as follows throughout this 

research. Given a graph 𝐺 = (𝑉, 𝐸) and a source vertex 

𝑠 ∈ 𝑉, suppose s can reach each vertex of the graph, then 

find the shortest path from 𝑠 to every vertex 𝑣 ∈ 𝑉, in which 
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𝑉 and 𝐸 represent the vertices and edges of G [5]. The m and 

n mentioned in the rest of this paper represent

 𝐸 and  𝑉 , respectively. Use 𝐷(𝑣) to represent the 

tentative distance from the source vertex to v, and use 𝑑(𝑣) to 

represent the ensured shortest distance from the source vertex 

to v, and let 𝑊(𝑣, 𝑤) represent the positive integer weightsof 

edge(𝑣, 𝑤). At the beginning, 𝐷 𝑣 = ∞ for every vertex 

except the source vertex, 𝑑 𝑠 = 0. The length of a shortest 

path should be the sum of the weights of each edge on the 

shortest path.

One of the most influential shortest path algorithms is 

Dijkstra [5]-[7] which is proposed in 1959. Yen’s paper [8] is 

considered to be the first one which implements Dijkstra with 

an array. In detail, an array is used to record the tentative 

distance of each vertex which is adjacent to visited vertices. 

Every time when a vertex is visited, the distances of the 

vertices which are adjacent to the vertex will be recorded in 

an array, and then, the vertex which has the shortest distance 

will be taken to try to relax the vertices which adjacent to this 

vertex. The word relax is described as follows. A vertex, say 

A, can relax another vertex, say B, means the distance from 

the source vertex to B can be shortened through A. It 

takes 𝑂 1 time to insert a relaxed vertex and 𝑂 𝑛 time to 

delete a vertex from an array. To relax all vertices, Dijkstra 

algorithm runs in 𝑂 𝑚 plus the time of maintaining the 

array, overall, it costs 𝑂 𝑚 + 𝑛2 .

Thorup [9] is an algorithm which theoretically proved that 

solving the SSSP problem in linear time with pre-processed 

indices. The paper proposed a hierarchy- and buckets-based 

algorithm to pre-process indices for performing shortest path 

calculations in undirected graphs with non-negative weights.

Theoretically, this algorithm constructs the minimum 

spanning tree in 𝑂(𝑚) , constructs the component tree in 

𝑂(𝑛), constructs an unvisited data structure in 𝑂(𝑛), and 

calculates distances of all vertices based on the constructed

structures in 𝑂(𝑚 + 𝑛). But in practice, Thorup algorithm 

occasionally does not perform as expected according to the 

experimental result provided by Asano and Imai [10], and 

Pruehs [11]. 

II. RELATED WORKS

Asano and Imai [10], and Pruehs [11] implemented Thorup 

algorithm with their modifications. Asano and Imai [10] uses 

an array to realize the function of atomic heaps, which is used 

in the Thorup algorithm; uses the union with size and find 

with path compression algorithm instead of the union and 

find algorithm [12] to construct the component tree, and 

designs a three-levels tree as an unvisited data structure to 

maintain the tentative distance of each vertex.

Pruehs [11] uses Kruskal’s algorithm [13] to generate a 
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minimum spanning tree, and uses Tarjan’s union-find 

algorithm [14] to construct the component tree. Then it uses 

Gabow’s Split-findmin data structure [12] instead of atomic 

heaps to maintain the tentative distance of each vertex.

Hagerup [15] proposed an improved hierarchy-based 

algorithm which theoretically solves SSSP problem in 

𝑂 (𝑚 log log 𝐶 + 𝑛 log log 𝑛) , and also solves all-path 

shortest path (APSP) problem in 𝑂(𝑚𝑛 + 𝑛2 log log 𝑛 ), 

where C represents the maximum edge weights. Pettie [16]

proposed a hierarchy-based algorithm which theoretically 

solves APSP problems in 𝑂 (𝑚𝑛 + 𝑛2 log log 𝑛), and proved 

that no SSSP algorithm can solve the problem in Ω(𝑚 +
𝑛 log 𝑛).

Wei and Tanaka [1] proposed a variant of the Thorup 

algorithm which enhances the performance of the original 

algorithm by using component tree instead of unvisited 

structure to maintain the tentative distances, so that to

accelerate the algorithm by reducing the number of the 

structures used. The detailed mechanism will be introduced 

in Section III, which is related to this paper.

III. THE IMPROVED THORUP ALGORITHM

Since the method of using both of the component tree and 

the unvisited structure will reduce the efficiency of the 

algorithm in practice, the improved Thorup algorithm 

maintains the tentative distances with a modified component 

tree, for avoid using the unvisited structure. This method 

reduces the time cost of pre-index and query shortest path.

Same as the original algorithm, the improved Thorup

algorithm is a hierarchy- and buckets-based algorithm which

preprocesses indices for accelerating the performance of

queries in undirected graphs with non-negative weights. It 

consists of two phases: construction of index and calculating 

shortest path by visiting vertices. In phase one, it firstly 

constructs a minimum spanning tree [14], and then constructs

a component tree in linear time based on the constructed 

minimum spanning tree. In a component tree, leaf-

component always contains only one vertex. Non-leaf 

components are created by a number of connected vertices, in

which their weights are smaller than 2𝑖 , where 𝑖 represents

the level of the component tree that increases from 0 to

n, 2𝑛 > the largest weights of G. Leaf-components are on 

level 0. Level 1 includes the components created by the 

vertices which the weights between them are smaller than 21,

Level 2 includes the components created by the vertices 

which the weights between them are smaller than 22, and so 

forth. In the second phase, the tentative distance of each 

reached component will be mapped to its parent’s buckets, 

for deciding the order to visit the vertices in different 

components. This hierarchy- and buckets-based method 

overcomes the sorting bottleneck of priority queue-based 

algorithms. Since when trying to get the element which has 

the smallest value, currently, there is not any method can sort 

the values in linear time. This problem reduces the 

performance of the Dijkstra algorithm every time when 

extracting the vertex with the minimum tentative distance 

from a priority queue. 

Dinic [17] has demonstrated that, if Δ is the minimum 

edge weights, bucketing vertices tentative distances by 

 𝐷(𝑣)/Δ  , then in Dijkstra’s algorithm, we can visit vertices

in the right order according to their positions in these buckets. 

Thorup’s algorithm splits a graph into many small graphs, 

then using Dijkstra’s algorithm and Dinic’s method to finish 

whole problem. The size of buckets of each component c is 

calculated by dividing the interval 2𝑐 .level into the total 

length of the edges in the same component. The formula is 

listed as follows, 𝑊(𝑒𝑑𝑔𝑒) represents the weights of edge, 

  𝑊(𝑒𝑑𝑔𝑒)/2𝑐 .level −1

𝑒𝑑𝑔𝑒 ∈𝑐
 

For deciding the order of visiting vertices, except the root, 

each component should be mapped to its father component’s 

buckets depends on its minimum tentative distance. A 

minimum tentative distance of a component is the smallest 

tentative distance among all the vertices in the component. It 

is retrieved by using a pre-constructed heap, which is called 

unvisited structure in Thorup. The unvisited structure is

implemented with the algorithm called split-findmin [12].To 

map a sub-component, say c, to its father, we need to get the 

index of the bucket which stores component c with c’s 

tentative distance (𝐷(𝑐)) by the formula as follows,

𝐷(𝑐) >> (𝑐. level − 1)

Since unvisited structure used in the original Thorup 

algorithm reduces the efficiency in practice, the improved 

Thorup algorithm modified the component tree to make it 

able to maintain tentative distances, so that avoid of using the 

unvisited structure. This change has two following benefits,

1) Save the time cost of constructing the unvisited structure, 

which is in the first phase of the Thorup algorithm.

2) Accelerate the process of calculating shortest paths, 

which is in the second phase of the Thorup algorithm.

Two variables should be added to each component of a 

component tree,

1) distance, which is used to record the tentative distance of 

each component. The distance of a father component is 

equal to the minimum tentative distance of all of its 

children.

2) expanded, which is used to mark that whether the 

tentative distance of a component is not needed to be 

updated. It happens when we start to bucket the 

component’s children.

All information of tentative distances is stored in the 

component tree. Since the vertices are indexed by their IDs. 

When updating the tentative distance of a vertex, it will be 

found in O(1). The updated value should be reported to all of 

the vertex’s unexpanded father components. If the value is 

smaller than the current father component’s value, update the 

value of it too.

IV. THE NEW IMPROVEMENT

Our new algorithm is based on the variant of the Thorup 

algorithm introduced in Section III. The improvement 

intends to reduce the depth of a component tree. In Section III, 

we have studied that the components are created at different 

levels depends on the weights of the edges. The edges will be 
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included in the same component if their weights are greater 

than 2𝑖 and smaller than 2𝑖+1 , (0 ≤ i). In the real world, the 

information of roads could be enormous and various. This 

method might create a component tree with high depth. This 

will reduce the advantage provided by using buckets. To visit 

components frequently through such a structure is inefficient. 

Accordingly, we try to reduce the depth of the component 

tree by extending the limitation for edges’ weights of 

components in different levels. That is, the edges which their 

weights are greater than 𝑏𝑎𝑠𝑒𝑖 and smaller than 𝑏𝑎𝑠𝑒𝑖+1

will be accumulated in the same component, 𝑏𝑎𝑠𝑒 should be 

a number which is power of 2, such as 4, 8, 16 and so forth. 

1. Visit(v)

2. Set j= the word length if v is the root of the tree. 

Otherwise let j equal to v’s parent’s level.

3. ifv is a leaf-component of the component tree then

4. VisitLeaf(v)

5. Remove v from the bucket of v’s parent

6. return

7. end if

8. if v has not been visited previously then

9. Expand(v)

10. 𝑣. 𝑖𝑥 = 𝑣. 𝑖𝑥0

11. end if

12. repeat until v has no child or 𝑣. 𝑖𝑥 >> ((𝑗 −
𝑣. 𝑙𝑒𝑣𝑒𝑙) ∗ log2 𝑏𝑎𝑠𝑒) is increased

13. while the bucket B[v.ix] is not empty

14. let wh equal to the component in bucket B

[v.ix]

15. Visit(wh)

16. end while

17. 𝑣. 𝑖𝑥 = 𝑣. 𝑖𝑥 + 1

18. end repeat

19. if v has any child then

20. move v to bucket B[𝑣. 𝑖𝑥 >> ((𝑗 − 𝑣. 𝑙𝑒𝑣𝑒𝑙) ∗
log2 𝑏𝑎𝑠𝑒)] of v’s parent

21. end if

22. if v do not has child and v is not the root of the 

component tree then

23. remove v from the bucket of v’s parent

24. end if

Fig. 1. Algorithm of visit.

1. Expand (v)

2. 𝑣. 𝑖𝑥0 = 𝑣. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≫ ((𝑣. 𝑙𝑒𝑣𝑒𝑙 − 1) ∗ log2 𝑏𝑎𝑠𝑒)

3. v.expanded= TRUE

4. for each child wh of v

5. store wh in bucket B[𝑤ℎ. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 >> ((𝑣. 𝑙𝑒𝑣𝑒𝑙 −
1) ∗ log2 𝑏𝑎𝑠𝑒)]

6. end for

Fig. 2. Algorithm of expand.

The base should not be restricted, but changes along the 

sizes of different graphs. The bucket size of each component

c is then increased to,

  𝑊(𝑒𝑑𝑔𝑒)/𝑏𝑎𝑠𝑒c.level −1

𝑒𝑑𝑔𝑒 ∈𝑐
 

And we also need to right-shift log2 𝑏𝑎𝑠𝑒 times to 

calculate the positions of components in their father 

components’ buckets. The formula used to calculate the 

index of the bucket which stores component c with c’s 

tentative distance (D(𝑐)) is accordingly changed as follows,

D(𝑐) >> (𝑐. level − 1) ∗ log2 𝑏𝑎𝑠𝑒

Our algorithm is shown from Fig. 1 to Fig. 4, starting from 

the one named Visit (Fig. 1). Since the base is changed from 2 

to a number which is power of 2, when manipulating buckets, 

the right-shift times is also increased in our algorithm. 

1. VisitLeaf(v)

2. for each vertex w connected with v, if 𝑣. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +
𝑊(𝑣, 𝑤) < 𝑤. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

3. Let wh be the unvisited root of leaf w

4. Let wi be the unvisited parent of wh

5. Decrease(w, 𝑣. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑊(𝑣, 𝑤))

6. if this decreases 𝑤ℎ. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 >> ((𝑣. 𝑙𝑒𝑣𝑒𝑙 −
1) ∗ log2 𝑏𝑎𝑠𝑒) then

7. Move wh to bucket B[𝑤ℎ. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 >>
((𝑣. 𝑙𝑒𝑣𝑒𝑙 − 1) ∗ log2 𝑏𝑎𝑠𝑒)] of wi

8. end if

9. end for

Fig. 3. Algorithm of visitleaf.

1. Decrease (v, newValue)

2. ifv.distance > newValue and v.expanded ! = TRUE 

then

3. v.distance=newValue

4. let n to be the parent of v

5. while n. expanded! = TRUE and n. distance >
newValue

6. n.distance=newValue

7. let n to be the parent of n

8. end while

9. end if

Fig. 4. Algorithm of decrease.

V. EXPERIMENT

We use the same method and datasets with [1]and added 

our algorithm to the experiment to evaluate the performance.

The value of base is set to 16.The experiment is originally 

proposed by Pruehs [11] and modified by Wei and Tanaka [1]

to make it possible to run with real datasets. The experiment 

compared the performance of Dijkstra and Thorup algorithm 

with real datasets. The time cost of finding the distance of 

every vertex to a given source vertex is compared among the 

following three algorithms: Dijkstra with array-based 

primary queue, Dijkstra with Fibonacci-based primary queue,

and Thorup. 
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The datasets we used originally comes from the Geospatial 

Information Authority of Japan, which can be found from the 

link
1
.

For making it suitable for the experiment, the dataset is cut 

into five parts. All the datasets are pruned to delete single 

lines which both sides of this kind of line do not connect to 

other lines. Otherwise the minimum spanning tree cannot be 

constructed. The source code of this project can be found

from the link
2
.

The result of comparison between Dijkstra, Thorup and 

our algorithm is given in Table I and Fig. 5. Because of the 

Thorup algorithm can respond in arbitrary times of shortest 

path query from any vertex by constructing an index only one 

time, here we focus on the comparison of visiting part. 

Comparing to the array-based Dijkstra, Fibonacci-based 

Dijkstra and the original Thorup algorithm, our algorithm 

reduced 7.5%, 72.9% and 85.6% of time cost, respectively. 

Table II shows the comparison of memory usage among four 

algorithms. The result is obtained by using JConsole.

Comparing to the original Thorup algorithm, since our 

algorithm does not use unvisited structure, the memory usage 

is greatly saved. But still takes about 75% more memory than 

the array based Dijkstra algorithm. The experimental

environment is listed in Table III. Detailed information of 

datasets is given by Table IV. The datasets can be found from 

1http://www1.gsi.go.jp/geowww/globalmap-gsi/download/data/gm-japan/g

m-jpn-trans_u_2.zip.
2
http://weiyusi.com/resource/ShortestPaths.7z

the link
3
.

TABLE II: COMPARISON OF MEMORY USAGE

Algorithms Memory Usage (bytes)

Array heap based Dijkstra 6,429,896 (24.99%)

Fibonacci heap based Dijkstra 54,912,976 (213.45%)

Thorup 51,544,952 (200.35%)

Improved Thorup 25,726,824 (100%)

TABLE III: EXPERIMENTAL ENVIRONMENT

CPU Intel(R) Core(TM) i7-3630QM CPU @ 2.40GHz, 2394 

MHz

Memory 16GBytes, PC3-12800 (800 MHz)

OS Microsoft Windows 7 64-bit Service Pack 1

TABLE IV: INFORMATION OF DATASETS

Info\Datasets 1 2 3 4 5

Vertices 1889 6913 11478 14295 16670

Edges 5920 21798 36262 44904 53318

VI. CONCLUSION

We have proposed a practically-improved Thorup-based 

algorithm. It enhances the performance of visiting vertices by 

3http://weiyusi.com/resource/gm-jpn-trans_u_2.7z

TABLE I: RESULT OF EXPERIMENT (MILLISECOND)

Algorithms\Datasets 1 2 3 4 5

Array heap based Dijkstra 0.2711 1.2571 2.1913 2.9065 3.6762

Fibonacci heap based Dijkstra 1.3535 4.2393 7.6227 9.9158 12.0687

Thorup Construct Structures 0.9035 3.3064 5.8803 7.7166 9.3685

Thorup Visiting 1.3887 7.3706 14.5664 20.8024 22.0718

Improved Thorup Construct Structures 0.8546 3.2951 5.6091 7.1455 9.1381

Improved Thorup Visiting 0.2467 1.0990 2.0009 2.6768 3.5072

                                           (a)                                                                                                      (b)

Fig. 5. Chart of the results. (a) Comparing with the Fibonacci based Dijkstra and the original Thorup. (b) Comparing with the array heap based Dijkstra.
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reducing the depth of a component tree. According to the 

experimental result, comparing to array-based Dijkstra, 

Fibonacci-based Dijkstra and the original Thorup algorithm, 

our algorithm reduced 7.5%, 72.9% and 85.6% of time cost 

for all the five datasets, respectively. About the memory 

usage, since we avoid using unvisited structure, our 

algorithm takes about only a half of the memory usage of the 

original Thorup algorithm. But still takes about 75% more 

memory than the array based Dijkstra algorithm. In the future 

work, we shall try to find structure that performs better than a 

component tree in maintaining the tentative distance of each 

vertex.
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