

Journal of Advances in Computer Networks, Vol. 2, No. 2, June 2014

142DOI: 10.7763/JACN.2014.V2.99



Abstract—Wei and Tanaka have proposed a variant of the

Thorup algorithm which showed a better result than the

original Thorup algorithm and the Fibonacci-based Dijkstra

algorithm in practice. In this paper, we propose a faster

algorithm based on their work. Our new algorithm has a faster

speed when visiting vertices, it is achieved by decreasing the

depth of a component tree. The experimental result indicates,

comparing to array-based Dijkstra, Fibonacci-based Dijkstra

and the original Thorup algorithm, reduction by 7.5%, 72.9%

and 85.6% of the time cost, respectively.

Index Terms—Dijkstra, single-source shortest path, thorup,

undirected weights.

I. INTRODUCTION

Wei and Tanaka [1] have proposed a variant of the Thorup

algorithm which reduces the time cost of pre-indexing and

calculating shortest paths in practice. It is proven that their

algorithm showed a better result than the original Thorup

algorithm and the Fibonacci-based Dijkstra algorithm in

practice, but still slower than the array-based Dijkstra

algorithm. In this paper, we will propose a faster algorithm

based on their algorithm further. Our algorithm enhances the

performance of visiting vertices by reducing the depth of the

structure used. The experiment result indicates, our algorithm

is faster than thearray-based Dijkstra, the Fibonacci-based

Dijkstra and the original Thorup algorithm.

Definitions and background of this paper are described in

the rest part of this Section. Related works are introduced in

Section II, and then we will review Wei and Tanaka’s

algorithm (named The Improved Thorup Algorithm) in

Section III. Our new algorithm is introduced in Section IV.

Section V includes the introduction of the experiment and

analysis.

The single source shortest path (SSSP) is the problem of

finding the shortest path from a source vertex to every other

vertex. It has been applied in many fields such as navigation

[2], keyword searching [3], computer network [4], and it is

widely used for finding the optimal route in a road network.

SSSP problem is described as follows throughout this

research. Given a graph 𝐺 = (𝑉, 𝐸) and a source vertex

𝑠 ∈ 𝑉, suppose s can reach each vertex of the graph, then

find the shortest path from 𝑠 to every vertex 𝑣 ∈ 𝑉, in which

Mancscript received Novemeber 20, 2013; revised January 6, 2014.

Yusi Wei is with the Information Systems Course, Interdisciplinary

Graduate School of Science and Engineering, Shimane University, Matsue,
Japan (e-mail: wayis@ live.com).

Shojiro Tanaka is with the Information Systems Division,

Interdisciplinary Graduate School of Science and Engineering, Shimane
University, Matsue, Japan(e-mail: tanaka@cis.shimane-u.ac.jp).

𝑉 and 𝐸 represent the vertices and edges of G [5]. The m and

n mentioned in the rest of this paper represent

 𝐸 and 𝑉 , respectively. Use 𝐷(𝑣) to represent the

tentative distance from the source vertex to v, and use 𝑑(𝑣) to

represent the ensured shortest distance from the source vertex

to v, and let 𝑊(𝑣, 𝑤) represent the positive integer weightsof

edge(𝑣, 𝑤). At the beginning, 𝐷 𝑣 = ∞ for every vertex

except the source vertex, 𝑑 𝑠 = 0. The length of a shortest

path should be the sum of the weights of each edge on the

shortest path.

One of the most influential shortest path algorithms is

Dijkstra [5]-[7] which is proposed in 1959. Yen’s paper [8] is

considered to be the first one which implements Dijkstra with

an array. In detail, an array is used to record the tentative

distance of each vertex which is adjacent to visited vertices.

Every time when a vertex is visited, the distances of the

vertices which are adjacent to the vertex will be recorded in

an array, and then, the vertex which has the shortest distance

will be taken to try to relax the vertices which adjacent to this

vertex. The word relax is described as follows. A vertex, say

A, can relax another vertex, say B, means the distance from

the source vertex to B can be shortened through A. It

takes 𝑂 1 time to insert a relaxed vertex and 𝑂 𝑛 time to

delete a vertex from an array. To relax all vertices, Dijkstra

algorithm runs in 𝑂 𝑚 plus the time of maintaining the

array, overall, it costs 𝑂 𝑚 + 𝑛2 .

Thorup [9] is an algorithm which theoretically proved that

solving the SSSP problem in linear time with pre-processed

indices. The paper proposed a hierarchy- and buckets-based

algorithm to pre-process indices for performing shortest path

calculations in undirected graphs with non-negative weights.

Theoretically, this algorithm constructs the minimum

spanning tree in 𝑂(𝑚) , constructs the component tree in

𝑂(𝑛), constructs an unvisited data structure in 𝑂(𝑛), and

calculates distances of all vertices based on the constructed

structures in 𝑂(𝑚 + 𝑛). But in practice, Thorup algorithm

occasionally does not perform as expected according to the

experimental result provided by Asano and Imai [10], and

Pruehs [11].

II. RELATED WORKS

Asano and Imai [10], and Pruehs [11] implemented Thorup

algorithm with their modifications. Asano and Imai [10] uses

an array to realize the function of atomic heaps, which is used

in the Thorup algorithm; uses the union with size and find

with path compression algorithm instead of the union and

find algorithm [12] to construct the component tree, and

designs a three-levels tree as an unvisited data structure to

maintain the tentative distance of each vertex.

Pruehs [11] uses Kruskal’s algorithm [13] to generate a

Improvement of Thorup Shortest Path Algorithm by

Reducing the Depth of A Component Tree

Yusi Wei and Shojiro Tanaka

Journal of Advances in Computer Networks, Vol. 2, No. 2, June 2014

143

minimum spanning tree, and uses Tarjan’s union-find

algorithm [14] to construct the component tree. Then it uses

Gabow’s Split-findmin data structure [12] instead of atomic

heaps to maintain the tentative distance of each vertex.

Hagerup [15] proposed an improved hierarchy-based

algorithm which theoretically solves SSSP problem in

𝑂 (𝑚 log log 𝐶 + 𝑛 log log 𝑛) , and also solves all-path

shortest path (APSP) problem in 𝑂(𝑚𝑛 + 𝑛2 log log 𝑛),

where C represents the maximum edge weights. Pettie [16]

proposed a hierarchy-based algorithm which theoretically

solves APSP problems in 𝑂 (𝑚𝑛 + 𝑛2 log log 𝑛), and proved

that no SSSP algorithm can solve the problem in Ω(𝑚 +
𝑛 log 𝑛).

Wei and Tanaka [1] proposed a variant of the Thorup

algorithm which enhances the performance of the original

algorithm by using component tree instead of unvisited

structure to maintain the tentative distances, so that to

accelerate the algorithm by reducing the number of the

structures used. The detailed mechanism will be introduced

in Section III, which is related to this paper.

III. THE IMPROVED THORUP ALGORITHM

Since the method of using both of the component tree and

the unvisited structure will reduce the efficiency of the

algorithm in practice, the improved Thorup algorithm

maintains the tentative distances with a modified component

tree, for avoid using the unvisited structure. This method

reduces the time cost of pre-index and query shortest path.

Same as the original algorithm, the improved Thorup

algorithm is a hierarchy- and buckets-based algorithm which

preprocesses indices for accelerating the performance of

queries in undirected graphs with non-negative weights. It

consists of two phases: construction of index and calculating

shortest path by visiting vertices. In phase one, it firstly

constructs a minimum spanning tree [14], and then constructs

a component tree in linear time based on the constructed

minimum spanning tree. In a component tree, leaf-

component always contains only one vertex. Non-leaf

components are created by a number of connected vertices, in

which their weights are smaller than 2𝑖 , where 𝑖 represents

the level of the component tree that increases from 0 to

n, 2𝑛 > the largest weights of G. Leaf-components are on

level 0. Level 1 includes the components created by the

vertices which the weights between them are smaller than 21,

Level 2 includes the components created by the vertices

which the weights between them are smaller than 22, and so

forth. In the second phase, the tentative distance of each

reached component will be mapped to its parent’s buckets,

for deciding the order to visit the vertices in different

components. This hierarchy- and buckets-based method

overcomes the sorting bottleneck of priority queue-based

algorithms. Since when trying to get the element which has

the smallest value, currently, there is not any method can sort

the values in linear time. This problem reduces the

performance of the Dijkstra algorithm every time when

extracting the vertex with the minimum tentative distance

from a priority queue.

Dinic [17] has demonstrated that, if Δ is the minimum

edge weights, bucketing vertices tentative distances by

 𝐷(𝑣)/Δ , then in Dijkstra’s algorithm, we can visit vertices

in the right order according to their positions in these buckets.

Thorup’s algorithm splits a graph into many small graphs,

then using Dijkstra’s algorithm and Dinic’s method to finish

whole problem. The size of buckets of each component c is

calculated by dividing the interval 2𝑐 .level into the total

length of the edges in the same component. The formula is

listed as follows, 𝑊(𝑒𝑑𝑔𝑒) represents the weights of edge,

 𝑊(𝑒𝑑𝑔𝑒)/2𝑐 .level −1

𝑒𝑑𝑔𝑒 ∈𝑐

For deciding the order of visiting vertices, except the root,

each component should be mapped to its father component’s

buckets depends on its minimum tentative distance. A

minimum tentative distance of a component is the smallest

tentative distance among all the vertices in the component. It

is retrieved by using a pre-constructed heap, which is called

unvisited structure in Thorup. The unvisited structure is

implemented with the algorithm called split-findmin [12].To

map a sub-component, say c, to its father, we need to get the

index of the bucket which stores component c with c’s

tentative distance (𝐷(𝑐)) by the formula as follows,

𝐷(𝑐) >> (𝑐. level − 1)

Since unvisited structure used in the original Thorup

algorithm reduces the efficiency in practice, the improved

Thorup algorithm modified the component tree to make it

able to maintain tentative distances, so that avoid of using the

unvisited structure. This change has two following benefits,

1) Save the time cost of constructing the unvisited structure,

which is in the first phase of the Thorup algorithm.

2) Accelerate the process of calculating shortest paths,

which is in the second phase of the Thorup algorithm.

Two variables should be added to each component of a

component tree,

1) distance, which is used to record the tentative distance of

each component. The distance of a father component is

equal to the minimum tentative distance of all of its

children.

2) expanded, which is used to mark that whether the

tentative distance of a component is not needed to be

updated. It happens when we start to bucket the

component’s children.

All information of tentative distances is stored in the

component tree. Since the vertices are indexed by their IDs.

When updating the tentative distance of a vertex, it will be

found in O(1). The updated value should be reported to all of

the vertex’s unexpanded father components. If the value is

smaller than the current father component’s value, update the

value of it too.

IV. THE NEW IMPROVEMENT

Our new algorithm is based on the variant of the Thorup

algorithm introduced in Section III. The improvement

intends to reduce the depth of a component tree. In Section III,

we have studied that the components are created at different

levels depends on the weights of the edges. The edges will be

Journal of Advances in Computer Networks, Vol. 2, No. 2, June 2014

144

included in the same component if their weights are greater

than 2𝑖 and smaller than 2𝑖+1 , (0 ≤ i). In the real world, the

information of roads could be enormous and various. This

method might create a component tree with high depth. This

will reduce the advantage provided by using buckets. To visit

components frequently through such a structure is inefficient.

Accordingly, we try to reduce the depth of the component

tree by extending the limitation for edges’ weights of

components in different levels. That is, the edges which their

weights are greater than 𝑏𝑎𝑠𝑒𝑖 and smaller than 𝑏𝑎𝑠𝑒𝑖+1

will be accumulated in the same component, 𝑏𝑎𝑠𝑒 should be

a number which is power of 2, such as 4, 8, 16 and so forth.

1. Visit(v)

2. Set j= the word length if v is the root of the tree.

Otherwise let j equal to v’s parent’s level.

3. ifv is a leaf-component of the component tree then

4. VisitLeaf(v)

5. Remove v from the bucket of v’s parent

6. return

7. end if

8. if v has not been visited previously then

9. Expand(v)

10. 𝑣. 𝑖𝑥 = 𝑣. 𝑖𝑥0

11. end if

12. repeat until v has no child or 𝑣. 𝑖𝑥 >> ((𝑗 −
𝑣. 𝑙𝑒𝑣𝑒𝑙) ∗ log2 𝑏𝑎𝑠𝑒) is increased

13. while the bucket B[v.ix] is not empty

14. let wh equal to the component in bucket B

[v.ix]

15. Visit(wh)

16. end while

17. 𝑣. 𝑖𝑥 = 𝑣. 𝑖𝑥 + 1

18. end repeat

19. if v has any child then

20. move v to bucket B[𝑣. 𝑖𝑥 >> ((𝑗 − 𝑣. 𝑙𝑒𝑣𝑒𝑙) ∗
log2 𝑏𝑎𝑠𝑒)] of v’s parent

21. end if

22. if v do not has child and v is not the root of the

component tree then

23. remove v from the bucket of v’s parent

24. end if

Fig. 1. Algorithm of visit.

1. Expand (v)

2. 𝑣. 𝑖𝑥0 = 𝑣. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≫ ((𝑣. 𝑙𝑒𝑣𝑒𝑙 − 1) ∗ log2 𝑏𝑎𝑠𝑒)

3. v.expanded= TRUE

4. for each child wh of v

5. store wh in bucket B[𝑤ℎ. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 >> ((𝑣. 𝑙𝑒𝑣𝑒𝑙 −
1) ∗ log2 𝑏𝑎𝑠𝑒)]

6. end for

Fig. 2. Algorithm of expand.

The base should not be restricted, but changes along the

sizes of different graphs. The bucket size of each component

c is then increased to,

 𝑊(𝑒𝑑𝑔𝑒)/𝑏𝑎𝑠𝑒c.level −1

𝑒𝑑𝑔𝑒 ∈𝑐

And we also need to right-shift log2 𝑏𝑎𝑠𝑒 times to

calculate the positions of components in their father

components’ buckets. The formula used to calculate the

index of the bucket which stores component c with c’s

tentative distance (D(𝑐)) is accordingly changed as follows,

D(𝑐) >> (𝑐. level − 1) ∗ log2 𝑏𝑎𝑠𝑒

Our algorithm is shown from Fig. 1 to Fig. 4, starting from

the one named Visit (Fig. 1). Since the base is changed from 2

to a number which is power of 2, when manipulating buckets,

the right-shift times is also increased in our algorithm.

1. VisitLeaf(v)

2. for each vertex w connected with v, if 𝑣. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +
𝑊(𝑣, 𝑤) < 𝑤. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

3. Let wh be the unvisited root of leaf w

4. Let wi be the unvisited parent of wh

5. Decrease(w, 𝑣. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑊(𝑣, 𝑤))

6. if this decreases 𝑤ℎ. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 >> ((𝑣. 𝑙𝑒𝑣𝑒𝑙 −
1) ∗ log2 𝑏𝑎𝑠𝑒) then

7. Move wh to bucket B[𝑤ℎ. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 >>
((𝑣. 𝑙𝑒𝑣𝑒𝑙 − 1) ∗ log2 𝑏𝑎𝑠𝑒)] of wi

8. end if

9. end for

Fig. 3. Algorithm of visitleaf.

1. Decrease (v, newValue)

2. ifv.distance > newValue and v.expanded ! = TRUE

then

3. v.distance=newValue

4. let n to be the parent of v

5. while n. expanded! = TRUE and n. distance >
newValue

6. n.distance=newValue

7. let n to be the parent of n

8. end while

9. end if

Fig. 4. Algorithm of decrease.

V. EXPERIMENT

We use the same method and datasets with [1]and added

our algorithm to the experiment to evaluate the performance.

The value of base is set to 16.The experiment is originally

proposed by Pruehs [11] and modified by Wei and Tanaka [1]

to make it possible to run with real datasets. The experiment

compared the performance of Dijkstra and Thorup algorithm

with real datasets. The time cost of finding the distance of

every vertex to a given source vertex is compared among the

following three algorithms: Dijkstra with array-based

primary queue, Dijkstra with Fibonacci-based primary queue,

and Thorup.

Journal of Advances in Computer Networks, Vol. 2, No. 2, June 2014

145

The datasets we used originally comes from the Geospatial

Information Authority of Japan, which can be found from the

link
1
.

For making it suitable for the experiment, the dataset is cut

into five parts. All the datasets are pruned to delete single

lines which both sides of this kind of line do not connect to

other lines. Otherwise the minimum spanning tree cannot be

constructed. The source code of this project can be found

from the link
2
.

The result of comparison between Dijkstra, Thorup and

our algorithm is given in Table I and Fig. 5. Because of the

Thorup algorithm can respond in arbitrary times of shortest

path query from any vertex by constructing an index only one

time, here we focus on the comparison of visiting part.

Comparing to the array-based Dijkstra, Fibonacci-based

Dijkstra and the original Thorup algorithm, our algorithm

reduced 7.5%, 72.9% and 85.6% of time cost, respectively.

Table II shows the comparison of memory usage among four

algorithms. The result is obtained by using JConsole.

Comparing to the original Thorup algorithm, since our

algorithm does not use unvisited structure, the memory usage

is greatly saved. But still takes about 75% more memory than

the array based Dijkstra algorithm. The experimental

environment is listed in Table III. Detailed information of

datasets is given by Table IV. The datasets can be found from

1http://www1.gsi.go.jp/geowww/globalmap-gsi/download/data/gm-japan/g

m-jpn-trans_u_2.zip.
2
http://weiyusi.com/resource/ShortestPaths.7z

the link
3
.

TABLE II: COMPARISON OF MEMORY USAGE

Algorithms Memory Usage (bytes)

Array heap based Dijkstra 6,429,896 (24.99%)

Fibonacci heap based Dijkstra 54,912,976 (213.45%)

Thorup 51,544,952 (200.35%)

Improved Thorup 25,726,824 (100%)

TABLE III: EXPERIMENTAL ENVIRONMENT

CPU Intel(R) Core(TM) i7-3630QM CPU @ 2.40GHz, 2394

MHz

Memory 16GBytes, PC3-12800 (800 MHz)

OS Microsoft Windows 7 64-bit Service Pack 1

TABLE IV: INFORMATION OF DATASETS

Info\Datasets 1 2 3 4 5

Vertices 1889 6913 11478 14295 16670

Edges 5920 21798 36262 44904 53318

VI. CONCLUSION

We have proposed a practically-improved Thorup-based

algorithm. It enhances the performance of visiting vertices by

3http://weiyusi.com/resource/gm-jpn-trans_u_2.7z

TABLE I: RESULT OF EXPERIMENT (MILLISECOND)

Algorithms\Datasets 1 2 3 4 5

Array heap based Dijkstra 0.2711 1.2571 2.1913 2.9065 3.6762

Fibonacci heap based Dijkstra 1.3535 4.2393 7.6227 9.9158 12.0687

Thorup Construct Structures 0.9035 3.3064 5.8803 7.7166 9.3685

Thorup Visiting 1.3887 7.3706 14.5664 20.8024 22.0718

Improved Thorup Construct Structures 0.8546 3.2951 5.6091 7.1455 9.1381

Improved Thorup Visiting 0.2467 1.0990 2.0009 2.6768 3.5072

 (a) (b)

Fig. 5. Chart of the results. (a) Comparing with the Fibonacci based Dijkstra and the original Thorup. (b) Comparing with the array heap based Dijkstra.

0

10

20

30

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

M
ill

is
e

co
n

d

Comparing with the Fibonacci based Dijkstra
and the original Thorup

Dijkstra (Fibonacci heap)

Thorup (Visiting)

0

1

2

3

4

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

M
ill

is
e

co
n

d

Comparing with the Array heap based Dijkstra

Dijkstra (Array heap) Improved Thorup(Visiting)

Journal of Advances in Computer Networks, Vol. 2, No. 2, June 2014

146

reducing the depth of a component tree. According to the

experimental result, comparing to array-based Dijkstra,

Fibonacci-based Dijkstra and the original Thorup algorithm,

our algorithm reduced 7.5%, 72.9% and 85.6% of time cost

for all the five datasets, respectively. About the memory

usage, since we avoid using unvisited structure, our

algorithm takes about only a half of the memory usage of the

original Thorup algorithm. But still takes about 75% more

memory than the array based Dijkstra algorithm. In the future

work, we shall try to find structure that performs better than a

component tree in maintaining the tentative distance of each

vertex.

REFERENCES

[1] Y. Wei and S. Tanaka, “An improved thorup shortest paths algorithm
with a modified component tree,” in Proc. The ninth International
Conference on Natural Computation, 2013, pp. 1172-1177.

[2] D. En, H. Wei, J. Yang, N. Wei, X. Chen, and Y. Liu, “Analysis of the
shortest path of GPS vehicle navigation system based on genetic
algorithm,” in Proc. 2011 International Conference on Electrical,
Information Engineering and Mechatronics, 2012, pp. 413-418.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan,
“Keyword searching and browsing in databases using BANKS,” in
Proc. 2002 ICDE Conf, 2002, pp. 431-440.

[4] R. Sivakumar, P. Sinha, and V. Bharghavan, “CEDAR: a
core-extraction distributed ad hoc routing algorithm,” IEEE Journal on
Selected Areas in Communications, vol. 17, no. 8, pp. 1454-1465, Aug.
1999.

[5] R. Sedgewick, Algorithms in Java Part 5, Graph Algorithms, 3rd ed.,
Addison-Wesley Professional, 2003, ch. 21.

[6] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269-271, Dec. 1959.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. MIT Press and McGraw-Hill, 2009, pp. 573-574.

[8] J. Y. Yen, “A shortest path algorithm,” Ph.D. dissertation, University
of California, Berkeley,California, United States, 1970.

[9] M. Thorup, “Undirected single source shortest paths in linear time,” in
Proc. The 38th Symposium on Foundations of Computer Science, 1997,
pp. 12-21.

[10] Y. Asano, and H. Imai, “Practical efficiency of the linear time
algorithm for the single source shortest path problem,” Journal of the
Operations Research, Society of Japan, vol. 43, no. 4, pp. 431-447,
Dec. 2000.

[11] N. Pruehs, “Implementation of thorup's linear time algorithm for
undirected single-source shortest paths with positive integer weights,”
B. S. thesis, University of Kiel, Kiel, Germany, 2009.

[12] H. N. Gabow, “A scaling algorithm for weighted matching on general
graphs,” in Proc. the 26th Annual IEEE Symposium on Foundations of
Computer Science, 1985, pp. 90-100.

[13] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” in Proc. Am. Math. Soc, Feb. 1956, vol. 7,
pp. 48-50.

[14] R. E. Tarjan, “Efficiency of a good but not linear set union algorithm,”
Journal of the ACM, vol. 22, no. 2, pp. 215-225, Apr.1975.

[15] T. Hagerup, “Improved shortest paths on the word RAM,” in Proc. the
27th International Colloquium on Automata, Languages and
Programming, 2000, pp. 61-72.

[16] S. Pettie, “A new approach to all-pairs shortest paths on real-weighted
graphs,” Theoretical Computer Science, vol. 312, no. 1, pp. 47-74, Jan.
2004.

[17] E. A. Dinic, “Economical algorithms for finding shortest paths in a
network,” Transportation Modeling Systems, pp. 36–44, 1978.

Yusi Wei is currently a Ph.D student of computer

science in Shimane University, Japan. He received his

master's degree of computer science from the

University in 2012. His current research interests

include spatial databases and shortest paths.

Shojiro Tanaka received the MSc and PhD degrees
from Hiroshima University, Japan, in 1986 and 1992,
respectively. Presently, he is a professor at the
Faculty of Science and Engineering, Shimane
University, Japan.

