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Abstract—This paper addresses an NP-hard problem, called 

NTD-CR, to design a minimal-cost communication network 

topology that satisfies a pre-defined reliability constraint. Since 

reliability is always a major issue in the network design, the 

problem is practical for critical applications requiring 

minimized cost. The paper formulates a dynamic programming 

(DP) scheme to solve NTD-CR problem. DP approach, called 

DPCR-ST, generates the topology using a selected set of 

spanning trees of the network, STXmin. We propose three greedy 

heuristics to generate and order only k spanning trees of the 

network. Each heuristic allows DPCR-ST to enumerate STXmin 

using only k spanning trees, which improves the time 

complexity while producing near optimal topology. Simulations 

based on fully connected networks that contain up to 2.3×109 

spanning trees show the merits of ordering methods and the 

effectiveness of our algorithm vis-à-vis four existing 

state-of-the-art techniques; DPCR-ST produces 81.5% optimal 

results, while using only 0.77%of the spanning trees contained 

in network. 

 
Index Terms—Dynamic programing, network optimization, 

network reliability, network topology design. 

 

I. INTRODUCTION 

A well-designed communication network is inseparable 

from the effective running of user applications. For critical 

applications (e.g., emergency system, rescue and military 

operations) it is important that the communication network 

topology is as reliable as possible since in practice network 

components (e.g., links) are failure-prone. A more reliable 

topology will make the communication network operate 

effectively and without interruption, even in the presence of 

the component failures [1].Further, some applications may 

need to run on a topology with a guaranteed minimum 

reliability, Rmin, to properly operate. However, constructing a 

reliable topology incurs higher installation cost. Given a set 

of various centers (nodes), their possible connecting links, 

link failure rate and installation cost, NTD-CR selects the 

most suitable set of links such that the resulting model meets 

its required reliability Rmin while minimizing its installation 

cost. This paperconsiders network reliability [2], also called 

all-terminal reliability, as the measure of reliability.  

The NTD-CR problem has been shown NP-hard [3], and 

thus one must use heuristic and/or approximation solutions to 

design large sized topologies. There are many proposed 
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solutions for NTD-CR problem. The existing algorithms that 

generate approximation solution are mainly based on 

meta-heuristic techniques, e.g., Genetic Algorithm [2], [3], 

Swarm Particle [4] and Ant Colony [5]. While the 

metaheuristic algorithms can significantly reduce time 

complexity, they still require numerous iterations to converge 

and thus use a considerable computational effort while 

producing only up to 63.1% optimal solutions. Thus, 

approach that can produce better results is still needed, 

especially for use in large scale networks.  

The main contribution of this paper is two folds. First, it 

uses a dynamic programming (DP) formulation to generate 

topology based on the proposed algorithm, DPCR-ST. 

Second, this paper proposes three heuristics to enumerate 

only kn spanning trees, which are used by DPCR-ST to 

significantly reduce its time complexity; n is the total number 

of spanning trees in the network.  

The layout of this paper is as follows. Section II discusses 

the network model and notations. Section III formulates the 

NTD-CR problem and provides assumptions. Section IV 

describes our proposed solutions while Section V presents 

the simulation results. Finally, Section VI concludes the 

paper and discusses the future work. 

II. NETWORK MODEL AND NOTATIONS 

A communication network can be modeled by a 

probabilistic bidirectional simple graph G=(V, E), in which 

each vertex/node viV represents a network component (e.g., 

router or computer site) and each edge ejE represents the 

connecting media (e.g., cable or communication link) 

between the network components. It is assumed that all node 

locations and connecting links are given. Each ej has a cost 

cj>0 that represents the cost to install ej, and reliability 0≤rj≤1 

that represents the probability that ej is functioning (UP); all 

nodes are always UP and use no setup costs. Edge failures are 

assumed statistically independent and without repair. Fig. 1 

(a) shows an example of the graph model of a network with 

four fixedly positioned nodes and five links; Table I provides 

cost (cj) and reliability (rj) values for an edge ej.    

 

 
         (a)                                                 (b) 

Fig. 1. An example network and optimal solution. 

 

A spanning tree i, STi, is a subgraph of G, which is a tree 

and contains all vertices in G. A spanning tree in a network 
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with |V| nodes has (|V|-1) links. Let STG be a set of all 

spanning trees in G, n=|STG|, and Li be the set of links in 

STiSTG. Table I shows STG of the network in Fig. 1 (a). 

 
  TABLE I:  LINK WEIGHT AND SPANNING TREE SET FOR NETWORK IN FIG. 1 

(A) 

 STG Link Weight 

i STi Rel(STi)  Cost(STi)   ej cj rj 

1 (1,3,5) 0.567 13 1 5 0.9 

2 (1,3,4) 0.567 11 2 3 0.6 

3 (2,3,4) 0.378 9 3 2 0.7 

4 (1,2,5) 0.486 14 4 4 0.9 

5 (2,3,5) 0.378 11 5 6 0.9 

6 (2,1,4) 0.486 12    

7 (1,4,5) 0.729 15    

8 (2,5,4) 0.486 13    

 

 Let Cost(STi) denote the cost of installing all links in 

spanning tree STi, computed by taking the sum of cj of each ej 

in STi. The cost of a network topology G, Cost(G), is 

obtained using the sum of all cj for each ejin G. Let Rel(STi) 

denote the reliability of spanning tree STi;it is calculated by 

multiplying all rj of each ej in STi. The network reliability of a 

topology G, Rel(G), is the probability that at least one STi in 

G is functional. In another word, it is the probability that a set 

of operational links provides communication path between 

every pair of nodes. Calculating Rel(G), in general, is an 

NP-hard problem [5]; Section III.B provides details about 

computing Rel(G). Notice that G can be constructed using 

nodes in V and all links in STG, and thus this paper 

usesCost(STG)=Cost(G)=Cost(E) 

and  

Rel(STG)=Rel(G)=Rel(E). 

Similarly, we consider that  

Cost(STi)=Cost(Li) 

and  

Rel(STi)=Rel(Li). 

III. NETWORK DESIGN PROBLEM AND SOLUTION 

Let Xi be a decision variable {0, 1} that indicates if 

spanning tree STi in Gis selected (Xi=1) or not selected (Xi=0). 

The following equations describe the NTD-CR problem.  

 ini i e    t ⋃                                   

|   |

  1

    

  b e t t   el ⋃            

|   |

  1

                       

Equation (1) calculates the minimum cost of the network 

using only the selected spanning trees STi from (2). One may 

generate all 2
n
 possible combinations of spanning trees that 

meet the constraint in(2). Then, for each combination that has 

reliability at least Rmin, use(1) to calculate its cost and select 

the topology with the minimum cost as Gmin with 

Rel(Gmin) Rmin. This solution is prohibitive for use in large 

networks since a general network contains n=O(|V|
|V|

) 

spanning trees [6]. In Section IV.A, we propose aDP 

approach to solve (1) and (2). 

To illustrate the NTD-CR problem, consider the network 

in Fig. 1 (a). For Rmin=0.87, Fig. 1 (b) shows the optimal 

network topology, Gmin, whose links form a set of spanning 

trees{(2, 5, 4), (1, 4, 5), (2, 1, 4), (1, 2, 5)} with 

Rel(Gmin)=0.88 and Cost(Gmin)=18; Gmin does not contain 

spanning trees (1, 3, 4), (1, 3, 5), (2, 3, 5) and (2, 3, 4) because 

link 3 is not selected.  

 

IV. PROPOSED DYNAMIC PROGRAMMING-BASED 

SOLUTION 

A. Dynamic Programming Formulation for NTD-CR  

Let STXi, for i=1, 2, …, n, be a set of spanning trees 

selected from n-i+1 spanning trees in {STi, STi+1, …,  Tn} 

and Gi=(V, EiE) be its induced graph whose links comprise 

of all links in STXi. We use STXi and Gi interchangbly since 

one can be generated from the other. Note that 

0|STXi|n-i+1, and there are 2
n
 different STXi, and we aim 

to select STX1 with a reliability of at least Rmin, i.e., 

Rel(G1) Rmin and minimum Cost(G1). 

Let DP[1.. n, 0.. Řmin] be a 2-dimension DPtable, where 

Řmin=round(Rmin), for a positive integer multiplier  and a 

function round() that returns the closest integer value of (). 

For example, the function returns Řmin=92 (Řmin=93) when 

we set =100 and Rmin=0.9216 (Rmin=0.9261).  

Each element DP[i,ř], for i=1, 2, …, n, ř=0, 1, 2, …, 

Řmin,stores five pieces of information: a cost C[i, ř]>0, a 

reliability 0R[i, ř]1.0, ST[i, ř]STG, a set of links L[i, 

ř]E, and an integer index 0J[i,ř]. In essence, the 

columns of DP table partition the reliability constraint 

Rmininto consecutive reliability constraints, i.e., Rmin/, 

(2Rmin)/,…,Rmin/=Rmin. In other words, each column 

index ř=0, 1, …, Řmin, corresponds to a reliability constraint 

r=0, 1/, …, (Řmin/)Rmin, i.e., r=ř/ and ř=round(r), and 

each DP[i,ř] is used to store four pieces of information of 

each selected topology Gi that has Rel(Gi) r. Specifically, for 

each Rel(Gi) r, we set C[i,ř]=Cost(Gi), R[i, ř]=Rel(Gi), ST[i, 

ř]=STXi, and L[i, ř]=Ei. For Rel(Gi)<r, we set C[i, ř]=, R[i, 

ř]=0, ST[i, ř]={}, and L[i, ř]=( ). Note that C[i,ř]=0 is not 

possible since each link is assumed to have a non-zero cost. 

Since C[1, Řmin] is the cost of G1=(V, E1E) with 

Rel(G1) Rmin, NTD-CR aims to generate DP[1, Řmin] that 

contains the minimum C[1, Řmin], which represent the Gmin.  

For each range of columns ř1řř2 in row i that contain 

the same reliability value, we set each J[i,ř]=ř2. Thus, index 

J[i,ř]=0, 1, 2, …,100  ark  the ending   l  n  f a range  f 

columns that have the same reliability. For example, we store 

J[i,ř]=38 at columns ř=0 to ř=38 if R[i, 0]=R[i, 1]= … = [i, 

38]. Note that we set J[i,ř]=ř when ř1=ř2, i.e., when the 

length of the range is one. 
Our DP approach computes each C[i, ř] using the 

following four equations: 

i=n:  

C[i, ř]=Cost (STi); if Rel(STi)≥r                 (3) 

C[i, ř]=; if Rel(STi)<r                         (4) 

i<n and Rel(STi)≥ r: 

C[i, ř]=Min(C[i+1, ř], Cost (STi))              (5) 
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i<n and Rel(L[i+1, j]Li)≥ r:  

C[i, ř]=Min(C[i+1, ř], Cost (L[i+1, j]  Li))          (6) 
 

Without loss of generality, we consider the spanning tree 

selection start from the last spanning tree STn. In (3), when 

the last spanning tree has reliability of at least r, it should be 

selected, giving C[n, ř]=Cost(STn). In contrast, when 

Rel(STn)<r,STnis not selected because it does not meet the 

constraint r; thus (4) sets C[n,ř]=∞ t  den te that n   panning 

tree is selected.  

Equation (5) and (6) are used for each remaining STi, for 

i=n-1, n-2, …, 1. Eq ati n (5) considers two options, 

selecting or not selecting STi, when Rel(STi) r, and selects 

the option that produces the minimum cost. Specifically, 

when STi is selected (not selected), its cost is Cost(STi) 

(C[i+1, ř]), and the equation selects the minimum between 

the two since both options satisfy the reliability requirement r. 

Note that the reliability value in the element would be 

changed to Rel(STi) if STi is selected. Further, (5) considers a 

situation when no trees have been selected for column ř, i.e., 

C[i+1,ř]=∞ and  [i+1, ř]=0, in which case it will select STi. 

Equation (6) considers the case when selecting STi 

together with some previously selected trees STXj satisfies 

the required reliability r, i.e., Rel(L[i+1, j]Li) r, for each 

possible j=J[i,ř]=0, 1, …, 100. Like (5), (6) also considers the 

minimum cost between either selecting or not selecting STi; 

the former produces Cost(L[i+1, j]Li) and the latter C[i+1, 

ř]. Specifically, when STi is selected (not selected), the cost is 

calculated from the selected spanning trees STXi, (STXi+1). 

Note that the reliability value in the column would be 

changed to Rel(L[i+1, j]Li) if STi is selected. Further, (6) 

also considers a situation when no trees have been selected 

for column ř, i.e., C[i+1,ř]=∞ and  [i+1, ř]=0, in which it 

will select STi.  

The DP formulation in (3) to (6) is similar to the DP 

solution for the well-known NP-complete 0/1 knapsack 

problem [7]. In the 0/1 knapsack problem, there are n items 

where each item has capacity and value and its goal is to 

select a set of items that have the maximumtotal value while 

having total capacityno larger than a given capacity 

constraint. In contrast, NTD-CR aims to select a set of 

spanning trees whose induced topology has minimumtotal 

cost while having network reliability no less than a given 

reliability constraint Rmin. However, unlike for knapsack 

where the t tal    t  f tw  ite   i  the      f ea h ite ’  

cost, in NTD-CR, Cost(STi) + Cost(STp)Cost(STiSTp) 

because STi and STp may contain common links. Therefore 

(6) must consider all possible values of j, i.e.,J[i, ř]. Further, 

while the total capacity of two items in Knapsack equals the 

     f ea h ite ’   apa ity, in NTD-CR, 

Rel(STi)+Rel(STp)Rel({STiSTp}), and Rel(STi)>Rel(STp) 

does not always mean Rel(SThSTi)>Rel(SThSTp), for any 

STh. Therefore, each C[i, ř] is not necessarily minimum even 

when it is computed from two optimal sub problems.  

B. DPCR-ST Algorithm 

Fig. 2 shows our proposed DP algorithm, called DPCR-ST, 

that directly applies (3) to(6).For a G=(V, E) that contains 

nspanning trees with reliability constraint Rmin, DPCR-ST 

implicitly constructs a DP table of size nŘmin.As shown in 

Fig. 2, DPCR-ST keeps only two consecutive rows, called 

row1 and row2, and therefore it requires only a table of size 

2Řmin. Specifically, DPCR-ST computes C[1,  j] and R[1,  j] 

in row1 using the information in C[2, ř] and R[2, ř] in row2, 

for all relevant columns ř and j. After copying the contents of 

row1 to row2, it repeats the step until all spanning trees are 

considered. 

Line 1 implements (4) while Line 2 to 8 are based on  (3). 

The remainder of the code is used to implement (5) and (6). 

Specifically, (5) is solved in Line 9 to 21, (6) in Line 22 to 38, 

and Line 39 to 45 copies the contents of row1 to row2. 

C. DPCR-ST Analysis  

The time complexity of DPCR-ST can be computed as 

follows.The Cost(X) function requires all unique links in the 

set of spanning trees X. 

 

Fig. 2. DPCR-ST Pseudocode 

 

For each ř, Cost(X) returns the sum of C[i+1, ř] and the 

cost of links in STi that are not inL[i+1, ř].  Using the bit 

DPCR-ST Algorithm: 

1.   Initialize C[2,ř]=∞, R[2, ř]=0, ST[2,ř]={},L[2,ř]=( ),J[2, ř]=Řmin, 

forRel(STn)< r// Equation. (4) 

2.   for (ř 0 to round(Rel(STn)) do  // Equation. (3) 

3.         C[2,ř]  Cost(STn)  

4.         R[2,ř]  Rel(STn) 

5.         ST[2,ř] STn 

6.         L[2,ř]  Ln 

7.         J[2, ř]round(R[2,ř]) 

8.   end for ř 

9.   for (in-1 downto 1) do  // Eqs (5)-(6) 

10.        for (ř0 to round(Rel(STi)) do // Equation. (5) 

11.               C[1,ř] Min(C[2, ř], Cost (STi)) 
12.               if C[2, ř]< Cost (STi)  

13.                   ST[1,ř]  ST[2,ř]     

14.                   L[1,ř]  L[2,ř]  

15.               else 

16.                   ST[1,ř] STi 

17.                   L[1,ř]  Li 

18.               end if  

19.               R[1,ř] Rel(L[1, ř]) 

20.J[1, ř] round(R[1,ř]) 

21.        end for ř 

22.        for (y  0 toŘmin) do // Equation.(6)      

23.if (J[2, y] ≠J[2, y+1]) 
24.                   j=J[2, y] 

25.                   if Rel(L[2,  j]  Li) ř 

26.                        C[1,ř]  Min(C[2, ř], Cost (L[2, j]  {Li})) 

27.                        if C[2, ř]<Cost (L[2, j]  Li)  

28.                            ST[1,ř]  ST[2,ř]    

29.                            L[1,ř]  L[2,ř]  

30.                        else 

31.                            ST[1,ř]  ST[2, j] STi 

32.                            L[1,ř]  L[2, j]  Li 

33.end if 

34.                       R[1,ř] Rel(L[1, ř])  

35.J[1, ř] round(R[1,ř]) 

36.                  end if 
37.             end if 

38.end  fory 

39.        for ( y   0toŘmin) do // copyrow1 to row 2 

40.C[2, y ] C[1, y ] 

41.              R[2, y ]  R[1, y ]                                                                            

42.              ST[2, y ]  ST[1, y ] 

43.              L[2, y ]  L[1, y ] 

44.              J[2, y ] J[1, y ]  

45.       end for y 

46. end for i 
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implementation [8], one requires only one bit OR and one bit 

XOR operation to obtain the links in STi that are not 

inL[i+1,ř], and thus for any X, Cost(X) can be computed in 

O(|E|). DPCR-ST uses the function at most once for every 

table entry, and therefore the worst case time complexity for 

using the function is O(n×|E|×Řmin). 

The Rel(X) function can be implemented using any exact 

reliability calculation [8], heuristic technique [9] or 

approximation (bounding) method [2]. In this paper, we use 

Monte Carlo simulation [9] with time complexity O(b×|V|
4
) 

[1]to estimate Rel(X) of each candidate network; b is the 

number of replication.  Notice that Rel(X) is used only for 

each different j in each row i. Hence, in total, the time 

complexity of using Rel(X) is O(×b×|V|
4
), where  is the 

total number of different j in the table. Thus, in the worst case, 

DPCR-ST requires O(×b×|V|
4
+n×|E|× Řmin). 

D. Improving the Efficiency of DPCR-ST  

We propose three different heuristic techniques, each of 

which sequentially generates only 0kn spanning trees for 

its input. Using smaller k will reduce the time complexity of 

the algorithm.  

For a given graph G(V, E), we first compute link weight wi 

for each eiE using one of three different criteria, (i) CR1: 

wi= ci/ri, (ii) CR2: wi=ci, and (iii) CR3: wi=-(log ri). Then, for 

ea h  riteri n, we   e a   dified Pri ’  alg rith  [10] to 

sequentially generate all spanning trees of G, sorted in their 

increasing weights. Note that the weight of a spanning tree is 

calculated as the sum of the weight of each link in the 

spanning tree. As an example, we obtain the following orders 

for the spanning trees in Table I; CR1:(ST2, ST7, ST1, ST3, 

ST6, ST8, ST4, ST5), CR2:(ST7, ST2, ST1, ST8, ST6, ST4, ST5, 

ST3) and CR3:(ST3, ST2, ST5, ST6, ST1, ST8, ST4, ST7).Note 

that (3) to (6) consider spanning trees starting from STn, and 

thus DPCR-ST sets STn as the least weighted spanning tree, 

STn-1 as, the second least weighted, etc.  in e Yen’  

algorithm requires a time complexity of 

O(k|V|(|E|+|V|log|V|)), DPCR-ST requires an extra 

O(n|V|(|E|+|V|log|V|)) time complexity for the 

improvement, i.e., O(×b×|V|
4
+n×|E|×Řmin+ 

n|V|(|E|+|V|log|V|)).Note that our DPCR-ST generates 

only the first k least weight spanning trees. Thus, this 

improvement does not require all spanning trees a priori, 

which improves DPCR-ST’  ti e    plexity, i.e., 

O(×b×|V|
4
+n×|E|×Řmin+ k|V|(|E|+|V|log|V|)). 

 

V. SIMULATION AND DISCUSSION 

We have implemented our DPCR-ST in C language to 

generate the topology of the 76 fully connected networks in 

[5] with the number of nodes, links and spanning trees range 

from 6 to 11, 15 to 55, and 1269 to 2. x10 , respectively. We 

obtained 76 cost matrices from the authors in [5], and use 

them for all link costs of all networks; the authors [5] 

randomly generated the integer costs with values between 1 

and 100. Like in [5], we set Rmin to either 0.9 or 0.95 and 

equal link reliability with value of either 0.9 or 0.95. All 

simulations using DPCR-ST were run on Intel Core i5 with 

2.53 GHz with 4 GB of RAM, running Linux (Ubuntu Core 

11.10).  

For each of the 76 fully connected network topologies in 

[5],we first generated its spanning trees in four different 

orders: random, CR1, CR2, and CR3, described in Section 

IV.D. We have   ed Pri ’  alg rith  [10] to generate the 

randomly ordered spanning trees, and modified the algorithm 

to generate the spanning trees for the three sorted criteria. 

Then, we used DPCR-ST on each set of spanning trees to 

generate its feasible topology with minimum cost. Each of 

the 76 Cbestis the minimum among the costs of topologies 

generated using random, CR1, CR2, CR3, and column Rel 

stores its reliability.  

A. The Effect of Spanning Tree Orderings on the 

Performance of DPCR-ST. 

DPCR-ST with random ordered spanning trees generates 

Cbest only in 28 of 76 networks (36.8%), which is the worst as 

compared to CR1 (82.8%), CR2 (63.1%), and CR3 (72.3%). 

Further, for each case in which the random order generates 

Cbest, at least one of the other three orders was also able to 

produce the result. This result shows the merit of 

pre-ordering spanning trees for our DP approach.  

To compare the performances of CR1, CR2, and CR3, we 

summarize their results in Table II and III. The tables show 

the total number of topologies generated with cost Cbest and 

their cost optimality with respect to Cmin – the cost of Gmin, i.e., 

Cbest>Cmin, Cbest=Cmin,Cbest<Cmin. Note that Cminis the 

minimum cost of each topology with reliability at least Rmin as 

reported in [5]. As stated in [2], the reliability of each 

topology with cost Cmin was estimated using a Monte Carlo 

method that produces result within 1% of Rmin.  
As shown in Table II, CR1 is the best performer, producing 

Cbest 82.8% of the time, followed by CR3 with 72.3% and 

  2 with 6 .1%;  ee   l  n “T tal”. For each order, the last 

column in the table shows the total number of topologies with 

cost Cbest that can only be generated using its two alternative 

sorting criteria; e.g., row 1 of the table shows that CR1 

produces 13 topologies with cost worse than that produced 

using CR2 and/or CR3. 

TABLE II: COMPARISONS AMONG CR1, CR2 AND CR3 

Cost 

 

 
Order 

Total number of topologies with cost Cbest Total number of 

topologies with 

cost Cbest using 
the other two 

sorting criteria  

Cbest< 

Cmin 

Cbest= 

Cmin 

Cbest> 

Cmin 
Total 

CR1 
27 

35.5% 

26 

34.2% 

10 

13.1% 

63 

82.8% 

13 

17.2% 

CR2 
17 

22.3% 

24 

31.5% 

7 

9.2% 

4863.1

% 

28 

36.8 % 

CR3 25 

32.8% 

24 

31.5% 

6 

7.8% 

55 

72.3% 

21 

27.6% 

 

As shown in Table II, our DPCR-ST can produce topology 

with Cbest<Cmin because we round off each reliability to its 

closest integer and use a Monte Carlo method [9] that 

computes reliability within 0.5% of Rmin. The table also 

shows that CR1, CR2, and CR3 produce 69.7%, 53.8%, 64.3% 

of topologies with cost less or equal than Cmin, respectively. 

Thus, in term of optimality, CR1 (CR2) is the best (worst) 

performer. 

Table III shows the total number of Cbest uniquely 

produced using one or more of the three different ordering 

criteria. The table shows that there are in total 8, 12 and 1 

topology with cost Cbest uniquely generated by CR1, CR2 and 
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CR3, respectively, and the three criteria produce the same 

topologies 35/76=46% of the time. Further, there are 1 and 19 

topologies that can only be generated by either CR1 or CR2 

and CR1 or CR3, respectively. The results show that it is 

important for DPCR-ST to use the three ordering criteria, 

CR1, CR2 and CR3, and select the best among their results to 

generate topologies with lower cost. As shown in the table, 

such approach produces only 18.4% topologies with less 

optimal cost. 

  TABLE III:    DISTRIBUTION OF CBEST GENERATED USING ONE OR MORE 

CRITERIA 

           Cost 

          Order 
Cbest<Cmin Cbest=Cmin Cbest>Cmin 

CR1 3 1 4 

CR2 2 6 4 

CR3 1 0 0 

CR1,CR2 0 1 0 

CR1,CR3 9 7 3 

CR2,CR3 0 0 0 

CR1,CR2,CR3 15 17 3 

Total 30(39.4%) 32 (42.1%) 14(18.4%) 

B. DPCR-ST versus Existing Approaches 

Table IV compares the effectiveness of our DPCR-ST 

against four state-of-the-art approaches, i.e., NGA [2], 

LS/NG [3], ACO-SA [5], and BDD [11], using the 76 fully 

connected networks. Since we were unable to obtain the 

source codes for the four approaches in [2], [3], [5], and [11], 

we have used their reported results in our comparisons.  

As shown in Table IV, while NGA, LS/NGA and 

ACO-SA could generate optimal solutions for 16, 24 and 48 

out of 76 instances, respectively, and BDD obtain optimal 

solutions for 14 out of 45 instances, DPCR-ST could produce 

62 out of 76 optimal results (81.5%), significantly improving 

the effectiveness of the existing algorithms. 

TABLE IV: COMPARISON BETWEEN DPCR-ST, NGA, LS/NGA, ACO_SA 

AND BDD 

 DPCR-ST NGA LS_GA ACO_SA BDD 

Cbest=Cmin 32 

(42.1%) 

16 

(21%) 

24 

(31.5%) 

48 

(63.1%) 

14 

(33%) 

Cbest<Cmin 30 

(39.4%) 

N/A N/A N/A NA 

Further, 30 of 62 Cbest generated using DPCR-ST are better 

than Cmin. These results show the superiority of our efficient 

DP approach as compared to the existing state-of-the-arts 

solutions [2], [3], [5], and [11].  

V.

 

CONCLUSION

 

We have defined a network topology design problem, 

NTD-CR, to generate topology that has the minimum cost 

subject to a reliability constraint Rmin. We have proposed a 

heuristic based on dynamic programming, to solve NTD-CR. 

Our method DPCR-ST incrementally generates only a 

selected k

 

spanning trees from the network, and is scalable on 

networks having

 

large number of spanning trees. We have 

proposed to sort the spanning trees using three different 

 rder  t   pti i e   r  eth d’  effe tivene   and effi ien y. 

The experimental study shows that the DPCR-ST

 

approach is 

able to generate 81.5% optimal solutions.

 

We plan to design 

an alternative DP approach that heuristically deletes links 

from the original topology to find an optimal design. 
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