



Abstract—This paper addresses an NP-hard problem, called

NTD-CR, to design a minimal-cost communication network

topology that satisfies a pre-defined reliability constraint. Since

reliability is always a major issue in the network design, the

problem is practical for critical applications requiring

minimized cost. The paper formulates a dynamic programming

(DP) scheme to solve NTD-CR problem. DP approach, called

DPCR-ST, generates the topology using a selected set of

spanning trees of the network, STXmin. We propose three greedy

heuristics to generate and order only k spanning trees of the

network. Each heuristic allows DPCR-ST to enumerate STXmin

using only k spanning trees, which improves the time

complexity while producing near optimal topology. Simulations

based on fully connected networks that contain up to 2.3×109

spanning trees show the merits of ordering methods and the

effectiveness of our algorithm vis-à-vis four existing

state-of-the-art techniques; DPCR-ST produces 81.5% optimal

results, while using only 0.77%of the spanning trees contained

in network.

Index Terms—Dynamic programing, network optimization,

network reliability, network topology design.

I. INTRODUCTION

A well-designed communication network is inseparable

from the effective running of user applications. For critical

applications (e.g., emergency system, rescue and military

operations) it is important that the communication network

topology is as reliable as possible since in practice network

components (e.g., links) are failure-prone. A more reliable

topology will make the communication network operate

effectively and without interruption, even in the presence of

the component failures [1].Further, some applications may

need to run on a topology with a guaranteed minimum

reliability, Rmin, to properly operate. However, constructing a

reliable topology incurs higher installation cost. Given a set

of various centers (nodes), their possible connecting links,

link failure rate and installation cost, NTD-CR selects the

most suitable set of links such that the resulting model meets

its required reliability Rmin while minimizing its installation

cost. This paperconsiders network reliability [2], also called

all-terminal reliability, as the measure of reliability.

The NTD-CR problem has been shown NP-hard [3], and

thus one must use heuristic and/or approximation solutions to

design large sized topologies. There are many proposed

Manuscript received February 20, 2013; revised August 1, 2013.

B. Elshqeirat, S. Soh, and M. Lazarescu are with Department of

Computing, Curtin University, Perth, Western Australia; (e-mail:
Basima.elshoqeirat@postgrad.curtin.edu.au, S.Soh@curtin.edu.au,

M.Lazarescu@curtin.edu.au; tel.: +61 8 9266 2984; fax: +61 8 9266 2819).

S. Rai is with Department of Electrical and Computer Engineering,

Louisiana State University, Baton Rouge, LA, USA. (e-mail: srai@lsu.edu).

solutions for NTD-CR problem. The existing algorithms that

generate approximation solution are mainly based on

meta-heuristic techniques, e.g., Genetic Algorithm [2], [3],

Swarm Particle [4] and Ant Colony [5]. While the

metaheuristic algorithms can significantly reduce time

complexity, they still require numerous iterations to converge

and thus use a considerable computational effort while

producing only up to 63.1% optimal solutions. Thus,

approach that can produce better results is still needed,

especially for use in large scale networks.

The main contribution of this paper is two folds. First, it

uses a dynamic programming (DP) formulation to generate

topology based on the proposed algorithm, DPCR-ST.

Second, this paper proposes three heuristics to enumerate

only kn spanning trees, which are used by DPCR-ST to

significantly reduce its time complexity; n is the total number

of spanning trees in the network.

The layout of this paper is as follows. Section II discusses

the network model and notations. Section III formulates the

NTD-CR problem and provides assumptions. Section IV

describes our proposed solutions while Section V presents

the simulation results. Finally, Section VI concludes the

paper and discusses the future work.

II. NETWORK MODEL AND NOTATIONS

A communication network can be modeled by a

probabilistic bidirectional simple graph G=(V, E), in which

each vertex/node viV represents a network component (e.g.,

router or computer site) and each edge ejE represents the

connecting media (e.g., cable or communication link)

between the network components. It is assumed that all node

locations and connecting links are given. Each ej has a cost

cj>0 that represents the cost to install ej, and reliability 0≤rj≤1

that represents the probability that ej is functioning (UP); all

nodes are always UP and use no setup costs. Edge failures are

assumed statistically independent and without repair. Fig. 1

(a) shows an example of the graph model of a network with

four fixedly positioned nodes and five links; Table I provides

cost (cj) and reliability (rj) values for an edge ej.

 (a) (b)

Fig. 1. An example network and optimal solution.

A spanning tree i, STi, is a subgraph of G, which is a tree

and contains all vertices in G. A spanning tree in a network

Dynamic Programming for Minimal Cost Topology with

Reliability Constraint

Basima Elshqeirat, Sieteng Soh, Suresh Rai, and Mihai Lazarescu

1

0

2

3

1

5 2

1

0

2

3

1

3

5
2

4
4

Journal of Advances in Computer Networks, Vol. 1, No. 4, December 2013

286DOI: 10.7763/JACN.2013.V1.57

with |V| nodes has (|V|-1) links. Let STG be a set of all

spanning trees in G, n=|STG|, and Li be the set of links in

STiSTG. Table I shows STG of the network in Fig. 1 (a).

 TABLE I: LINK WEIGHT AND SPANNING TREE SET FOR NETWORK IN FIG. 1

(A)

 STG Link Weight

i STi Rel(STi) Cost(STi) ej cj rj

1 (1,3,5) 0.567 13 1 5 0.9

2 (1,3,4) 0.567 11 2 3 0.6

3 (2,3,4) 0.378 9 3 2 0.7

4 (1,2,5) 0.486 14 4 4 0.9

5 (2,3,5) 0.378 11 5 6 0.9

6 (2,1,4) 0.486 12

7 (1,4,5) 0.729 15

8 (2,5,4) 0.486 13

 Let Cost(STi) denote the cost of installing all links in

spanning tree STi, computed by taking the sum of cj of each ej

in STi. The cost of a network topology G, Cost(G), is

obtained using the sum of all cj for each ejin G. Let Rel(STi)

denote the reliability of spanning tree STi;it is calculated by

multiplying all rj of each ej in STi. The network reliability of a

topology G, Rel(G), is the probability that at least one STi in

G is functional. In another word, it is the probability that a set

of operational links provides communication path between

every pair of nodes. Calculating Rel(G), in general, is an

NP-hard problem [5]; Section III.B provides details about

computing Rel(G). Notice that G can be constructed using

nodes in V and all links in STG, and thus this paper

usesCost(STG)=Cost(G)=Cost(E)

and

Rel(STG)=Rel(G)=Rel(E).

Similarly, we consider that

Cost(STi)=Cost(Li)

and

Rel(STi)=Rel(Li).

III. NETWORK DESIGN PROBLEM AND SOLUTION

Let Xi be a decision variable {0, 1} that indicates if

spanning tree STi in Gis selected (Xi=1) or not selected (Xi=0).

The following equations describe the NTD-CR problem.

 ini i e t ⋃

| |

 1

 b e t t el ⋃

| |

 1

Equation (1) calculates the minimum cost of the network

using only the selected spanning trees STi from (2). One may

generate all 2
n
 possible combinations of spanning trees that

meet the constraint in(2). Then, for each combination that has

reliability at least Rmin, use(1) to calculate its cost and select

the topology with the minimum cost as Gmin with

Rel(Gmin) Rmin. This solution is prohibitive for use in large

networks since a general network contains n=O(|V|
|V|

)

spanning trees [6]. In Section IV.A, we propose aDP

approach to solve (1) and (2).

To illustrate the NTD-CR problem, consider the network

in Fig. 1 (a). For Rmin=0.87, Fig. 1 (b) shows the optimal

network topology, Gmin, whose links form a set of spanning

trees{(2, 5, 4), (1, 4, 5), (2, 1, 4), (1, 2, 5)} with

Rel(Gmin)=0.88 and Cost(Gmin)=18; Gmin does not contain

spanning trees (1, 3, 4), (1, 3, 5), (2, 3, 5) and (2, 3, 4) because

link 3 is not selected.

IV. PROPOSED DYNAMIC PROGRAMMING-BASED

SOLUTION

A. Dynamic Programming Formulation for NTD-CR

Let STXi, for i=1, 2, …, n, be a set of spanning trees

selected from n-i+1 spanning trees in {STi, STi+1, …, Tn}

and Gi=(V, EiE) be its induced graph whose links comprise

of all links in STXi. We use STXi and Gi interchangbly since

one can be generated from the other. Note that

0|STXi|n-i+1, and there are 2
n
 different STXi, and we aim

to select STX1 with a reliability of at least Rmin, i.e.,

Rel(G1) Rmin and minimum Cost(G1).

Let DP[1.. n, 0.. Řmin] be a 2-dimension DPtable, where

Řmin=round(Rmin), for a positive integer multiplier  and a

function round() that returns the closest integer value of ().

For example, the function returns Řmin=92 (Řmin=93) when

we set =100 and Rmin=0.9216 (Rmin=0.9261).

Each element DP[i,ř], for i=1, 2, …, n, ř=0, 1, 2, …,

Řmin,stores five pieces of information: a cost C[i, ř]>0, a

reliability 0R[i, ř]1.0, ST[i, ř]STG, a set of links L[i,

ř]E, and an integer index 0J[i,ř]. In essence, the

columns of DP table partition the reliability constraint

Rmininto consecutive reliability constraints, i.e., Rmin/,

(2Rmin)/,…,Rmin/=Rmin. In other words, each column

index ř=0, 1, …, Řmin, corresponds to a reliability constraint

r=0, 1/, …, (Řmin/)Rmin, i.e., r=ř/ and ř=round(r), and

each DP[i,ř] is used to store four pieces of information of

each selected topology Gi that has Rel(Gi) r. Specifically, for

each Rel(Gi) r, we set C[i,ř]=Cost(Gi), R[i, ř]=Rel(Gi), ST[i,

ř]=STXi, and L[i, ř]=Ei. For Rel(Gi)<r, we set C[i, ř]=, R[i,

ř]=0, ST[i, ř]={}, and L[i, ř]=(). Note that C[i,ř]=0 is not

possible since each link is assumed to have a non-zero cost.

Since C[1, Řmin] is the cost of G1=(V, E1E) with

Rel(G1) Rmin, NTD-CR aims to generate DP[1, Řmin] that

contains the minimum C[1, Řmin], which represent the Gmin.

For each range of columns ř1řř2 in row i that contain

the same reliability value, we set each J[i,ř]=ř2. Thus, index

J[i,ř]=0, 1, 2, …,100 ark the ending l n f a range f

columns that have the same reliability. For example, we store

J[i,ř]=38 at columns ř=0 to ř=38 if R[i, 0]=R[i, 1]= … = [i,

38]. Note that we set J[i,ř]=ř when ř1=ř2, i.e., when the

length of the range is one.
Our DP approach computes each C[i, ř] using the

following four equations:

i=n:

C[i, ř]=Cost (STi); if Rel(STi)≥r (3)

C[i, ř]=; if Rel(STi)<r (4)

i<n and Rel(STi)≥ r:

C[i, ř]=Min(C[i+1, ř], Cost (STi)) (5)

Journal of Advances in Computer Networks, Vol. 1, No. 4, December 2013

287

i<n and Rel(L[i+1, j]Li)≥ r:

C[i, ř]=Min(C[i+1, ř], Cost (L[i+1, j]  Li)) (6)

Without loss of generality, we consider the spanning tree

selection start from the last spanning tree STn. In (3), when

the last spanning tree has reliability of at least r, it should be

selected, giving C[n, ř]=Cost(STn). In contrast, when

Rel(STn)<r,STnis not selected because it does not meet the

constraint r; thus (4) sets C[n,ř]=∞ t den te that n panning

tree is selected.

Equation (5) and (6) are used for each remaining STi, for

i=n-1, n-2, …, 1. Eq ati n (5) considers two options,

selecting or not selecting STi, when Rel(STi) r, and selects

the option that produces the minimum cost. Specifically,

when STi is selected (not selected), its cost is Cost(STi)

(C[i+1, ř]), and the equation selects the minimum between

the two since both options satisfy the reliability requirement r.

Note that the reliability value in the element would be

changed to Rel(STi) if STi is selected. Further, (5) considers a

situation when no trees have been selected for column ř, i.e.,

C[i+1,ř]=∞ and [i+1, ř]=0, in which case it will select STi.

Equation (6) considers the case when selecting STi

together with some previously selected trees STXj satisfies

the required reliability r, i.e., Rel(L[i+1, j]Li) r, for each

possible j=J[i,ř]=0, 1, …, 100. Like (5), (6) also considers the

minimum cost between either selecting or not selecting STi;

the former produces Cost(L[i+1, j]Li) and the latter C[i+1,

ř]. Specifically, when STi is selected (not selected), the cost is

calculated from the selected spanning trees STXi, (STXi+1).

Note that the reliability value in the column would be

changed to Rel(L[i+1, j]Li) if STi is selected. Further, (6)

also considers a situation when no trees have been selected

for column ř, i.e., C[i+1,ř]=∞ and [i+1, ř]=0, in which it

will select STi.

The DP formulation in (3) to (6) is similar to the DP

solution for the well-known NP-complete 0/1 knapsack

problem [7]. In the 0/1 knapsack problem, there are n items

where each item has capacity and value and its goal is to

select a set of items that have the maximumtotal value while

having total capacityno larger than a given capacity

constraint. In contrast, NTD-CR aims to select a set of

spanning trees whose induced topology has minimumtotal

cost while having network reliability no less than a given

reliability constraint Rmin. However, unlike for knapsack

where the t tal t f tw ite i the f ea h ite ’

cost, in NTD-CR, Cost(STi) + Cost(STp)Cost(STiSTp)

because STi and STp may contain common links. Therefore

(6) must consider all possible values of j, i.e.,J[i, ř]. Further,

while the total capacity of two items in Knapsack equals the

 f ea h ite ’ apa ity, in NTD-CR,

Rel(STi)+Rel(STp)Rel({STiSTp}), and Rel(STi)>Rel(STp)

does not always mean Rel(SThSTi)>Rel(SThSTp), for any

STh. Therefore, each C[i, ř] is not necessarily minimum even

when it is computed from two optimal sub problems.

B. DPCR-ST Algorithm

Fig. 2 shows our proposed DP algorithm, called DPCR-ST,

that directly applies (3) to(6).For a G=(V, E) that contains

nspanning trees with reliability constraint Rmin, DPCR-ST

implicitly constructs a DP table of size nŘmin.As shown in

Fig. 2, DPCR-ST keeps only two consecutive rows, called

row1 and row2, and therefore it requires only a table of size

2Řmin. Specifically, DPCR-ST computes C[1, j] and R[1, j]

in row1 using the information in C[2, ř] and R[2, ř] in row2,

for all relevant columns ř and j. After copying the contents of

row1 to row2, it repeats the step until all spanning trees are

considered.

Line 1 implements (4) while Line 2 to 8 are based on (3).

The remainder of the code is used to implement (5) and (6).

Specifically, (5) is solved in Line 9 to 21, (6) in Line 22 to 38,

and Line 39 to 45 copies the contents of row1 to row2.

C. DPCR-ST Analysis

The time complexity of DPCR-ST can be computed as

follows.The Cost(X) function requires all unique links in the

set of spanning trees X.

Fig. 2. DPCR-ST Pseudocode

For each ř, Cost(X) returns the sum of C[i+1, ř] and the

cost of links in STi that are not inL[i+1, ř]. Using the bit

DPCR-ST Algorithm:

1. Initialize C[2,ř]=∞, R[2, ř]=0, ST[2,ř]={},L[2,ř]=(),J[2, ř]=Řmin,

forRel(STn)< r// Equation. (4)

2. for (ř 0 to round(Rel(STn)) do // Equation. (3)

3. C[2,ř]  Cost(STn)

4. R[2,ř]  Rel(STn)

5. ST[2,ř] STn

6. L[2,ř]  Ln

7. J[2, ř]round(R[2,ř])

8. end for ř

9. for (in-1 downto 1) do // Eqs (5)-(6)

10. for (ř0 to round(Rel(STi)) do // Equation. (5)

11. C[1,ř] Min(C[2, ř], Cost (STi))
12. if C[2, ř]< Cost (STi)

13. ST[1,ř]  ST[2,ř]

14. L[1,ř]  L[2,ř]

15. else

16. ST[1,ř] STi

17. L[1,ř]  Li

18. end if

19. R[1,ř] Rel(L[1, ř])

20.J[1, ř] round(R[1,ř])

21. end for ř

22. for (y  0 toŘmin) do // Equation.(6)

23.if (J[2, y] ≠J[2, y+1])
24. j=J[2, y]

25. if Rel(L[2, j]  Li) ř

26. C[1,ř]  Min(C[2, ř], Cost (L[2, j]  {Li}))

27. if C[2, ř]<Cost (L[2, j]  Li)

28. ST[1,ř]  ST[2,ř]

29. L[1,ř]  L[2,ř]

30. else

31. ST[1,ř]  ST[2, j] STi

32. L[1,ř]  L[2, j]  Li

33.end if

34. R[1,ř] Rel(L[1, ř])

35.J[1, ř] round(R[1,ř])

36. end if
37. end if

38.end fory

39. for (y  0toŘmin) do // copyrow1 to row 2

40.C[2, y] C[1, y]

41. R[2, y]  R[1, y]

42. ST[2, y]  ST[1, y]

43. L[2, y]  L[1, y]

44. J[2, y] J[1, y]

45. end for y

46. end for i

Journal of Advances in Computer Networks, Vol. 1, No. 4, December 2013

288

implementation [8], one requires only one bit OR and one bit

XOR operation to obtain the links in STi that are not

inL[i+1,ř], and thus for any X, Cost(X) can be computed in

O(|E|). DPCR-ST uses the function at most once for every

table entry, and therefore the worst case time complexity for

using the function is O(n×|E|×Řmin).

The Rel(X) function can be implemented using any exact

reliability calculation [8], heuristic technique [9] or

approximation (bounding) method [2]. In this paper, we use

Monte Carlo simulation [9] with time complexity O(b×|V|
4
)

[1]to estimate Rel(X) of each candidate network; b is the

number of replication. Notice that Rel(X) is used only for

each different j in each row i. Hence, in total, the time

complexity of using Rel(X) is O(×b×|V|
4
), where  is the

total number of different j in the table. Thus, in the worst case,

DPCR-ST requires O(×b×|V|
4
+n×|E|× Řmin).

D. Improving the Efficiency of DPCR-ST

We propose three different heuristic techniques, each of

which sequentially generates only 0kn spanning trees for

its input. Using smaller k will reduce the time complexity of

the algorithm.

For a given graph G(V, E), we first compute link weight wi

for each eiE using one of three different criteria, (i) CR1:

wi= ci/ri, (ii) CR2: wi=ci, and (iii) CR3: wi=-(log ri). Then, for

ea h riteri n, we e a dified Pri ’ alg rith [10] to

sequentially generate all spanning trees of G, sorted in their

increasing weights. Note that the weight of a spanning tree is

calculated as the sum of the weight of each link in the

spanning tree. As an example, we obtain the following orders

for the spanning trees in Table I; CR1:(ST2, ST7, ST1, ST3,

ST6, ST8, ST4, ST5), CR2:(ST7, ST2, ST1, ST8, ST6, ST4, ST5,

ST3) and CR3:(ST3, ST2, ST5, ST6, ST1, ST8, ST4, ST7).Note

that (3) to (6) consider spanning trees starting from STn, and

thus DPCR-ST sets STn as the least weighted spanning tree,

STn-1 as, the second least weighted, etc. in e Yen’

algorithm requires a time complexity of

O(k|V|(|E|+|V|log|V|)), DPCR-ST requires an extra

O(n|V|(|E|+|V|log|V|)) time complexity for the

improvement, i.e., O(×b×|V|
4
+n×|E|×Řmin+

n|V|(|E|+|V|log|V|)).Note that our DPCR-ST generates

only the first k least weight spanning trees. Thus, this

improvement does not require all spanning trees a priori,

which improves DPCR-ST’ ti e plexity, i.e.,

O(×b×|V|
4
+n×|E|×Řmin+ k|V|(|E|+|V|log|V|)).

V. SIMULATION AND DISCUSSION

We have implemented our DPCR-ST in C language to

generate the topology of the 76 fully connected networks in

[5] with the number of nodes, links and spanning trees range

from 6 to 11, 15 to 55, and 1269 to 2. x10 , respectively. We

obtained 76 cost matrices from the authors in [5], and use

them for all link costs of all networks; the authors [5]

randomly generated the integer costs with values between 1

and 100. Like in [5], we set Rmin to either 0.9 or 0.95 and

equal link reliability with value of either 0.9 or 0.95. All

simulations using DPCR-ST were run on Intel Core i5 with

2.53 GHz with 4 GB of RAM, running Linux (Ubuntu Core

11.10).

For each of the 76 fully connected network topologies in

[5],we first generated its spanning trees in four different

orders: random, CR1, CR2, and CR3, described in Section

IV.D. We have ed Pri ’ alg rith [10] to generate the

randomly ordered spanning trees, and modified the algorithm

to generate the spanning trees for the three sorted criteria.

Then, we used DPCR-ST on each set of spanning trees to

generate its feasible topology with minimum cost. Each of

the 76 Cbestis the minimum among the costs of topologies

generated using random, CR1, CR2, CR3, and column Rel

stores its reliability.

A. The Effect of Spanning Tree Orderings on the

Performance of DPCR-ST.

DPCR-ST with random ordered spanning trees generates

Cbest only in 28 of 76 networks (36.8%), which is the worst as

compared to CR1 (82.8%), CR2 (63.1%), and CR3 (72.3%).

Further, for each case in which the random order generates

Cbest, at least one of the other three orders was also able to

produce the result. This result shows the merit of

pre-ordering spanning trees for our DP approach.

To compare the performances of CR1, CR2, and CR3, we

summarize their results in Table II and III. The tables show

the total number of topologies generated with cost Cbest and

their cost optimality with respect to Cmin – the cost of Gmin, i.e.,

Cbest>Cmin, Cbest=Cmin,Cbest<Cmin. Note that Cminis the

minimum cost of each topology with reliability at least Rmin as

reported in [5]. As stated in [2], the reliability of each

topology with cost Cmin was estimated using a Monte Carlo

method that produces result within 1% of Rmin.
As shown in Table II, CR1 is the best performer, producing

Cbest 82.8% of the time, followed by CR3 with 72.3% and

 2 with 6 .1%; ee l n “T tal”. For each order, the last

column in the table shows the total number of topologies with

cost Cbest that can only be generated using its two alternative

sorting criteria; e.g., row 1 of the table shows that CR1

produces 13 topologies with cost worse than that produced

using CR2 and/or CR3.

TABLE II: COMPARISONS AMONG CR1, CR2 AND CR3

Cost

Order

Total number of topologies with cost Cbest Total number of

topologies with

cost Cbest using
the other two

sorting criteria

Cbest<

Cmin

Cbest=

Cmin

Cbest>

Cmin
Total

CR1
27

35.5%

26

34.2%

10

13.1%

63

82.8%

13

17.2%

CR2
17

22.3%

24

31.5%

7

9.2%

4863.1

%

28

36.8 %

CR3 25

32.8%

24

31.5%

6

7.8%

55

72.3%

21

27.6%

As shown in Table II, our DPCR-ST can produce topology

with Cbest<Cmin because we round off each reliability to its

closest integer and use a Monte Carlo method [9] that

computes reliability within 0.5% of Rmin. The table also

shows that CR1, CR2, and CR3 produce 69.7%, 53.8%, 64.3%

of topologies with cost less or equal than Cmin, respectively.

Thus, in term of optimality, CR1 (CR2) is the best (worst)

performer.

Table III shows the total number of Cbest uniquely

produced using one or more of the three different ordering

criteria. The table shows that there are in total 8, 12 and 1

topology with cost Cbest uniquely generated by CR1, CR2 and

Journal of Advances in Computer Networks, Vol. 1, No. 4, December 2013

289

CR3, respectively, and the three criteria produce the same

topologies 35/76=46% of the time. Further, there are 1 and 19

topologies that can only be generated by either CR1 or CR2

and CR1 or CR3, respectively. The results show that it is

important for DPCR-ST to use the three ordering criteria,

CR1, CR2 and CR3, and select the best among their results to

generate topologies with lower cost. As shown in the table,

such approach produces only 18.4% topologies with less

optimal cost.

 TABLE III: DISTRIBUTION OF CBEST GENERATED USING ONE OR MORE

CRITERIA

 Cost

 Order
Cbest<Cmin Cbest=Cmin Cbest>Cmin

CR1 3 1 4

CR2 2 6 4

CR3 1 0 0

CR1,CR2 0 1 0

CR1,CR3 9 7 3

CR2,CR3 0 0 0

CR1,CR2,CR3 15 17 3

Total 30(39.4%) 32 (42.1%) 14(18.4%)

B. DPCR-ST versus Existing Approaches

Table IV compares the effectiveness of our DPCR-ST

against four state-of-the-art approaches, i.e., NGA [2],

LS/NG [3], ACO-SA [5], and BDD [11], using the 76 fully

connected networks. Since we were unable to obtain the

source codes for the four approaches in [2], [3], [5], and [11],

we have used their reported results in our comparisons.

As shown in Table IV, while NGA, LS/NGA and

ACO-SA could generate optimal solutions for 16, 24 and 48

out of 76 instances, respectively, and BDD obtain optimal

solutions for 14 out of 45 instances, DPCR-ST could produce

62 out of 76 optimal results (81.5%), significantly improving

the effectiveness of the existing algorithms.

TABLE IV: COMPARISON BETWEEN DPCR-ST, NGA, LS/NGA, ACO_SA

AND BDD

 DPCR-ST NGA LS_GA ACO_SA BDD

Cbest=Cmin 32

(42.1%)

16

(21%)

24

(31.5%)

48

(63.1%)

14

(33%)

Cbest<Cmin 30

(39.4%)

N/A N/A N/A NA

Further, 30 of 62 Cbest generated using DPCR-ST are better

than Cmin. These results show the superiority of our efficient

DP approach as compared to the existing state-of-the-arts

solutions [2], [3], [5], and [11].

V.

CONCLUSION

We have defined a network topology design problem,

NTD-CR, to generate topology that has the minimum cost

subject to a reliability constraint Rmin. We have proposed a

heuristic based on dynamic programming, to solve NTD-CR.

Our method DPCR-ST incrementally generates only a

selected k

spanning trees from the network, and is scalable on

networks having

large number of spanning trees. We have

proposed to sort the spanning trees using three different

 rder t pti i e r eth d’ effe tivene and effi ien y.

The experimental study shows that the DPCR-ST

approach is

able to generate 81.5% optimal solutions.

We plan to design

an alternative DP approach that heuristically deletes links

from the original topology to find an optimal design.

REFERENCES

[1]. A. Kumar, R. Pathak, and Y. G pta, “A geneti alg rith f r
di trib ted y te t p l gy de ign,” Computers and Industrial

Engineering, vol. 28, pp. 659-670, 1995.

[2]. B. Dengiz, F. Altiparmak, and A. ith, “Effi ient pti i ati n f
all-terminal reliable netw rk ,” IEEE Trans. on Reliability, vol. 41, no.

1, pp. 18-26, 1997.

[3]. B. Dengiz, F. Altiparmak, and A. ith, “L al ear h geneti
algorithm for pti al de ign f reliable netw rk ,” IEEE Trans. on

Evolutionary Computation, vol. 1, no. 3, pp. 179-188, 1997.

[4]. C. Papagianni and K. Papad p l , “ ni ati n Netw rk
De ign U ing Parti le war Opti i ati n,” in Proc. International

Multi Conference on Computer Science and Information Technology,
Poland, 2008, pp. 915-920.

[5]. F. Altipar ak, B. Dengi , O. Belgin, “A hybrid Ant l ny

Opti i ati n appr a h f r the De ign f eliable Netw rk ,” IIE
Transactions, vol. 42, pp. 273-287, 2010.

[6]. . De arlai and . lina, “ nting panning tree in grid

graph ,”Congressus Numerantium, vol. 145, pp. 177-185, 2000.
[7]. . artell , D. Pi inger, P. T th, “Dyna i pr gra ing and tr ng

bounds for the 0-1 knap a k pr ble ,” Management Science, vol. 45,

pp. 414-424, 1999.

[8]. S. Rai, and S. Soh, “ A EL: p ter aided reliability eval at r f r

di trib ted p ter netw rk ,” IEEE Trans. Parallel and

Distributed Systems, vol. 2, pp. 199-213, 1991.
[9]. S. Yeh, J. Lin, W. Yeh, “New nte arl eth d f r e ti ating

netw rk reliability,” in Proc. the 16th International Conference on

Computers and Industrial Engineering, Japan, 1994,pp. 723-726.

Basima Elshqeirat received the BS (2004), and MS

(2008) degrees in computer science from the
University of Jordan, Jordan. She is currently

working toward the Ph.D degree in Computer

Science at Curtin University. Her research interests
include network reliability and network design.

Sieteng Soh received a B.S. degree in electrical

engineering from the University of Wisconsin,
Madison, and M.S. and Ph.D in electrical engineering

from the Louisiana State University, Baton Rouge. He

was a faculty member (1993–2000), and the director
of the Research Institute (1998–2000) at

Tarumanagara University-Indonesia. He is currently a

Senior Lecturer with the Department of Computing at
Curtin University. Dr. Soh has published papers in refereed international

journals, and conference proceedings in the area of computer network,

network reliability, and parallel and distributed processing. He is a member
of the IEEE.

Suresh Rai

received the PhD degree in electronics

and communication engineering from Kurukshetra

University, Kurukshetra, Haryana, India, in 1980.
He is currently a professor with the Division of

Electrical and Computer Engineering, School of

Electrical Engineering and Computer Science at
Louisiana State University, Baton Rouge. His

 research interests include network traffic, wavelet-based compression,

watermarking in audio and video, and network reliability and security. He is
a senior member of the IEEE and a member of the IEEE Computer Society.

Mihai Lazarescu received his B.S. (Computer
Science) degree with First Class Honoursin 1996,

and his Ph.D in computer Science from the Curtin

University, in 2000. He has been a senior member of
the IMPCA research institute for 10 years and is

currently the head of Department of Computing and

an associate professor at Curtin University. He has
published over 60 papers in refereed international journals, and conference

proceedings in the areas of artificial intelligence, machine vision, data
mining and network reliability.

, , ,
[10]. Snippets Dzone. [Online]. Available:

http://www.dzone.com/snippets/prims-algorithm-finding.

[11]. G. Hardy, C. Lucet, and N. Li ni , “A BDD-based heuristic
algorithm for design of reliable networks with ini al t,” in Proc.

International Conference on Mobile Ad Hoc and Sensor Networks,

China, 2006, pp.13-15.

Journal of Advances in Computer Networks, Vol. 1, No. 4, December 2013

290

