



Abstract—Due to hardware resource constraints in WSN

nodes, and lack of support for high-level development

environments, application developers tend to avoid concurrent

object-oriented models in designing WSN applications. In

recent years due to new advances in microelectronics and

embedded system design, there have been a number of attempts

at manufacturing WSN node prototypes with resource-rich

capabilities that enable running multiple applications on

individual nodes or on groups of them collectively. However,

generating realistic results for large-scale concurrent

applications requires sophisticated simulation and debugging

tools. In this paper we describe a novel simulation tool with

multi-model execution environments that overcomes many

complexities involved in simulating large-scale WSNs. SXCS,

SensomaX Companion Simulator, is a standalone generic

simulator particularly targeting agent-based architectures for

densely distributed embedded systems. The proposed

architecture, unlike many existing models, is not tied to any

particular platform and can be fine-tuned through a set of

powerful network APIs as well as being capable of hosting

multiple highly dynamic virtual environments. It can also act as

an emulator taking the entire middleware source code to

replicate its core functionalities over a network of up to 2500

virtual nodes. An open-source release of SXCS is planned for

later in 2013.

Index Terms—Agent-based, simulator, SXCS, sensomax,

multi-operational, multi-application, concurrency

I. INTRODUCTION

There exist several WSN simulators aimed at dynamic

environments, however none have capabilities for simulating

multiple applications on a single node or a cluster. SXCS had

initially been designed for emulating Sensomax [1], [2]

middleware, which is an agent-based middleware with

multiple concurrent application support for dynamic data

gathering in large-scale WSNs. However, due to its many

distinct features such as modularity, extensibility, reusability,

object-orientation and dynamicity, it was optimized for

specialized simulation tasks.

SXCS is a hybrid network simulator that like WISDOM in

[3], has been written in Java and has no dependability on any

other Java simulation packages such as common discrete

event simulators like Jist [4] or J-Sim [5]. The key strengths

of SXCS are: 1) Modelling concurrent WSN applications on

node, cluster and network levels; 2) Modelling multiple

Manuscript received March 25, 2013; revised May 17, 2013.

Mo Haghighi is with the Department of Computer Science, University of

Bristol, Bristol, BS8 1UB, UK and Large-Scale Complex IT Systems

(LSCITS) (e-mail: Mo.Haghighi@bristol.ac.uk).

exclusively-defined properties and allocating them to several

sets of nodes and clusters; 3) Dynamic Injection of virtual

and real sensory data into virtual environments via multiple

data generators; 4) Dynamic runtime insertion and execution

of applications data requirements, such as computations and

aggregations, on node, cluster and network levels; 5)

Emulation and simulation of up to 2500 virtual nodes in a

multi-clustered fashion; 6) Keeping synchronized records of

components’ operational status, such as nodes’ lifetime,

activities’ durations, number of transceived packets and etc.

The aforementioned features are intended to satisfy a

number of objectives:

1) Providing common communication paradigms including

broadcast, unicast and multicast on network, node and

cluster levels.

2) Multi-agent intercommunications on all three levels.

3) Running four discrete simulation environments

including event, time, query and data, under a unified

emulation environment.

4) Splitting applications requirements into time, event,

query and data portions and associating them with their

relevant simulation environments.

5) Allocating exclusive set of virtual resources to

individual/collective virtual environments.

Limitation of hardware resources in WSNs has imposed

several major obstacles in design and development of

powerful software solutions for such devices. Most of the

existing software solutions for WSNs are in the form of

middleware and operating systems, and generally lack

numerous common functionalities available in conventional

systems. Such limitations not only force developers to rely on

low-level programing languages, but also require them to

learn low-level details of the hardware resources. Also on the

deployment-side, using low-level development environment

contributes to many complexities in network entity

interactions, which results in less autonomy and limits

reusability of pre-deployed networks.

Reusability or shared utilization of pre-deployed networks

requires developers to either rebuild the network with a new

software solution from scratch or build on top of the existing

software. In the latter case, this necessitates an adaptable, yet

flexible environment where multiple applications can

co-exist efficiently. Overcoming the aforementioned

complexities have been the major motivations behind the

development of Sensomax, in order to provide a high-level

and object-oriented development environment. Constructing

such an environment has only been made possible through

utilization of core java APIs including sockets, threads and

memory management, to deliver the features of conventional

systems such as multi-tasking, multi-agent communications,

serving multiple concurrent applications and dynamic

application/network adaptability.

An Agent-Based Multi-Model Tool for Simulating

Multiple Concurrent Applications in WSNs

Mo Haghighi

Journal of Advances in Computer Network, Vol. 1, No. 3, September 2013

270DOI: 10.7763/JACN.2013.V1.54

II. EXISTING SIMULATORS

The primary objective of this paper is to present how

concurrent applications can be simulated with regards to their

operational paradigms in separated virtual environment. We

also mentioned that the concept of concurrency is not very

well-defined in WSNs due to lack of qualified hardware.

Therefore in majority of research cases, support for

multi-tasking and concurrency is seriously overlooked. It was

also mentioned that SXCS was originally designed as an

emulator for Sensomax, hence its architecture was under

great impact of Sensomax architecture. However in order to

convert SXCS emulative architecture into an independent

simulator, a number of features in the existing simulation

tools have been exploited to enhance its usability and

competitiveness.

OMNeT++ [6] and ns-2 [7] are the most popular open

source network simulating tools. They both offer a number of

flexibilities that make them also suitable for WSNs.

OMNeT++ in particular, is an interoperable simulation

framework rather than an independent simulator; therefore it

has become an outstanding foundation for new simulation

architectures to be built on top of. Before designing SXCS,

OMNeT++ had frequently been used to validate the

functionalities and communication interactions in Sensomax

architecture. Therefore OMNeT++’s functionalities had a

major impact on the design of SXCS.

OMNeT++ or Objective Modular Network Test bed is an

event-driven discrete time simulator, which consists of a

wide range of components through a sophisticated library

that lets users create the simulation environments of their

choice in C++ or NED languages. The modular foundation of

OMNeT++ is based on two major types of components:

Simple and Compound. Simple components are the ones with

fixed functionalities that cannot be extended any further.

Compound components however can be consisted of as many

simple and compound components as they users desire. Users’

interactions can be implemented via two interfaces: a

graphical interface (Tkenv) and a command line interface

(Cmdenv). Tkenv provides several debugging facilities

including Module Output: an interface for displaying the

outputs from the components both as groups and individually;

Object Inspector: an interface for displaying and editing

objects properties; and Animated Messages: displaying

messages flowing amongst components. OMNeT++

incorporates popular communication protocols including

TCP/IP, FDDI and SCSI through a highly customizable

topology creator as well as facilitating multiple operational

environments including thread-based and FSM. In the

process of designing SXCS, the aforementioned features

were considered and combined in a uniform Java package

that includes the best of what OMNeT++ offers, in addition

to a number of novel capabilities offered by Sensomax,

including:

1) Thread-based and FSM-based combined operation

2) Common communication protocols: TCP/IP, UDP

3) Command line and graphical user interfaces

4) Object-oriented deep modular nesting

5) Debugging tools for displaying components interactions

6) Interoperability for various platforms

7) Direct and indirect components interactions

ns-2 however, lacks many features of OMNeT++. Most

notably, the process of composing a simulation scenario is

very complex and requires thorough knowledge of the

underlying classes that have been written in C++ and OTcl.

In most cases, making new components requires replicating

any underlying C++ classes in OTcl. Out of memory errors

are also very common and making any modifications in

particular, requires full compilation. Therefore, due to the

aforementioned downsides, creating large objective scenarios

including Sensomax, proved to be a very frustrating task.

III. ARCHITECTURE

Sensomax has been described in detail in previous

publications [1] and [2]. However since the architecture of

SXCS shares a number of components with Sensomax, and in

fact most of the functionalities exploited in SXCS are derived

from emulating an instance of Sensomax, here the high-level

operation of Sensomax as a WSN middleware is briefly

described.

Fig. 1. Sensomax middleware architecture

Fig. 1 (A) shows the overall hierarchical architecture of

Sensomax as software layers, where (B) illustrates the

execution engine’s architecture within the execution layer

and (C) depicts the profile assignment layer.

Sensomax creates a collaborative execution environment

where multiple applications demands are passed around the

network, in the form of agents, attempting to exploit the

available resources based on their requirements. It uses a

clustering scheme in which the network is divided into

multiple clusters, each composed of a collection of resources

required for meeting a particular end-user application. Every

node allocates an exclusive execution space to each new

application agent. This mechanism not only isolates the

execution of multiple agents from each other but also helps

the node to maintain exclusive roles for each application at

network level. Basically, a node can act as a cluster-head for

other slave nodes, to manage the execution of a task, and yet

the cluster-head can simultaneously play the role of a slave

member of a different cluster, helping a different cluster-head

execute a different task. This is to ensure the decentralized

execution of tasks on network level as well as their

centralized execution on cluster level.

Journal of Advances in Computer Network, Vol. 1, No. 3, September 2013

271

Sensomax also abstracts both agents and available

resources into three major categories of global, local, and

system. This process safeguards exclusive interactions of

agents and resources, where each type of agent is only

privileged to access the resources of its own type. This

mechanism benefited Sensomax enormously, resulting in

more rapid runtime updates and better scalability. Therefore,

multiple applications run simultaneously on both network

and node levels whilst injecting their updates at runtime,

without affecting others’ processing, and potentially

use/reuse the same set of resources. On the application-side,

Sensomax refines applications demands into four major

categories of Event, Time, Query and Data requirements,

whilst switching operational paradigm on the node-side

(Event-driven, Time-driven, Query-driven and Data-driven)

and executing requirements in their relevant execution

paradigm. It is worth noting that agents are still executed in

their own application spaces within each operational

paradigm. The definitions of time and event-driven

paradigms are self-explanatory. Query-driven however,

refers to instant queries that require executing immediately

upon receipt, whereas Data-driven refers to instant queries

that consider the node as a database of multiple variables and

instruct some data extraction commands to fetch a specific

portion of data with or without conditional perquisites.

Theoretically, a node equipped with Sensomax

middleware, can serve as many as applications as its memory

and processor allow. However in [2] we conducted an

extensive research investigating this matter in which,

SunSpot devices [8] as prototypes, achieved seamless

running of 40 concurrent soft applications with reasonable

latencies.

As was pointed out, our proposed simulator, SXCS, was

initially developed as an emulator for Sensomax. Its basic

original architecture resembled a container with multiple

instances of Sensomax source code running in the form of

multiple threads that communicate through a number of

virtual sockets, and their sensing resources were abstracted as

randomized data generators. The role of original SXCS was

crucial in debugging and fine-tuning Sensomax for

large-scale networks. However addition of more features like

dynamic virtual environments, virtual radio channel, real data

replicator and more importantly, implementing the

mechanism of multiple operational paradigms, transformed it

into a standalone simulator that can achieve most of its goals

through running an instance of Sensomax.

SXCS allows multiple end-user applications to create their

own WSNs with highly customizable environments. It

enables end-users to build essential simulation components

through a set of provided APIs and package them into virtual

nodes, clusters, networks and environments. Those

components include virtual hardware resources such as

sensors, actuators and I/O ports; network resources such as

virtual radio channels and routing protocols and finally

computational resources such as market-based algorithms

and energy-aware MAC protocols.

In a basic form, every component represents an object in

Java, which can be extended further so long as maintaining its

parent properties, which are defined by SXCS. This is

different from the OMNeT++ in a way that we do not

distinguish between simple and compound modules in the

way OMNeT++ does. In contrast, SXCS allows all modules

to extend the main functionalities so as long as conforming to

the design rules.

Fig. 2. SXCS high-level architecture

Fig. 2 depicts a high-level architecture of how SXCS

operates. Users may create as many nodes as they require (the

current version supports up to 2500) with their required

properties integrated in them. The same applies to creating

virtual environments with required properties. Users are then

instructed to associate the generated nodes, individually or

collectively, to the created environments. SXCS forms a

logical layer, containing all nodes associated to the same

environment, representing an independent cluster.

In the next phase, the data-generator component comes

into play, through which users can disseminate sensory data

to virtual environments. The data-generator can switch

between real and randomly generated data, with customizable

user-defined distributions. Data generator disseminates data

throughout the environment in order to be received by the

associated clusters. The same process applies to injecting

computation, data aggregation and resource management.

All the aforementioned injection tasks are managed by

SXCS Dynamic Updater module. All the interactions

amongst these modules are visible through a terminal

interface and results of each computation process can be

viewed for each node individually or in groups collectively.

To systemically clarify component-based interactions in

the aforementioned operations, every component represents a

Java object, including QNode.java, QCluster.java,

QEnvironment.java, QAggregate.java, QComputation.java

and etc., each containing variable amount of codes, which are

customizable by the users. These modules technically either

extend or interface a parent class in Java, which is defined by

SXCS and not customizable by the users. Parent classes

basically define their communication domain and how they

interact with other system modules.

In this section, SXCS operation goes lower by one level to

illustrate how components interactions are implemented and

to describe how the simulator engine operates.

WSN applications generally differ in terms of their

operational paradigms. Existing WSN middleware support

one or two operational paradigms such as Mate [9] and

Impala [10], that follow an event-driven paradigm, or SINA

[11] and COUGAR [12], which represent highly-coupled

Journal of Advances in Computer Network, Vol. 1, No. 3, September 2013

272

combinations of data-driven and Query-driven paradigms.

The same applies to WSN simulation tools where most are

discrete-event-based simulators. Therefore to simulate

different middleware, SXCS needs to offer an adaptable

environment in which various behaviour models can be

simulated. This is one of the challenges faced by many

simulators where running multiple simulation models

concurrently affects systems performance and realistic

near-real-time results are hard to obtain. Many existing

simulation tools attempt to solve this problem by customizing

the middleware behaviour in a way that fits in Discrete event

model.

As we mentioned, Sensomax is the first approach in WSN

middleware design in which all four major operational

paradigms are implemented under one hood in order to meet

various application types concurrently. Since SXCS

fundamentally extends Sensomax architecture, by nature it

incorporates all four simulation models: Discrete Event

Simulation, Discrete Time Simulation, Discrete Data

Simulation and Discrete Query Simulation.

Such multi-model simulation offers a number of

advantages to the applications, environments, nodes and the

network:

1) Allowing more realistic interactions between

multi-operational applications.

2) Allocating tailored execution model to each application

based on its architecture, in which, true behavioural

patterns can be analysed.

3) Enabling virtual environments to be simulated

individually/collectively based on their own exclusive

operational paradigms.

4) Displaying more realistic and faster interactions between

the environments and the applications with

different/same multi-operational behaviours.

5) Allowing concurrent evaluation of multiple nodes with

different/same operational paradigms.

6) Faster delivery of applications requirements/updates to

both nodes and environments.

7) Observable impacts of paradigm-shifting on multiple

levels.

Fig. 3. Multi simulation model and agent communications

We evaluate these advantages both in emulation and in

simulation, as discussed in the evaluation section.

Fig. 3 illustrates the execution of multiple simulation

models in SXCS as well as multi-agent communications

among components. The Virtual Nodes Table (VNT) is the

most fundamental component, which generates and holds all

virtual nodes and their clustering properties.

There always exists a node known as the Base Station,

which handles all users’ interactions with the simulator. The

VNT provides a virtual node instance to the base station from

which the base station can act as an independent virtual node

with no associated environment or characteristics. There is

also a set of APIs, provided for the users, aiming to ease the

process of programming simulation scenarios.

Like Sensomax, all components’ communications in

SXCS are implemented through extensive exchange of

multi-agents on all levels. The Simulation Execution

Engine component runs all four models concurrently and

provides a filtering component in which application

requirements are filtered out to the relevant execution model.

Fig. 3 only shows this filtering process for the application

requirements, however the same operation applies to all the

agents delivered to both environments and resources as well.

Simulation Execution Engine is a multi-threaded process

with an instance of Sensomax, in a fine-grained form,

integrated in each thread. Each thread represents a Finite

State Machine that takes in a type of agent that matches its

operational paradigm.

Fig. 4. Composing simulation environments through combining modules

Inter-components communications are all implemented in

an indirectly through the Virtual Radio Channel (VRC).

Virtual Radio Channel acts an intermediary between the

virtual nodes and the rest of the architecture. It assigns a

logical port and a 16bit address to every node and forms a

routing table by which every logical port is associated with an

address. Virtual Radio Channel also provides an extensive set

of common communication protocols including broadcast,

unicast and multicast. Application developers can access and

customize all network entities as well as the VRC, through a

set of provided APIs. Two major components that

considerably simplify the process of designing

communication protocols for the application developers are

PacketTransmitter.java and PacketReceiver.java.

Developers can utilize these modules in combination with

any other components to manage inter-components

interactions for their applications.

There exists another important module in charge of

resource allocation. QResource.java represents a repository

for all existing resources including sensors and actuators.

Users may define a resource of their choice, or by default

select one of template. A typical resource definition involves

Journal of Advances in Computer Network, Vol. 1, No. 3, September 2013

273

setting the type of sensing variable as well as a minimum and

a maximum value.

We have described the major components in SXCS and

how the overall interaction works. To further clarify how

users can compose a simulation environment and design an

application using the modules, Fig. 4 illustrates how

interconnecting modules are bundled together. Based on this

figure, the composition of a simulation environment involves

three major stages: Defining the network; building the

application; and setting up the virtual environment. The same

process applies to building the application in which users can

assign the nodes that the application is going to interact with,

as well as their conditional and timing requirements.

Due to the length restriction of this paper, a number of

details on the operation of SXCS have been omitted.

IV. EVALUATION

In this section a number of experiments have been

conducted to evaluate SXCS characteristics against

OMNeT++ in terms of energy, memory and performance

profiling. We will also validate the effectiveness of applying

multiple operational paradigms to the simulating

environments.

As we mentioned before, it is not feasible to simulate

multiple concurrent applications on a single node in

OMNeT++. However, since concurrency is the primary focus

of SXCS, it was imperative to compare SXCS’s multitasking

performance against OMNeT++. Hence we managed to

construct a very weak resemblance of SXCS’s concurrency

model, by combining numerous compound modules under

OMNeT++. That approach however, resulted in poor

performance; therefore we reconstructed it differently, by

combining agents in a collaborative multi-level model.

For the first experiment, a virtual environment, containing

20 variables was constructed in SXCS and OMNeT++, and

between 10-1000 nodes were associated with the

aforementioned environment, in an incremental step by step

joining process. For the first phase, the multi-operational

paradigm of SXCS was disabled in order to keep it

compatible with OMNeT++. In the next phase we evaluated

the same scenario under SXCS only, this time with

operational paradigm selection enabled.

Fig. 5. Agents processing time vs. number of nodes

Fig. 5, shows the average agent processing time of 20

agents between 10-1000 nodes. Green line shows the

processing time of agents in SXCS, whereas the red line

presents the same processing time in OMNeT++. The blue

line, on the other hand, shows the same process in SXCS,

with the operational paradigm selection enabled. As the red

line denotes, the agent processing time for up to 570 nodes is

lower under SXCS, and only slightly higher, after exceeding

5870. Also the blue line shows, the latency will be much

lower with the operational paradigm selection.

In order to validate the energy profiling of SXCS against

our prototypes and OMNeT++, we conducted the second

experiment using 14 Sun Spot nodes in which they were left

running for 80 hours with a heavyweight application that

required frequent sensing and transmission both globally and

locally within the network. We constructed the same

environment in OMNeT++ and SXCS in order to check the

energy deprecation against the real-time application on Sun

Spots.

Fig. 6. Remaining energy profiling

Fig. 7. Memory usage vs. number of nodes

As Fig. 6 shows, the turquoise histogram represents the

remaining battery level of Sun Spot nodes from 100% in the

beginning of the experiment until after 80 hours of operation

with 40% battery remaining. Green and red histograms show

the energy profiling of the same experiment under SXCS and

OMNeT++ respectively. As this figure shows, SXCS results

are closer to the Sun Spot results and therefore SXCS did a

better energy estimation.

The amount of memory used by different simulators is one

of the important factors in the simulators’ performance. As

we mentioned in section 2, ns-2 suffers a number of

inefficiencies in terms of memory consumption and users

Journal of Advances in Computer Network, Vol. 1, No. 3, September 2013

274

often encounter with out of memory errors.

In SXCS, the complex task of memory management is

systemically assigned to the JVM. However for the third

experiment we made an analysis on the memory consumption

of OMNeT++ and SXCS.

In Fig. 7, orange and brown lines represent the memory

usage, with respect to the virtual network density, for

OMNeT++ and SXCS respectively. As can be seen,

OMNeT++ takes noticeably less memory, with 2100 nodes

merely taking over 250 MB, whereas SXCS occupies over

500 MB. This considerable difference is due to the higher

memory footprint of Java.

Fig. 8. Packet Loss vs. number of nodes

Good scalability is one of the features of Sensomax, which

has been achieved by relaying packets to immediate one-hop

neighbours. There are a number of mechanisms around it that

have been thoroughly explained in [2]. For our fourth

experiment, we evaluated the packet loss of OMNeT++ and

SXCS with and without Sensomax’s relaying mechanism. In

Fig. 8, red and orange lines show the SXCS packet loss ratio

in percentage with and without relaying respectively. Blue

and brown lines on the other hand, represent the packet loss

ratio with and without relaying in OMNeT++ respectively.

Based on Fig. 8, both SXCS and OMNeT++ demonstrate

lower packet loss without relaying. Relaying packets creates

large backlogs of waiting packets in both OMNeT++ and

SXCS, which results in more packet loss. In SXCS this

bottleneck is created in the VRC, whereas in OMNeT++ that

is imposed on the gates.

V. CONCLUSION

In this paper we have described the architecture of SXCS,

which is an agent-based multi-operational simulator for

simulating multiple concurrent applications in WSNs. SXCS

features a user-friendly interface as well as offering an

extensive library of predefined components, through which,

up to 2500 virtual nodes over multiple virtual environments

can be constructed in Java. In order to obtain more realistic

results, SXCS incorporates four isolated execution

environments where simulation scenarios are broken down

into time, event, query and data requirements for separate

executions. The effectiveness of this approach has been

validated against OMNeT++, which is one of the most

popular simulation frameworks.

REFERENCES

[1] M. Haghighi and D. Cliff, “Sensomax: An Agent-Based Middleware

For Decentralized Dynamic Data-Gathering in Wireless Sensor
Networks,” in Proc. The 2013 International Conference on

Collaboration Technologies and Systems, CTS 2013, May 2013.

[2] M. Haghighi and D. Cliff, “Multi-Agent Support for Multiple
Concurrent Applications and Dynamic Data-Gathering in Wireless

Sensor Networks,” in Proc. Seventh International Conference on

Innovative Mobile and Internet Services in Ubiquitous Computing,
IMIS-2013, July 2013.

[3] H. B. Lim, B. Wang, C. Fu, A. Phull, and D. Ma, “WISDOM:
Simulation Framework for Middleware Services in Wireless Sensor

Networks,” in Proc. 5th IEEE Consumer Communications and

Networking Conference, pp. 1269-1270, January 2008.
[4] I. Mahgoub, A. Badi, and M. Ilyas, “Design and implementation of

parallel JiST to support distributed wireless network simulation,”

High-Capacity Optical Networks and Enabling Technologies
(HONET), December 2010, pp. 154-160.

[5] J-Sim. [Online]. Available: http://www.j-sim.org/.

[6] A. Varga. OMNET++ Discrete Event Simulation System Version 3.2
User Manual. [Online]. Available: Available:

http://www.omnetpp.org.

[7] NS-2. [Online]. Available: http://www.isi.edu/nsnam/ns/
[8] Sun Spot Programmer’s manual, Oracle, Release v6.0, Sun Labs,

Oracle, 2010.

[9] P. Levis and D. Culler, “Mate: a tiny virtual machine for sensor
networks,” in Proc. the 10th International Conference on Architectural

support for programming languages and operating systems ASPLOS-X,

2002, ACM Press, pp. 85-95.
[10] T. Liu and M. Martonosi, “Impala: A middleware system for managing

auto-nomic, parallel sensor systems,” in Proc. ACM SIGPLAN

Symposium on Principles & Practice of Parallel Programming, 2003.
[11] C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Information

Networking Architecture and Applications,” IEEE Personal

Communications, 2001, pp. 52-59.
[12] P. Bonnet, J. Gehrke, and P. Seshadri, “Towards sensor database

systems,” in Proc. 2nd International Conference on Mobile Data

Management (MDM), LNCS vol. 1987, 2001.

Mo Haghighi is a doctoral researcher at the
University of Bristol, UK. He is currently pursuing his

research in the area of “Decentralized Agent-based

Adaptive Dynamic Data Gathering in Large-scale
Wireless Sensor Networks”. He has obtained a BEng

in Electronic and Telecommunications engineering

followed by an MSc in Wireless Sensor Networks. He
began his research in a joint collaboration between the

University of Bristol, the BAE Systems and

Large-Scale Complex IT Systems (LSCITS). Prior to

his PhD, he had worked for Sun Microsystems/Oracle for over two years,

primarily involved in academic projects. As a member of LSCITS, his

research has broadened to include complexity science, Cloud computing,
multi-agent systems and quantitative data analysis for large-scale complex

systems. Mo has extensive programming experience in Java, C++ and

Assembly. He also specializes in designing embedded systems (ARM,
Freescale, Microchip and Intel), large-scale distributed systems, network

security, machine learning, LoWPANs and Microwave communications.

Journal of Advances in Computer Network, Vol. 1, No. 3, September 2013

275

