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Abstract—Detecting a variety of anomalies in computer 

network, especially zero-day attacks, is one of the real challenges 

for both network operators and researchers. An efficient 

technique detecting anomalies in real time would enable 

network operators and administrators to expeditiously prevent 

serious consequences caused by such anomalies. We propose an 

alternative technique, which based on a combination of time 

series and feature spaces, for using machine learning algorithms 

to automatically detect anomalies in real time. Our experimental 

results show that the proposed technique can work well for a 

real network environment, and it is a feasible technique with 

flexible capabilities to be applied for real-time anomaly 

detection. 

 
Index Terms—Multivariate normal distribution, nearest 

neighbor, one-class support vector machine, unsupervised 

learning. 

 

I. INTRODUCTION 

Owing to the explosive growth of Internet traffic, it is quite 

difficult for network operators to inspect every single packet 

or flow that passes through their networks. There also has 

been an exponential increase in sophisticated techniques used 

by computer attacks to evade existing anomaly detectors [1]. 

In addition, unusual incidents caused by internal operations, 

such as outages or misconfigurations, can create abnormal 

behavior of networks. Anomalies arising from all of these 

causes adversely affect security, and some of them are 

responsible for network congestion. Thus, there is a critical 

need for automatic detection of attacks and unusual incidents 

in computer networks. 

Anomaly detection techniques in the context of computer 

network can be generally classified into signature-based and 

statistical-based approaches [2]. Signature-based approaches, 

however, cannot detect new and previously unidentified 

attacks, while statistical-based approaches can detect such 

attacks. Statistical-based approaches are also capable of 

learning and automatically adapting to specific networks [3]. 

Meanwhile, machine learning is one of the fields that 

researchers are currently applying to this domain [4]. 

Previous studies suggest that machine learning can play a 

major role in anomaly detection for computer networks [5], 

[6]. Many machine learning algorithms and techniques, such 
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as k-nearest neighbor algorithms [7], neural networks [8], 

support vector machines [9], and k-means clustering [10], 

have been applied to detect anomalies. However, most studies 

are batch processing, which collects a certain amount of data 

before detecting anomalies, and most of these techniques are 

therefore not suitable for real-time detection. 

To address this problem, we propose a technique on the 

basis of time series and feature spaces for real-time anomaly 

detection in computer networks. We also present a series of 

experiments that we conducted to examine the performance 

and accuracy of our proposed technique. We acquired real 

network traffic and a test bed containing various attacks for 

our experiments. Moreover, we compared the performance of 

three well-known machine learning algorithms, namely the 

multivariate normal distribution, k-nearest neighbor 

algorithm, and one-class support vector machine, with the 

proposed technique. 

 

II. MATERIALS AND METHODS 

A. Our Proposed Technique 

The fundamental idea of our proposed technique is 

depicted in Fig. 1. From one-day network traffic data, we first 

generate a sequence of data points in successive order at 

regular time intervals. Second, we extract features from every 

single time interval and construct a time series of each feature, 

where n is the number of features or the number time series. 

Next, we create a feature vector for each time interval and 

map it as a single data point on a corresponded feature space, 

where one time interval corresponds with only one feature 

space. Therefore, the number t of time intervals or the number 

of feature spaces depends on duration setting of regular time 

intervals. Please note that we represent two-dimensional in 

Fig. 1 rather than high-dimensional feature spaces because it 

makes visualization more comprehensible. In practice for real 

environments, we can represent data up to n-dimensional 

features. 

 

 
Fig. 1. Our proposed technique by using time series and feature spaces. 
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TABLE I: CHARACTERISTICS OF SELECTED ATTACKS 

Source 
No. of 

SrcAddr 

No. of 

DstAddr 

No. of 

SrcPort 

No. of 

DstPort 

No. of 

Packet 

Average 

Packet Size 

(Byte) 

Duration 

(sec.) 

Average 

Packet/sec. 
% Anomaly 

Back          

Week 2 Fri 1 1 1,013 1 43,724 1,292.31 651 67.16 0.75 

Week 3 Wed 1 1 999 1 43,535 1,297.29 1,064 40.92 1.23 

IpSweep          

Week 3 Wed 1 2,816 1 104 5,657 60.26 132 42.86 0.15 

Week 6 Thu 5 1,779 2 105 5,279 67.75 4,575 1.15 5.30 

Neptune          

Week 5 Thu 2 1 26,547 1,024 205,457 60 3,143 65.37 3.64 

Week 6 Thu 2 1 48,932 1,024 460,780 60 6,376 72.27 7.38 

Week 7 Fri 2 1 25,749 1,024 205,600 60 3,126 65.77 3.62 

PortSweep          

Week 5 Tue 1 1 1 1,024 1,040 60 1,024 1.02 1.19 

Week 5 Thu 1 1 1 1,015 1,031 60 1,015 1.02 1.17 

Week 6 Thu 2 2 2 1,024 1,608 60 1,029 1.56 1.19 

Smurf          

Week 5 Mon 7,428 1 1 1 1,931,272 1,066 1,868 1,033.87 2.16 

Week 5 Thu 7,428 1 1 1 1,932,325 1,066 1,916 1,008.52 2.22 

Week 6 Thu 7,428 1 1 1 1,498,073 1,066 1,747 857.51 2.02 

 

We firmly believe that our proposed technique has two 

noteworthy advantages. The first advantage is that we can 

transform low-level features into high-level features by 

applying signal processing or time series techniques after the 

feature extraction process. High-level features produce higher 

accuracy of anomaly detection than low-level features. The 

second advantage is that a single time interval represented by 

one feature space is both computationally feasible and an 

appropriate key for real-time anomaly detection because we 

do not need entire test data for detecting anomalies. 

However, a disadvantage of our proposed technique is that 

it needs more computation time, particularly during the 

training phase. The computation time at the training phase 

depends on t, the number of time intervals. Fortunately, for 

real-time systems, we do require a short time computing 

during the testing phase rather than during the training phase. 

B. Data Sets 

Prior to our experiments, we divided the data into two sets: 

a training set and a test set. The entire network data comprise 

55 days of normal traffic from a relatively controlled campus 

network at the Kasetsart University, Thailand. We used 39 

days of normal traffic as the training set for the classifiers, and 

the remaining 16 days as the test set. We selected five types of 

attacks from the Lincoln Laboratory at the Massachusetts 

Institute of Technology [11], and then we combined each type 

of attack with the test set to create a separate test set for each 

type of attack. The detail of selected attacks are as follows: 

1) Back attack, a denial of service attack through port 80 of 

the Apache web server in which a client requests a URL 

containing many backslashes. 

2) IpSweep attack, a surveillance sweep involving either a 

port sweep or ping on multiple IP addresses. 

3) Neptune attack, a denial of service attack involving a 

SYN flood at one or more destination ports. 

4) PortSweep attack, a surveillance sweep through many 

ports to determine which services are supported on a 

single host. 

5) Smurf attack, an amplified attack using an ICMP echo 

reply flood. 

We listed the essential characteristics of selected attacks in 

Table I. In the first column, we indicate sources and types of 

anomalies for each instance. In the next five columns, we 

show primitive characteristics of each anomaly instance: the 

number of source addresses, destination addresses, source 

ports, destination ports, and packets. Next, the average packet 

size and duration of each anomaly instance are shown in the 

seventh and eighth columns. Lastly, the average number of 

anomaly packets per second and percentage of each instance 

in one day are shown in the last two columns, respectively. 

 
TABLE II: FEATURES OF NETWORK TRAFFIC ON AN INTERVAL BASIS 

f# Feature Description 

f1 Packet Number of packets 

f2 Byte Sum of packet size 

f3 Flow Number of flows 

f4 SrcAddr Number of source addresses 

f5 DstAddr Number of destination addresses 

f6 SrcPort Number of source ports 

f7 DstPort Number of destination ports 

f8 ∆Addr |SrcAddr – DstAddr| 

f9 ∆Port |SrcPort – DstPort| 

 

C. Feature Extraction and Feature Scaling 

We chose the nine features as listed in Table II on account 

of the distinctive characteristics of selected attacks as listed in 

Table I. We extracted all nine features during packet 

aggregation for each interval, and then created a single time 

series for each feature. On the one hand, we directly derived a 

feature vector from time series for a corresponded feature 

space. On the other hand, we applied discrete wavelet 

transform as a filter bank [12] to remove noise from time 

series before marking a modified feature vector in a 

corresponded feature space. In the final step, we compared the 

detection performance of our technique between using raw 

features and modified features by applying the discrete 

wavelet transform to the time series data. 

For our feature scaling process, we normalized the wide 

range of different features into a standard range of 0 to 1. We 

scaled features according to 
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where 
jix ,

ˆ  is a scaled feature, )(max , jij x  is the maximum 

value of the data in the i-th feature, m is the number of samples 

in the training data, and f is the number of the feature from 

feature extraction process. 

D. Performance Evaluation 

We used F-score [13] as a single measure for evaluating the 

detection performance of our proposed technique. The 

F-score is widely used to evaluate the quality of binary 

classifications, especially when the sizes of two classes are 

substantially skewed. The F-score, which considers both the 

precision and recall [14] to compute the score, assigns a value 

ranging between 0 and 1, where 1 represents a perfect 

detection and 0 represents a worst detection. We measured the 

precision, recall, and F-score based on entire intervals. The 

precision, recall, and F-score are derived by Eqs. 2-4 

respectively: 

,
FPTP
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,2
recallprecision

recallprecision
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
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where TP is the number of true positives (the number of 

anomalous intervals that were correctly detected), FP is the 

number of false positives (the number of normal intervals 

incorrectly identified as anomalous intervals), and FN is the 

number of false negatives (the number of anomalous intervals 

that were not detected). TP, FP, and FN were directly derived 

from a confusion matrix [14]. 

E. Learning Algorithms 

We employed three standard and well-known algorithms of 

machine learning: namely the multivariate normal distribution, 

k-nearest neighbor, and one-class support vector machine, to 

work with our proposed model. 

1) Multivariate Normal Distribution (MND): The MND is 

a generalization of the Gaussian or normal probability density 

function (pdf) in high dimensions [15]. In the f-dimensional 

space, the pdf is given by 
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where ][xEμ  is the vector of mean value, and Σ  is the 

ff   covariance matrix defined as 

,]))([( TE μμ  xxΣ       (6) 

where Σ  denotes the determinant of Σ . 

To classify test data, we defined an adaptive threshold 
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where   is a parameter to get the proportion of maximum 

probability, where smaller values of   produce higher 

probabilities. We varied   between 2 and 4 on a linear scale 

for selection of the best detection performance. We defined 

the classify function of test data x as 



 


otherwise.normal

)( ifanomaly
)(

x
x

p
f      (8) 

2) k-Nearest Neighbor (KNN): The KNN is an 

instance-based learning for classifying data point based on 

closest learning examples in the f-dimensional space [16]. In 

our experiment, the nearest neighbors of data are defined by 

the standard Euclidean distance. More precisely, let test 

instance x comprising f features be described by the feature 

vector ),,,( 21 fxxx  , where 
ix  denotes the value of the i-th 

feature of data x. The Euclidean distance between two 

instances x and y is defined by 





f

i

ii yxd
1

2.)(),( yx       (9) 

To classify test data, we constantly specified the parameter 

k = 3, and defined the classify function of test data x as 











otherwise.normal

 distance in the  than less is  to

nearest data  trainingofamount  ifanomaly

)( Dkf xx

 (10) 

Thanks to the feature scaling step, we can vary a constant 

value D on a logarithmic scale between 10
-6

 and 10
0
 for 

selection of the best detection performance. 

3) One-Class Support Vector Machine (OSVM): The 

OSVM introduced by B. Schölkopf et al. [17] is a variation of 

the standard support vector machines (SVM) algorithm. The 

main ideal is that the OSVM maps unlabeled input data into a 

high dimensional space via an appropriate kernel function, 

and then attempts to find hyperplanes that separate input data 

with maximum margin. According to [18], the decision 

function 

)))(((sign)(  xx ωh      (11) 

will be positive for most examples xi contained in the training 

set or negative for the opposite. Therefore, we defined the 

classify function of test data x as 








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.1)( ifnormal

1)( ifanomaly
)(

x

x
x

h

h
f     (12) 

In our experiments, we used the LIBSVM [19] tool with a 

radial basis function (RBF) as an appropriate kernel. We used 

the standard parameters of this tool for all experiments with 

the OSVM algorithm; however, we varied the nu and gamma 

parameters on a logarithmic scale between 10
-3

 and 10
0
 for 

selection of the best detection performance. 

 

III. PRELIMINARY RESULTS 

We performed our experiments with two groups of features: 

raw features and modified features. The raw features were 

directly extracted from the computer traffic while the 

modified features were the result of using a discrete wavelet 

transform to denoise the raw feature. 
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Fig. 2 demonstrates three different time series for a raw 

feature and for modified features at first and second levels of 

denoising, where the x-axis represents time between 8:00 and 

24:00, and the y-axis represents the number of packets, one of 

the features that we used. The top graph in Fig. 2 shows the 

packet feature (f1) as a raw feature time series. The middle 

graph in Fig. 2 shows the packet feature as the first level of 

feature modification, after a discrete wavelet transform was 

applied to remove noise from the raw feature. The bottom 

graph in Fig. 2 shows the packet feature as the second level of 

feature modification, after we applied a discrete wavelet 

transform to the first level of feature modification. We 

performed iterative denoising to arrive at eleven levels of 

modified features. 

To examine the performance of our technique using raw 

features, we first trained classifiers and detected each type of 

attack using the individual raw feature from f1 to f9 as listed in 

Table II. We then compared detection performance between 

the MND, KNN, and OSVM algorithms. Fig. 3 shows the 

F-score results for the individual raw features using the three 

different learning algorithms. For the next step, we combined 

high effective features and conducted experiments to compare 

the performance between using raw and modified features. 

According to the results in Fig. 3, we manually selected the 

effective features for feature combination and used the same 

combination for both raw and modified features. We then 

examined the performance for a combination of raw features 

and combinations of modified features as shown in Table III. 

Table III indicates F-score values of MND, KNN, and 

OSVM algorithms for each type of attack. The features that 

were used for each type of attack are indicated in the Feature 

column. The fraw column shows F-score values for raw 

features and fmod column shows the highest F-score values 

among the eleven levels of modified features. The bold text is 

used in Table III to highlight the F-score values for modified 

features that are higher than the corresponding F-score values 

for raw features. 

 

IV. DISCUSSION 

Our results suggest that the proposed technique produce 

fine performance for many types of attacks. Even if our 

technique depends upon selecting the features to detect each 

particular type of anomaly, the results of experiments on real 

computer traffic show the proposed technique is capable of 

detecting anomalies in real time. Our proposed technique 

does not require the entire test data, and it can detect 

anomalies that occur during each time interval. 

Our results also suggest that in many cases, the 

performance of feature combination was inferior than the 

performance of single feature. In addition, the comparison 

between using raw features and modified features strongly 

suggests that feature selection has an major effect on 

performance of our technique. In some cases, we were able to 

improve performance by using modified features instead of 

using raw features. 

We realize that an inherent limitation of our technique is 

giving anomaly details. Although the proposed technique can 

indicate specific time interval during anomalies occur, it does 

not provide details related to such anomalies. Therefore, we 

need a second technique to provide more details about the 

anomalies after they have been identified. However, adding 

another technique could take more time for computation. 

There is thus a trade-off between taking more time and 

providing details about the anomalies. 

 
Fig. 2. Original packet feature (top), first level of modified features (middle), 

and second level of modified feature (bottom) by using wavelet transform. 

 

 
Fig. 3. Performance comparison between individual raw features (f1-f9) 

using the MND, KNN, and OSVM algorithms for each type of attack. 

 

V. C  

The ultimate goal of our research is to develop a highly 

flexible technique to automatically detect a variety of 

computer network anomalies in real time. We have proposed 

a feasible technique that has various flexible capabilities for 

performing this difficult task. We conducted experiments with 

real network traffic and compared the detection performance 

of three well-know machine learning algorithms using nine 

features. We also tried to improve the quality of the features 

by using discrete wavelet transform to remove noise from the 

raw features. 

The results show that our proposed technique performs 

well in task of anomaly detection and has a good possibility 

for applying in real-time system. Nevertheless, indicating 
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time consumption of our technique during the training and test 

phase are need. Another challenge for our future research is to 

refine the selection of features for detecting particular 

anomalies. 
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TABLE III: PERFORMANCE COMPARISON BETWEEN RAW AND MODIFIED FEATURE COMBINATIONS

Attack Feature
MND KNN OSVM

fraw fmod fraw fmod fraw fmod

Back f1-2 0.3116 0.3162 0.9846 0.9803 0.1498 0.1459

IpSweep f1-9 0.3172 0.3077 0.2533 0.2687 0.2479 0.3160

Neptune f1-3, f6-7, f9 0.5124 0.4431 0.9534 0.9683 0.4197 0.4191

PortSweep f7 0.2150 0.2741 0.2675 0.2992 0.1154 0.1043

Smurf f1-4, f8 0.2436 0.2113 1.0000 0.9946 0.2386 0.2310
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