



Abstract—Detecting a variety of anomalies in computer

network, especially zero-day attacks, is one of the real challenges

for both network operators and researchers. An efficient

technique detecting anomalies in real time would enable

network operators and administrators to expeditiously prevent

serious consequences caused by such anomalies. We propose an

alternative technique, which based on a combination of time

series and feature spaces, for using machine learning algorithms

to automatically detect anomalies in real time. Our experimental

results show that the proposed technique can work well for a

real network environment, and it is a feasible technique with

flexible capabilities to be applied for real-time anomaly

detection.

Index Terms—Multivariate normal distribution, nearest

neighbor, one-class support vector machine, unsupervised

learning.

I. INTRODUCTION

Owing to the explosive growth of Internet traffic, it is quite

difficult for network operators to inspect every single packet

or flow that passes through their networks. There also has

been an exponential increase in sophisticated techniques used

by computer attacks to evade existing anomaly detectors [1].

In addition, unusual incidents caused by internal operations,

such as outages or misconfigurations, can create abnormal

behavior of networks. Anomalies arising from all of these

causes adversely affect security, and some of them are

responsible for network congestion. Thus, there is a critical

need for automatic detection of attacks and unusual incidents

in computer networks.

Anomaly detection techniques in the context of computer

network can be generally classified into signature-based and

statistical-based approaches [2]. Signature-based approaches,

however, cannot detect new and previously unidentified

attacks, while statistical-based approaches can detect such

attacks. Statistical-based approaches are also capable of

learning and automatically adapting to specific networks [3].

Meanwhile, machine learning is one of the fields that

researchers are currently applying to this domain [4].

Previous studies suggest that machine learning can play a

major role in anomaly detection for computer networks [5],

[6]. Many machine learning algorithms and techniques, such

Manuscript received September 20, 2012; revised November 17, 2012.

This work was supported in part by the Faculty Members Development

Scholarship Program of Bangkok University, Thailand.

Kriangkrai Limthong is with the Department of Computer Engineering,

School of Engineering, Bangkok University, Pathumtani 12120, Thailand

(e-mail: kriangkrai.l@bu.ac.th). He is also now with the Department of

Informatics, Graduate University of Advanced Studies (Sokendai),

Chiyoda-ku, Tokyo 101-8430, Japan (e-mail: krngkr@nii.ac.jp).

as k-nearest neighbor algorithms [7], neural networks [8],

support vector machines [9], and k-means clustering [10],

have been applied to detect anomalies. However, most studies

are batch processing, which collects a certain amount of data

before detecting anomalies, and most of these techniques are

therefore not suitable for real-time detection.

To address this problem, we propose a technique on the

basis of time series and feature spaces for real-time anomaly

detection in computer networks. We also present a series of

experiments that we conducted to examine the performance

and accuracy of our proposed technique. We acquired real

network traffic and a test bed containing various attacks for

our experiments. Moreover, we compared the performance of

three well-known machine learning algorithms, namely the

multivariate normal distribution, k-nearest neighbor

algorithm, and one-class support vector machine, with the

proposed technique.

II. MATERIALS AND METHODS

A. Our Proposed Technique

The fundamental idea of our proposed technique is

depicted in Fig. 1. From one-day network traffic data, we first

generate a sequence of data points in successive order at

regular time intervals. Second, we extract features from every

single time interval and construct a time series of each feature,

where n is the number of features or the number time series.

Next, we create a feature vector for each time interval and

map it as a single data point on a corresponded feature space,

where one time interval corresponds with only one feature

space. Therefore, the number t of time intervals or the number

of feature spaces depends on duration setting of regular time

intervals. Please note that we represent two-dimensional in

Fig. 1 rather than high-dimensional feature spaces because it

makes visualization more comprehensible. In practice for real

environments, we can represent data up to n-dimensional

features.

Fig. 1. Our proposed technique by using time series and feature spaces.

Real-Time Computer Network Anomaly Detection Using

Machine Learning Techniques

Kriangkrai Limthong

1DOI: 10.7763/JACN.2013.V1.1

Journal of Advances in Computer Networks, Vol. 1, No. 1, March 2013

TABLE I: CHARACTERISTICS OF SELECTED ATTACKS

Source
No. of

SrcAddr

No. of

DstAddr

No. of

SrcPort

No. of

DstPort

No. of

Packet

Average

Packet Size

(Byte)

Duration

(sec.)

Average

Packet/sec.
% Anomaly

Back

Week 2 Fri 1 1 1,013 1 43,724 1,292.31 651 67.16 0.75

Week 3 Wed 1 1 999 1 43,535 1,297.29 1,064 40.92 1.23

IpSweep

Week 3 Wed 1 2,816 1 104 5,657 60.26 132 42.86 0.15

Week 6 Thu 5 1,779 2 105 5,279 67.75 4,575 1.15 5.30

Neptune

Week 5 Thu 2 1 26,547 1,024 205,457 60 3,143 65.37 3.64

Week 6 Thu 2 1 48,932 1,024 460,780 60 6,376 72.27 7.38

Week 7 Fri 2 1 25,749 1,024 205,600 60 3,126 65.77 3.62

PortSweep

Week 5 Tue 1 1 1 1,024 1,040 60 1,024 1.02 1.19

Week 5 Thu 1 1 1 1,015 1,031 60 1,015 1.02 1.17

Week 6 Thu 2 2 2 1,024 1,608 60 1,029 1.56 1.19

Smurf

Week 5 Mon 7,428 1 1 1 1,931,272 1,066 1,868 1,033.87 2.16

Week 5 Thu 7,428 1 1 1 1,932,325 1,066 1,916 1,008.52 2.22

Week 6 Thu 7,428 1 1 1 1,498,073 1,066 1,747 857.51 2.02

We firmly believe that our proposed technique has two

noteworthy advantages. The first advantage is that we can

transform low-level features into high-level features by

applying signal processing or time series techniques after the

feature extraction process. High-level features produce higher

accuracy of anomaly detection than low-level features. The

second advantage is that a single time interval represented by

one feature space is both computationally feasible and an

appropriate key for real-time anomaly detection because we

do not need entire test data for detecting anomalies.

However, a disadvantage of our proposed technique is that

it needs more computation time, particularly during the

training phase. The computation time at the training phase

depends on t, the number of time intervals. Fortunately, for

real-time systems, we do require a short time computing

during the testing phase rather than during the training phase.

B. Data Sets

Prior to our experiments, we divided the data into two sets:

a training set and a test set. The entire network data comprise

55 days of normal traffic from a relatively controlled campus

network at the Kasetsart University, Thailand. We used 39

days of normal traffic as the training set for the classifiers, and

the remaining 16 days as the test set. We selected five types of

attacks from the Lincoln Laboratory at the Massachusetts

Institute of Technology [11], and then we combined each type

of attack with the test set to create a separate test set for each

type of attack. The detail of selected attacks are as follows:

1) Back attack, a denial of service attack through port 80 of

the Apache web server in which a client requests a URL

containing many backslashes.

2) IpSweep attack, a surveillance sweep involving either a

port sweep or ping on multiple IP addresses.

3) Neptune attack, a denial of service attack involving a

SYN flood at one or more destination ports.

4) PortSweep attack, a surveillance sweep through many

ports to determine which services are supported on a

single host.

5) Smurf attack, an amplified attack using an ICMP echo

reply flood.

We listed the essential characteristics of selected attacks in

Table I. In the first column, we indicate sources and types of

anomalies for each instance. In the next five columns, we

show primitive characteristics of each anomaly instance: the

number of source addresses, destination addresses, source

ports, destination ports, and packets. Next, the average packet

size and duration of each anomaly instance are shown in the

seventh and eighth columns. Lastly, the average number of

anomaly packets per second and percentage of each instance

in one day are shown in the last two columns, respectively.

TABLE II: FEATURES OF NETWORK TRAFFIC ON AN INTERVAL BASIS

f# Feature Description

f1 Packet Number of packets

f2 Byte Sum of packet size

f3 Flow Number of flows

f4 SrcAddr Number of source addresses

f5 DstAddr Number of destination addresses

f6 SrcPort Number of source ports

f7 DstPort Number of destination ports

f8 ∆Addr |SrcAddr – DstAddr|

f9 ∆Port |SrcPort – DstPort|

C. Feature Extraction and Feature Scaling

We chose the nine features as listed in Table II on account

of the distinctive characteristics of selected attacks as listed in

Table I. We extracted all nine features during packet

aggregation for each interval, and then created a single time

series for each feature. On the one hand, we directly derived a

feature vector from time series for a corresponded feature

space. On the other hand, we applied discrete wavelet

transform as a filter bank [12] to remove noise from time

series before marking a modified feature vector in a

corresponded feature space. In the final step, we compared the

detection performance of our technique between using raw

features and modified features by applying the discrete

wavelet transform to the time series data.

For our feature scaling process, we normalized the wide

range of different features into a standard range of 0 to 1. We

scaled features according to

2

Journal of Advances in Computer Networks, Vol. 1, No. 1, March 2013

,11

,

,

, ,
)(max

ˆ
mjfi

jij

ji

ji
x

x
x    (1)

where
jix ,

ˆ is a scaled feature,)(max , jij x is the maximum

value of the data in the i-th feature, m is the number of samples

in the training data, and f is the number of the feature from

feature extraction process.

D. Performance Evaluation

We used F-score [13] as a single measure for evaluating the

detection performance of our proposed technique. The

F-score is widely used to evaluate the quality of binary

classifications, especially when the sizes of two classes are

substantially skewed. The F-score, which considers both the

precision and recall [14] to compute the score, assigns a value

ranging between 0 and 1, where 1 represents a perfect

detection and 0 represents a worst detection. We measured the

precision, recall, and F-score based on entire intervals. The

precision, recall, and F-score are derived by Eqs. 2-4

respectively:

,
FPTP

TP
precision


 (2)

,
FNTP

TP
recall


 (3)

,2
recallprecision

recallprecision
scoreF




 (4)

where TP is the number of true positives (the number of

anomalous intervals that were correctly detected), FP is the

number of false positives (the number of normal intervals

incorrectly identified as anomalous intervals), and FN is the

number of false negatives (the number of anomalous intervals

that were not detected). TP, FP, and FN were directly derived

from a confusion matrix [14].

E. Learning Algorithms

We employed three standard and well-known algorithms of

machine learning: namely the multivariate normal distribution,

k-nearest neighbor, and one-class support vector machine, to

work with our proposed model.

1) Multivariate Normal Distribution (MND): The MND is

a generalization of the Gaussian or normal probability density

function (pdf) in high dimensions [15]. In the f-dimensional

space, the pdf is given by

 ,)()(exp
)2(

1
)(1

2
1

2/12/
μμ  

xΣx
Σ

x
T

f
p



 (5)

where][xEμ is the vector of mean value, and Σ is the

ff  covariance matrix defined as

,]))([(TE μμ  xxΣ (6)

where Σ denotes the determinant of Σ .

To classify test data, we defined an adaptive threshold

 ,exp
)2(

1 2

2
1

2/12/



 

Σ
f

 (7)

where  is a parameter to get the proportion of maximum

probability, where smaller values of  produce higher

probabilities. We varied  between 2 and 4 on a linear scale

for selection of the best detection performance. We defined

the classify function of test data x as



 


otherwise.normal

)(ifanomaly
)(

x
x

p
f (8)

2) k-Nearest Neighbor (KNN): The KNN is an

instance-based learning for classifying data point based on

closest learning examples in the f-dimensional space [16]. In

our experiment, the nearest neighbors of data are defined by

the standard Euclidean distance. More precisely, let test

instance x comprising f features be described by the feature

vector),,,(21 fxxx  , where
ix denotes the value of the i-th

feature of data x. The Euclidean distance between two

instances x and y is defined by





f

i

ii yxd
1

2.)(),(yx (9)

To classify test data, we constantly specified the parameter

k = 3, and defined the classify function of test data x as











otherwise.normal

 distance in the than less is to

nearest data trainingofamount ifanomaly

)(Dkf xx

 (10)

Thanks to the feature scaling step, we can vary a constant

value D on a logarithmic scale between 10
-6

 and 10
0
 for

selection of the best detection performance.

3) One-Class Support Vector Machine (OSVM): The

OSVM introduced by B. Schölkopf et al. [17] is a variation of

the standard support vector machines (SVM) algorithm. The

main ideal is that the OSVM maps unlabeled input data into a

high dimensional space via an appropriate kernel function,

and then attempts to find hyperplanes that separate input data

with maximum margin. According to [18], the decision

function

)))(((sign)( xx ωh (11)

will be positive for most examples xi contained in the training

set or negative for the opposite. Therefore, we defined the

classify function of test data x as










.1)(ifnormal

1)(ifanomaly
)(

x

x
x

h

h
f (12)

In our experiments, we used the LIBSVM [19] tool with a

radial basis function (RBF) as an appropriate kernel. We used

the standard parameters of this tool for all experiments with

the OSVM algorithm; however, we varied the nu and gamma

parameters on a logarithmic scale between 10
-3

 and 10
0
 for

selection of the best detection performance.

III. PRELIMINARY RESULTS

We performed our experiments with two groups of features:

raw features and modified features. The raw features were

directly extracted from the computer traffic while the

modified features were the result of using a discrete wavelet

transform to denoise the raw feature.

3

Journal of Advances in Computer Networks, Vol. 1, No. 1, March 2013

Fig. 2 demonstrates three different time series for a raw

feature and for modified features at first and second levels of

denoising, where the x-axis represents time between 8:00 and

24:00, and the y-axis represents the number of packets, one of

the features that we used. The top graph in Fig. 2 shows the

packet feature (f1) as a raw feature time series. The middle

graph in Fig. 2 shows the packet feature as the first level of

feature modification, after a discrete wavelet transform was

applied to remove noise from the raw feature. The bottom

graph in Fig. 2 shows the packet feature as the second level of

feature modification, after we applied a discrete wavelet

transform to the first level of feature modification. We

performed iterative denoising to arrive at eleven levels of

modified features.

To examine the performance of our technique using raw

features, we first trained classifiers and detected each type of

attack using the individual raw feature from f1 to f9 as listed in

Table II. We then compared detection performance between

the MND, KNN, and OSVM algorithms. Fig. 3 shows the

F-score results for the individual raw features using the three

different learning algorithms. For the next step, we combined

high effective features and conducted experiments to compare

the performance between using raw and modified features.

According to the results in Fig. 3, we manually selected the

effective features for feature combination and used the same

combination for both raw and modified features. We then

examined the performance for a combination of raw features

and combinations of modified features as shown in Table III.

Table III indicates F-score values of MND, KNN, and

OSVM algorithms for each type of attack. The features that

were used for each type of attack are indicated in the Feature

column. The fraw column shows F-score values for raw

features and fmod column shows the highest F-score values

among the eleven levels of modified features. The bold text is

used in Table III to highlight the F-score values for modified

features that are higher than the corresponding F-score values

for raw features.

IV. DISCUSSION

Our results suggest that the proposed technique produce

fine performance for many types of attacks. Even if our

technique depends upon selecting the features to detect each

particular type of anomaly, the results of experiments on real

computer traffic show the proposed technique is capable of

detecting anomalies in real time. Our proposed technique

does not require the entire test data, and it can detect

anomalies that occur during each time interval.

Our results also suggest that in many cases, the

performance of feature combination was inferior than the

performance of single feature. In addition, the comparison

between using raw features and modified features strongly

suggests that feature selection has an major effect on

performance of our technique. In some cases, we were able to

improve performance by using modified features instead of

using raw features.

We realize that an inherent limitation of our technique is

giving anomaly details. Although the proposed technique can

indicate specific time interval during anomalies occur, it does

not provide details related to such anomalies. Therefore, we

need a second technique to provide more details about the

anomalies after they have been identified. However, adding

another technique could take more time for computation.

There is thus a trade-off between taking more time and

providing details about the anomalies.

Fig. 2. Original packet feature (top), first level of modified features (middle),

and second level of modified feature (bottom) by using wavelet transform.

Fig. 3. Performance comparison between individual raw features (f1-f9)

using the MND, KNN, and OSVM algorithms for each type of attack.

V. C

The ultimate goal of our research is to develop a highly

flexible technique to automatically detect a variety of

computer network anomalies in real time. We have proposed

a feasible technique that has various flexible capabilities for

performing this difficult task. We conducted experiments with

real network traffic and compared the detection performance

of three well-know machine learning algorithms using nine

features. We also tried to improve the quality of the features

by using discrete wavelet transform to remove noise from the

raw features.

The results show that our proposed technique performs

well in task of anomaly detection and has a good possibility

for applying in real-time system. Nevertheless, indicating

4

ONCLUSION

Journal of Advances in Computer Networks, Vol. 1, No. 1, March 2013

time consumption of our technique during the training and test

phase are need. Another challenge for our future research is to

refine the selection of features for detecting particular

anomalies.

ACKNOWLEDGMENT

The authors would like to thank all of the anonymous

reviewers for their excellent suggestions that have greatly

improved the quality of this paper.

REFERENCES

[1] S. Hansman and R. Hunt, “A taxonomy of network and computer

attacks,” Computers & Security, vol. 24, no. 1, pp. 31–43, 2005.

[2] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A

survey,” ACM Comput. Surv., vol. 41, pp. 15:1–15:58, July 2009.

[3] P. Garca-Teodoro, J. Daz-Verdejo, G. Maci-Fernndez, and E. Vzquez,

“Anomaly-based network intrusion detection: Techniques, systems

and challenges,” Computers & Security, vol. 28, no. 12, pp. 18–28,

2009.

[4] C. Sinclair, L. Pierce, and S. Matzner, “An application of machine

learning to network intrusion detection,” in Proceedings of the 15th

Annual Computer Security Applications Conference, ser. ACSAC ’99.

Washington, DC, USA: IEEE Computer Society, 1999, pp. 371–377.

[5] S. Jiang, X. Song, H. Wang, J.-J. Han, and Q.-H. Li, “A

clustering-based method for unsupervised intrusion detections,”

Pattern Recogn. Lett., vol. 27, pp. 802–810, May 2006.

[6] P. Laskov, P. Dssel, C. Schfer, and K. Rieck, “Learning intrusion

detection: Supervised or unsupervised?” in Image Analysis and

Processing ICIAP 2005, ser. Lecture Notes in Computer Science, F.

Roli and S. Vitulano, Eds., vol. 3617. Springer Berlin / Heidelberg,

2005, pp. 50–57.

[7] Y. Liao and V. Vemuri, “Use of k-nearest neighbor classifier for

intrusion detection,” Computers & Security, vol. 21, no. 5, pp.

439–448, 2002.

[8] S.-J. Han and S.-B. Cho, “Evolutionary neural networks for anomaly

detection based on the behavior of a program,” Systems, Man, and

Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 36, no. 3,

pp. 559–570, June 2005.

[9] R. Zhang, S. Zhang, S. Muthuraman, and J. Jiang, “One class support

vector machine for anomaly detection in the communication network

performance data,” in Proc. the 5th conference on Applied

electromagnetics, wireless and optical communications. Stevens Point,

Wisconsin, USA: World Scientific and Engineering Academy and

Society (WSEAS), 2007, pp. 31–37.

[10] G. Münz, S. Li, and G. Carle, “Traffic anomaly detection using

k-means clustering,” in Proceedings of Leistungs-, Zuverlässigkeits-

und Verlä sslichkeitsbewertung von Kommunikationsnetzen und

Verteilten Systemen, 4. GI/ITG-Workshop MMBnet 2007, Hamburg,

Germany, Sep. 2007.

[11] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D.

Weber, S. Webster, D. Wyschogrod, R. Cunningham, and M. Zissman,

“Evaluating intrusion detection systems: the 1998 darpa off-line

intrusion detection evaluation,” in Proc. DARPA Information

Survivability Conference and Exposition, vol. 2, 2000, pp. 12–26.

[12] M. Vetterli and C. Herley, “Wavelets and filter banks: theory and

design,” IEEE Transactions on Signal Processing, vol. 40, no. 9, pp.

2207–2232, September 1992.

[13] C. J. V. Rijsbergen, Information Retrieval, Newton, MA, USA:

Butterworth-Heinemann, 1979.

[14] J. Davis and M. Goadrich, “The relationship between precision-recall

and roc curves,” in Proc. the 23rd international conference on

Machine learning, ser. ICML ’06. New York, NY, USA: ACM, 2006,

pp. 233–240.

[15] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Fourth

Edition, 4th ed. Academic Press, 2008.

[16] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA:

McGraw-Hill, Inc., 1997.

[17] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C.

Williamson, “Estimating the support of a high-dimensional

distribution,” Neural Comput., vol. 13, no. 7, pp. 1443–1471, Jul.

2001.

[18] K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, “An

introduction to kernel-based learning algorithms,” Neural Networks,

IEEE Transactions on, vol. 12, no. 2, pp. 181 –201, mar 2001.

[19] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector

machines,” ACM Transactions on Intelligent Systems and Technology,

vol. 2, pp. 27:1–27:27, 2011, software available at

http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Kriangkrai Limthong received a B.Eng (2nd

Honors) degree in Computer Engineering from

Sripatum University; and a M.Eng degree in

Computer Engineering from Kasetsart University,

Thailand. He worked as a Systems Engineer at

Advanced Info Service PLC. and Thailand Post Co.,

Ltd. for several years. He is currently pursuing the

Ph.D. degree in the Department of Informatics,

Graduate University of Advanced Studies (Sokendai),

Japan. He has also been a lecturer in the Department of Computer

Engineering, School of Engineering, Bangkok University, Thailand, since

2009. His research interests are network traffic measurement, computer

security, signal processing techniques and machine learning methods.

5

TABLE III: PERFORMANCE COMPARISON BETWEEN RAW AND MODIFIED FEATURE COMBINATIONS

Attack Feature
MND KNN OSVM

fraw fmod fraw fmod fraw fmod

Back f1-2 0.3116 0.3162 0.9846 0.9803 0.1498 0.1459

IpSweep f1-9 0.3172 0.3077 0.2533 0.2687 0.2479 0.3160

Neptune f1-3, f6-7, f9 0.5124 0.4431 0.9534 0.9683 0.4197 0.4191

PortSweep f7 0.2150 0.2741 0.2675 0.2992 0.1154 0.1043

Smurf f1-4, f8 0.2436 0.2113 1.0000 0.9946 0.2386 0.2310

Journal of Advances in Computer Networks, Vol. 1, No. 1, March 2013

