• Dec 20, 2018 News!JACN Vol.6, No.2 has been published with online version.   [Click]
  • Sep 17, 2018 News!Welcome to 2019 4th International Conference on Information and Network Technologies (ICINT 2019), which will be held in Kyoto, Japan during May 25-27, 2019.   [Click]
  • Jul 04, 2018 News!JACN Vol.6, No.1 has been published with online version.   [Click]
General Information
    • ISSN: 1793-8244
    • Abbreviated Title:  J. Adv. Comput. Netw.
    • Frequency: Semiyearly
    • DOI: 10.18178/JACN
    • Editor-in-Chief: Dr. Ka Wai Gary Wong
    • Executive Editor: Ms. Nina Lee
    • Abstracting/ Indexing: EI (INSPEC, IET),  Electronic Journals Library, Ulrich's Periodicals Directory, EBSCO, ProQuest, and Google Scholar.
    • E-mail: jacn@ejournal.net
Dr. Ka Wai Gary Wong
Division of Information and Technology Studies, Faculty of Education, The University of Hong Kong.
It's a honor to serve as the editor-in-chief of JACN. I'll work together with the editors and reviewers to help the journal progress
JACN 2013 Vol.1(3): 254-259 ISSN: 1793-8244
DOI: 10.7763/JACN.2013.V1.51

Dynamic Data Storage Estimation for Multiple Concurrent Applications Using Probability Distribution Modeling in WSNs

Mo Haghighi
Abstract—Wireless sensor networks (WSN) have become a mainstream technology for environmental monitoring and observing various variables of interest over extended periods of time via large-scale networks of sensors. WSNs have a wide range of applications including wildfire detection, healthcare, military, and habitat monitoring. In all such application areas, gathering and then relaying captured data to a central unit is often considered the primary task of the network. Scientific analysis however often requires WSNs to capture and store variables for long periods of time. Storing and managing flows of data tend to be challenging issues because WSNs often consist of nodes with limited processing, memory, and power resources. Therefore the software layer in WSNs needs to implement an efficient data storage allocation mechanism in order to provide sufficient memory space for multiple applications. In this paper we propose a novel statistical approach for estimating applications storage requirements. Our proposed mechanism has been originally developed and implemented in a new WSN middleware called Sensomax, which is an agent-based decentralized middleware with multiple concurrent applications support for dynamic data gathering in WSNs. The mechanism described here proved to be an effective technique for proactively allocating memory to multiple applications with different operational paradigms.

Index Terms—Storage, WSN, probability, distribution, concurrency.

Mo Haghighi is with the Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK and Large-Scale Complex IT Systems (LSCITS) (e-mail: Mo.Haghighi@bristol.ac.uk).


Cite:Mo Haghighi, "Dynamic Data Storage Estimation for Multiple Concurrent Applications Using Probability Distribution Modeling in WSNs," Journal of Advances in Computer Networks vol. 1, no. 3, pp. 254-259, 2013.

Copyright © 2008-2018. Journal of Advances in Computer Networks.  All rights reserved.
E-mail: jacn@ejournal.net